/* * Intel IO-APIC support for multi-Pentium hosts. * * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo * * Many thanks to Stig Venaas for trying out countless experimental * patches and reporting/debugging problems patiently! * * (c) 1999, Multiple IO-APIC support, developed by * Ken-ichi Yaku and * Hidemi Kishimoto , * further tested and cleaned up by Zach Brown * and Ingo Molnar * * Fixes * Maciej W. Rozycki : Bits for genuine 82489DX APICs; * thanks to Eric Gilmore * and Rolf G. Tews * for testing these extensively * Paul Diefenbaugh : Added full ACPI support */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* time_after() */ #include #ifdef CONFIG_ACPI #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define __apicdebuginit(type) static type __init #define for_each_irq_pin(entry, head) \ for (entry = head; entry; entry = entry->next) /* * Is the SiS APIC rmw bug present ? * -1 = don't know, 0 = no, 1 = yes */ int sis_apic_bug = -1; static DEFINE_RAW_SPINLOCK(ioapic_lock); static DEFINE_RAW_SPINLOCK(vector_lock); static struct ioapic { /* * # of IRQ routing registers */ int nr_registers; /* * Saved state during suspend/resume, or while enabling intr-remap. */ struct IO_APIC_route_entry *saved_registers; /* I/O APIC config */ struct mpc_ioapic mp_config; /* IO APIC gsi routing info */ struct mp_ioapic_gsi gsi_config; DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1); } ioapics[MAX_IO_APICS]; #define mpc_ioapic_ver(id) ioapics[id].mp_config.apicver int mpc_ioapic_id(int id) { return ioapics[id].mp_config.apicid; } unsigned int mpc_ioapic_addr(int id) { return ioapics[id].mp_config.apicaddr; } struct mp_ioapic_gsi *mp_ioapic_gsi_routing(int id) { return &ioapics[id].gsi_config; } int nr_ioapics; /* The one past the highest gsi number used */ u32 gsi_top; /* MP IRQ source entries */ struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES]; /* # of MP IRQ source entries */ int mp_irq_entries; /* GSI interrupts */ static int nr_irqs_gsi = NR_IRQS_LEGACY; #if defined (CONFIG_MCA) || defined (CONFIG_EISA) int mp_bus_id_to_type[MAX_MP_BUSSES]; #endif DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES); int skip_ioapic_setup; /** * disable_ioapic_support() - disables ioapic support at runtime */ void disable_ioapic_support(void) { #ifdef CONFIG_PCI noioapicquirk = 1; noioapicreroute = -1; #endif skip_ioapic_setup = 1; } static int __init parse_noapic(char *str) { /* disable IO-APIC */ disable_ioapic_support(); return 0; } early_param("noapic", parse_noapic); static int io_apic_setup_irq_pin(unsigned int irq, int node, struct io_apic_irq_attr *attr); /* Will be called in mpparse/acpi/sfi codes for saving IRQ info */ void mp_save_irq(struct mpc_intsrc *m) { int i; apic_printk(APIC_VERBOSE, "Int: type %d, pol %d, trig %d, bus %02x," " IRQ %02x, APIC ID %x, APIC INT %02x\n", m->irqtype, m->irqflag & 3, (m->irqflag >> 2) & 3, m->srcbus, m->srcbusirq, m->dstapic, m->dstirq); for (i = 0; i < mp_irq_entries; i++) { if (!memcmp(&mp_irqs[i], m, sizeof(*m))) return; } memcpy(&mp_irqs[mp_irq_entries], m, sizeof(*m)); if (++mp_irq_entries == MAX_IRQ_SOURCES) panic("Max # of irq sources exceeded!!\n"); } struct irq_pin_list { int apic, pin; struct irq_pin_list *next; }; static struct irq_pin_list *alloc_irq_pin_list(int node) { return kzalloc_node(sizeof(struct irq_pin_list), GFP_KERNEL, node); } /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */ #ifdef CONFIG_SPARSE_IRQ static struct irq_cfg irq_cfgx[NR_IRQS_LEGACY]; #else static struct irq_cfg irq_cfgx[NR_IRQS]; #endif int __init arch_early_irq_init(void) { struct irq_cfg *cfg; int count, node, i; if (!legacy_pic->nr_legacy_irqs) { nr_irqs_gsi = 0; io_apic_irqs = ~0UL; } for (i = 0; i < nr_ioapics; i++) { ioapics[i].saved_registers = kzalloc(sizeof(struct IO_APIC_route_entry) * ioapics[i].nr_registers, GFP_KERNEL); if (!ioapics[i].saved_registers) pr_err("IOAPIC %d: suspend/resume impossible!\n", i); } cfg = irq_cfgx; count = ARRAY_SIZE(irq_cfgx); node = cpu_to_node(0); /* Make sure the legacy interrupts are marked in the bitmap */ irq_reserve_irqs(0, legacy_pic->nr_legacy_irqs); for (i = 0; i < count; i++) { irq_set_chip_data(i, &cfg[i]); zalloc_cpumask_var_node(&cfg[i].domain, GFP_KERNEL, node); zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_KERNEL, node); /* * For legacy IRQ's, start with assigning irq0 to irq15 to * IRQ0_VECTOR to IRQ15_VECTOR on cpu 0. */ if (i < legacy_pic->nr_legacy_irqs) { cfg[i].vector = IRQ0_VECTOR + i; cpumask_set_cpu(0, cfg[i].domain); } } return 0; } #ifdef CONFIG_SPARSE_IRQ static struct irq_cfg *irq_cfg(unsigned int irq) { return irq_get_chip_data(irq); } static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node) { struct irq_cfg *cfg; cfg = kzalloc_node(sizeof(*cfg), GFP_KERNEL, node); if (!cfg) return NULL; if (!zalloc_cpumask_var_node(&cfg->domain, GFP_KERNEL, node)) goto out_cfg; if (!zalloc_cpumask_var_node(&cfg->old_domain, GFP_KERNEL, node)) goto out_domain; return cfg; out_domain: free_cpumask_var(cfg->domain); out_cfg: kfree(cfg); return NULL; } static void free_irq_cfg(unsigned int at, struct irq_cfg *cfg) { if (!cfg) return; irq_set_chip_data(at, NULL); free_cpumask_var(cfg->domain); free_cpumask_var(cfg->old_domain); kfree(cfg); } #else struct irq_cfg *irq_cfg(unsigned int irq) { return irq < nr_irqs ? irq_cfgx + irq : NULL; } static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node) { return irq_cfgx + irq; } static inline void free_irq_cfg(unsigned int at, struct irq_cfg *cfg) { } #endif static struct irq_cfg *alloc_irq_and_cfg_at(unsigned int at, int node) { int res = irq_alloc_desc_at(at, node); struct irq_cfg *cfg; if (res < 0) { if (res != -EEXIST) return NULL; cfg = irq_get_chip_data(at); if (cfg) return cfg; } cfg = alloc_irq_cfg(at, node); if (cfg) irq_set_chip_data(at, cfg); else irq_free_desc(at); return cfg; } static int alloc_irq_from(unsigned int from, int node) { return irq_alloc_desc_from(from, node); } static void free_irq_at(unsigned int at, struct irq_cfg *cfg) { free_irq_cfg(at, cfg); irq_free_desc(at); } struct io_apic { unsigned int index; unsigned int unused[3]; unsigned int data; unsigned int unused2[11]; unsigned int eoi; }; static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx) { return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx) + (mpc_ioapic_addr(idx) & ~PAGE_MASK); } static inline void io_apic_eoi(unsigned int apic, unsigned int vector) { struct io_apic __iomem *io_apic = io_apic_base(apic); writel(vector, &io_apic->eoi); } static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg) { struct io_apic __iomem *io_apic = io_apic_base(apic); writel(reg, &io_apic->index); return readl(&io_apic->data); } static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value) { struct io_apic __iomem *io_apic = io_apic_base(apic); writel(reg, &io_apic->index); writel(value, &io_apic->data); } /* * Re-write a value: to be used for read-modify-write * cycles where the read already set up the index register. * * Older SiS APIC requires we rewrite the index register */ static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value) { struct io_apic __iomem *io_apic = io_apic_base(apic); if (sis_apic_bug) writel(reg, &io_apic->index); writel(value, &io_apic->data); } static bool io_apic_level_ack_pending(struct irq_cfg *cfg) { struct irq_pin_list *entry; unsigned long flags; raw_spin_lock_irqsave(&ioapic_lock, flags); for_each_irq_pin(entry, cfg->irq_2_pin) { unsigned int reg; int pin; pin = entry->pin; reg = io_apic_read(entry->apic, 0x10 + pin*2); /* Is the remote IRR bit set? */ if (reg & IO_APIC_REDIR_REMOTE_IRR) { raw_spin_unlock_irqrestore(&ioapic_lock, flags); return true; } } raw_spin_unlock_irqrestore(&ioapic_lock, flags); return false; } union entry_union { struct { u32 w1, w2; }; struct IO_APIC_route_entry entry; }; static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin) { union entry_union eu; unsigned long flags; raw_spin_lock_irqsave(&ioapic_lock, flags); eu.w1 = io_apic_read(apic, 0x10 + 2 * pin); eu.w2 = io_apic_read(apic, 0x11 + 2 * pin); raw_spin_unlock_irqrestore(&ioapic_lock, flags); return eu.entry; } /* * When we write a new IO APIC routing entry, we need to write the high * word first! If the mask bit in the low word is clear, we will enable * the interrupt, and we need to make sure the entry is fully populated * before that happens. */ static void __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) { union entry_union eu = {{0, 0}}; eu.entry = e; io_apic_write(apic, 0x11 + 2*pin, eu.w2); io_apic_write(apic, 0x10 + 2*pin, eu.w1); } static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e) { unsigned long flags; raw_spin_lock_irqsave(&ioapic_lock, flags); __ioapic_write_entry(apic, pin, e); raw_spin_unlock_irqrestore(&ioapic_lock, flags); } /* * When we mask an IO APIC routing entry, we need to write the low * word first, in order to set the mask bit before we change the * high bits! */ static void ioapic_mask_entry(int apic, int pin) { unsigned long flags; union entry_union eu = { .entry.mask = 1 }; raw_spin_lock_irqsave(&ioapic_lock, flags); io_apic_write(apic, 0x10 + 2*pin, eu.w1); io_apic_write(apic, 0x11 + 2*pin, eu.w2); raw_spin_unlock_irqrestore(&ioapic_lock, flags); } /* * The common case is 1:1 IRQ<->pin mappings. Sometimes there are * shared ISA-space IRQs, so we have to support them. We are super * fast in the common case, and fast for shared ISA-space IRQs. */ static int __add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin) { struct irq_pin_list **last, *entry; /* don't allow duplicates */ last = &cfg->irq_2_pin; for_each_irq_pin(entry, cfg->irq_2_pin) { if (entry->apic == apic && entry->pin == pin) return 0; last = &entry->next; } entry = alloc_irq_pin_list(node); if (!entry) { printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n", node, apic, pin); return -ENOMEM; } entry->apic = apic; entry->pin = pin; *last = entry; return 0; } static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin) { if (__add_pin_to_irq_node(cfg, node, apic, pin)) panic("IO-APIC: failed to add irq-pin. Can not proceed\n"); } /* * Reroute an IRQ to a different pin. */ static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node, int oldapic, int oldpin, int newapic, int newpin) { struct irq_pin_list *entry; for_each_irq_pin(entry, cfg->irq_2_pin) { if (entry->apic == oldapic && entry->pin == oldpin) { entry->apic = newapic; entry->pin = newpin; /* every one is different, right? */ return; } } /* old apic/pin didn't exist, so just add new ones */ add_pin_to_irq_node(cfg, node, newapic, newpin); } static void __io_apic_modify_irq(struct irq_pin_list *entry, int mask_and, int mask_or, void (*final)(struct irq_pin_list *entry)) { unsigned int reg, pin; pin = entry->pin; reg = io_apic_read(entry->apic, 0x10 + pin * 2); reg &= mask_and; reg |= mask_or; io_apic_modify(entry->apic, 0x10 + pin * 2, reg); if (final) final(entry); } static void io_apic_modify_irq(struct irq_cfg *cfg, int mask_and, int mask_or, void (*final)(struct irq_pin_list *entry)) { struct irq_pin_list *entry; for_each_irq_pin(entry, cfg->irq_2_pin) __io_apic_modify_irq(entry, mask_and, mask_or, final); } static void __mask_and_edge_IO_APIC_irq(struct irq_pin_list *entry) { __io_apic_modify_irq(entry, ~IO_APIC_REDIR_LEVEL_TRIGGER, IO_APIC_REDIR_MASKED, NULL); } static void __unmask_and_level_IO_APIC_irq(struct irq_pin_list *entry) { __io_apic_modify_irq(entry, ~IO_APIC_REDIR_MASKED, IO_APIC_REDIR_LEVEL_TRIGGER, NULL); } static void io_apic_sync(struct irq_pin_list *entry) { /* * Synchronize the IO-APIC and the CPU by doing * a dummy read from the IO-APIC */ struct io_apic __iomem *io_apic; io_apic = io_apic_base(entry->apic); readl(&io_apic->data); } static void mask_ioapic(struct irq_cfg *cfg) { unsigned long flags; raw_spin_lock_irqsave(&ioapic_lock, flags); io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync); raw_spin_unlock_irqrestore(&ioapic_lock, flags); } static void mask_ioapic_irq(struct irq_data *data) { mask_ioapic(data->chip_data); } static void __unmask_ioapic(struct irq_cfg *cfg) { io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL); } static void unmask_ioapic(struct irq_cfg *cfg) { unsigned long flags; raw_spin_lock_irqsave(&ioapic_lock, flags); __unmask_ioapic(cfg); raw_spin_unlock_irqrestore(&ioapic_lock, flags); } static void unmask_ioapic_irq(struct irq_data *data) { unmask_ioapic(data->chip_data); } static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin) { struct IO_APIC_route_entry entry; /* Check delivery_mode to be sure we're not clearing an SMI pin */ entry = ioapic_read_entry(apic, pin); if (entry.delivery_mode == dest_SMI) return; /* * Disable it in the IO-APIC irq-routing table: */ ioapic_mask_entry(apic, pin); } static void clear_IO_APIC (void) { int apic, pin; for (apic = 0; apic < nr_ioapics; apic++) for (pin = 0; pin < ioapics[apic].nr_registers; pin++) clear_IO_APIC_pin(apic, pin); } #ifdef CONFIG_X86_32 /* * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to * specific CPU-side IRQs. */ #define MAX_PIRQS 8 static int pirq_entries[MAX_PIRQS] = { [0 ... MAX_PIRQS - 1] = -1 }; static int __init ioapic_pirq_setup(char *str) { int i, max; int ints[MAX_PIRQS+1]; get_options(str, ARRAY_SIZE(ints), ints); apic_printk(APIC_VERBOSE, KERN_INFO "PIRQ redirection, working around broken MP-BIOS.\n"); max = MAX_PIRQS; if (ints[0] < MAX_PIRQS) max = ints[0]; for (i = 0; i < max; i++) { apic_printk(APIC_VERBOSE, KERN_DEBUG "... PIRQ%d -> IRQ %d\n", i, ints[i+1]); /* * PIRQs are mapped upside down, usually. */ pirq_entries[MAX_PIRQS-i-1] = ints[i+1]; } return 1; } __setup("pirq=", ioapic_pirq_setup); #endif /* CONFIG_X86_32 */ /* * Saves all the IO-APIC RTE's */ int save_ioapic_entries(void) { int apic, pin; int err = 0; for (apic = 0; apic < nr_ioapics; apic++) { if (!ioapics[apic].saved_registers) { err = -ENOMEM; continue; } for (pin = 0; pin < ioapics[apic].nr_registers; pin++) ioapics[apic].saved_registers[pin] = ioapic_read_entry(apic, pin); } return err; } /* * Mask all IO APIC entries. */ void mask_ioapic_entries(void) { int apic, pin; for (apic = 0; apic < nr_ioapics; apic++) { if (!ioapics[apic].saved_registers) continue; for (pin = 0; pin < ioapics[apic].nr_registers; pin++) { struct IO_APIC_route_entry entry; entry = ioapics[apic].saved_registers[pin]; if (!entry.mask) { entry.mask = 1; ioapic_write_entry(apic, pin, entry); } } } } /* * Restore IO APIC entries which was saved in the ioapic structure. */ int restore_ioapic_entries(void) { int apic, pin; for (apic = 0; apic < nr_ioapics; apic++) { if (!ioapics[apic].saved_registers) continue; for (pin = 0; pin < ioapics[apic].nr_registers; pin++) ioapic_write_entry(apic, pin, ioapics[apic].saved_registers[pin]); } return 0; } /* * Find the IRQ entry number of a certain pin. */ static int find_irq_entry(int apic, int pin, int type) { int i; for (i = 0; i < mp_irq_entries; i++) if (mp_irqs[i].irqtype == type && (mp_irqs[i].dstapic == mpc_ioapic_id(apic) || mp_irqs[i].dstapic == MP_APIC_ALL) && mp_irqs[i].dstirq == pin) return i; return -1; } /* * Find the pin to which IRQ[irq] (ISA) is connected */ static int __init find_isa_irq_pin(int irq, int type) { int i; for (i = 0; i < mp_irq_entries; i++) { int lbus = mp_irqs[i].srcbus; if (test_bit(lbus, mp_bus_not_pci) && (mp_irqs[i].irqtype == type) && (mp_irqs[i].srcbusirq == irq)) return mp_irqs[i].dstirq; } return -1; } static int __init find_isa_irq_apic(int irq, int type) { int i; for (i = 0; i < mp_irq_entries; i++) { int lbus = mp_irqs[i].srcbus; if (test_bit(lbus, mp_bus_not_pci) && (mp_irqs[i].irqtype == type) && (mp_irqs[i].srcbusirq == irq)) break; } if (i < mp_irq_entries) { int apic; for(apic = 0; apic < nr_ioapics; apic++) { if (mpc_ioapic_id(apic) == mp_irqs[i].dstapic) return apic; } } return -1; } #if defined(CONFIG_EISA) || defined(CONFIG_MCA) /* * EISA Edge/Level control register, ELCR */ static int EISA_ELCR(unsigned int irq) { if (irq < legacy_pic->nr_legacy_irqs) { unsigned int port = 0x4d0 + (irq >> 3); return (inb(port) >> (irq & 7)) & 1; } apic_printk(APIC_VERBOSE, KERN_INFO "Broken MPtable reports ISA irq %d\n", irq); return 0; } #endif /* ISA interrupts are always polarity zero edge triggered, * when listed as conforming in the MP table. */ #define default_ISA_trigger(idx) (0) #define default_ISA_polarity(idx) (0) /* EISA interrupts are always polarity zero and can be edge or level * trigger depending on the ELCR value. If an interrupt is listed as * EISA conforming in the MP table, that means its trigger type must * be read in from the ELCR */ #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq)) #define default_EISA_polarity(idx) default_ISA_polarity(idx) /* PCI interrupts are always polarity one level triggered, * when listed as conforming in the MP table. */ #define default_PCI_trigger(idx) (1) #define default_PCI_polarity(idx) (1) /* MCA interrupts are always polarity zero level triggered, * when listed as conforming in the MP table. */ #define default_MCA_trigger(idx) (1) #define default_MCA_polarity(idx) default_ISA_polarity(idx) static int irq_polarity(int idx) { int bus = mp_irqs[idx].srcbus; int polarity; /* * Determine IRQ line polarity (high active or low active): */ switch (mp_irqs[idx].irqflag & 3) { case 0: /* conforms, ie. bus-type dependent polarity */ if (test_bit(bus, mp_bus_not_pci)) polarity = default_ISA_polarity(idx); else polarity = default_PCI_polarity(idx); break; case 1: /* high active */ { polarity = 0; break; } case 2: /* reserved */ { printk(KERN_WARNING "broken BIOS!!\n"); polarity = 1; break; } case 3: /* low active */ { polarity = 1; break; } default: /* invalid */ { printk(KERN_WARNING "broken BIOS!!\n"); polarity = 1; break; } } return polarity; } static int irq_trigger(int idx) { int bus = mp_irqs[idx].srcbus; int trigger; /* * Determine IRQ trigger mode (edge or level sensitive): */ switch ((mp_irqs[idx].irqflag>>2) & 3) { case 0: /* conforms, ie. bus-type dependent */ if (test_bit(bus, mp_bus_not_pci)) trigger = default_ISA_trigger(idx); else trigger = default_PCI_trigger(idx); #if defined(CONFIG_EISA) || defined(CONFIG_MCA) switch (mp_bus_id_to_type[bus]) { case MP_BUS_ISA: /* ISA pin */ { /* set before the switch */ break; } case MP_BUS_EISA: /* EISA pin */ { trigger = default_EISA_trigger(idx); break; } case MP_BUS_PCI: /* PCI pin */ { /* set before the switch */ break; } case MP_BUS_MCA: /* MCA pin */ { trigger = default_MCA_trigger(idx); break; } default: { printk(KERN_WARNING "broken BIOS!!\n"); trigger = 1; break; } } #endif break; case 1: /* edge */ { trigger = 0; break; } case 2: /* reserved */ { printk(KERN_WARNING "broken BIOS!!\n"); trigger = 1; break; } case 3: /* level */ { trigger = 1; break; } default: /* invalid */ { printk(KERN_WARNING "broken BIOS!!\n"); trigger = 0; break; } } return trigger; } static int pin_2_irq(int idx, int apic, int pin) { int irq; int bus = mp_irqs[idx].srcbus; struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(apic); /* * Debugging check, we are in big trouble if this message pops up! */ if (mp_irqs[idx].dstirq != pin) printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n"); if (test_bit(bus, mp_bus_not_pci)) { irq = mp_irqs[idx].srcbusirq; } else { u32 gsi = gsi_cfg->gsi_base + pin; if (gsi >= NR_IRQS_LEGACY) irq = gsi; else irq = gsi_top + gsi; } #ifdef CONFIG_X86_32 /* * PCI IRQ command line redirection. Yes, limits are hardcoded. */ if ((pin >= 16) && (pin <= 23)) { if (pirq_entries[pin-16] != -1) { if (!pirq_entries[pin-16]) { apic_printk(APIC_VERBOSE, KERN_DEBUG "disabling PIRQ%d\n", pin-16); } else { irq = pirq_entries[pin-16]; apic_printk(APIC_VERBOSE, KERN_DEBUG "using PIRQ%d -> IRQ %d\n", pin-16, irq); } } } #endif return irq; } /* * Find a specific PCI IRQ entry. * Not an __init, possibly needed by modules */ int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin, struct io_apic_irq_attr *irq_attr) { int apic, i, best_guess = -1; apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n", bus, slot, pin); if (test_bit(bus, mp_bus_not_pci)) { apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus); return -1; } for (i = 0; i < mp_irq_entries; i++) { int lbus = mp_irqs[i].srcbus; for (apic = 0; apic < nr_ioapics; apic++) if (mpc_ioapic_id(apic) == mp_irqs[i].dstapic || mp_irqs[i].dstapic == MP_APIC_ALL) break; if (!test_bit(lbus, mp_bus_not_pci) && !mp_irqs[i].irqtype && (bus == lbus) && (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) { int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq); if (!(apic || IO_APIC_IRQ(irq))) continue; if (pin == (mp_irqs[i].srcbusirq & 3)) { set_io_apic_irq_attr(irq_attr, apic, mp_irqs[i].dstirq, irq_trigger(i), irq_polarity(i)); return irq; } /* * Use the first all-but-pin matching entry as a * best-guess fuzzy result for broken mptables. */ if (best_guess < 0) { set_io_apic_irq_attr(irq_attr, apic, mp_irqs[i].dstirq, irq_trigger(i), irq_polarity(i)); best_guess = irq; } } } return best_guess; } EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector); void lock_vector_lock(void) { /* Used to the online set of cpus does not change * during assign_irq_vector. */ raw_spin_lock(&vector_lock); } void unlock_vector_lock(void) { raw_spin_unlock(&vector_lock); } static int __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask) { /* * NOTE! The local APIC isn't very good at handling * multiple interrupts at the same interrupt level. * As the interrupt level is determined by taking the * vector number and shifting that right by 4, we * want to spread these out a bit so that they don't * all fall in the same interrupt level. * * Also, we've got to be careful not to trash gate * 0x80, because int 0x80 is hm, kind of importantish. ;) */ static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START; static int current_offset = VECTOR_OFFSET_START % 8; unsigned int old_vector; int cpu, err; cpumask_var_t tmp_mask; if (cfg->move_in_progress) return -EBUSY; if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC)) return -ENOMEM; old_vector = cfg->vector; if (old_vector) { cpumask_and(tmp_mask, mask, cpu_online_mask); cpumask_and(tmp_mask, cfg->domain, tmp_mask); if (!cpumask_empty(tmp_mask)) { free_cpumask_var(tmp_mask); return 0; } } /* Only try and allocate irqs on cpus that are present */ err = -ENOSPC; for_each_cpu_and(cpu, mask, cpu_online_mask) { int new_cpu; int vector, offset; apic->vector_allocation_domain(cpu, tmp_mask); vector = current_vector; offset = current_offset; next: vector += 8; if (vector >= first_system_vector) { /* If out of vectors on large boxen, must share them. */ offset = (offset + 1) % 8; vector = FIRST_EXTERNAL_VECTOR + offset; } if (unlikely(current_vector == vector)) continue; if (test_bit(vector, used_vectors)) goto next; for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask) if (per_cpu(vector_irq, new_cpu)[vector] != -1) goto next; /* Found one! */ current_vector = vector; current_offset = offset; if (old_vector) { cfg->move_in_progress = 1; cpumask_copy(cfg->old_domain, cfg->domain); } for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask) per_cpu(vector_irq, new_cpu)[vector] = irq; cfg->vector = vector; cpumask_copy(cfg->domain, tmp_mask); err = 0; break; } free_cpumask_var(tmp_mask); return err; } int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask) { int err; unsigned long flags; raw_spin_lock_irqsave(&vector_lock, flags); err = __assign_irq_vector(irq, cfg, mask); raw_spin_unlock_irqrestore(&vector_lock, flags); return err; } static void __clear_irq_vector(int irq, struct irq_cfg *cfg) { int cpu, vector; BUG_ON(!cfg->vector); vector = cfg->vector; for_each_cpu_and(cpu, cfg->domain, cpu_online_mask) per_cpu(vector_irq, cpu)[vector] = -1; cfg->vector = 0; cpumask_clear(cfg->domain); if (likely(!cfg->move_in_progress)) return; for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) { for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { if (per_cpu(vector_irq, cpu)[vector] != irq) continue; per_cpu(vector_irq, cpu)[vector] = -1; break; } } cfg->move_in_progress = 0; } void __setup_vector_irq(int cpu) { /* Initialize vector_irq on a new cpu */ int irq, vector; struct irq_cfg *cfg; /* * vector_lock will make sure that we don't run into irq vector * assignments that might be happening on another cpu in parallel, * while we setup our initial vector to irq mappings. */ raw_spin_lock(&vector_lock); /* Mark the inuse vectors */ for_each_active_irq(irq) { cfg = irq_get_chip_data(irq); if (!cfg) continue; /* * If it is a legacy IRQ handled by the legacy PIC, this cpu * will be part of the irq_cfg's domain. */ if (irq < legacy_pic->nr_legacy_irqs && !IO_APIC_IRQ(irq)) cpumask_set_cpu(cpu, cfg->domain); if (!cpumask_test_cpu(cpu, cfg->domain)) continue; vector = cfg->vector; per_cpu(vector_irq, cpu)[vector] = irq; } /* Mark the free vectors */ for (vector = 0; vector < NR_VECTORS; ++vector) { irq = per_cpu(vector_irq, cpu)[vector]; if (irq < 0) continue; cfg = irq_cfg(irq); if (!cpumask_test_cpu(cpu, cfg->domain)) per_cpu(vector_irq, cpu)[vector] = -1; } raw_spin_unlock(&vector_lock); } static struct irq_chip ioapic_chip; static struct irq_chip ir_ioapic_chip; #ifdef CONFIG_X86_32 static inline int IO_APIC_irq_trigger(int irq) { int apic, idx, pin; for (apic = 0; apic < nr_ioapics; apic++) { for (pin = 0; pin < ioapics[apic].nr_registers; pin++) { idx = find_irq_entry(apic, pin, mp_INT); if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin))) return irq_trigger(idx); } } /* * nonexistent IRQs are edge default */ return 0; } #else static inline int IO_APIC_irq_trigger(int irq) { return 1; } #endif static void ioapic_register_intr(unsigned int irq, struct irq_cfg *cfg, unsigned long trigger) { struct irq_chip *chip = &ioapic_chip; irq_flow_handler_t hdl; bool fasteoi; if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) || trigger == IOAPIC_LEVEL) { irq_set_status_flags(irq, IRQ_LEVEL); fasteoi = true; } else { irq_clear_status_flags(irq, IRQ_LEVEL); fasteoi = false; } if (irq_remapped(cfg)) { irq_set_status_flags(irq, IRQ_MOVE_PCNTXT); chip = &ir_ioapic_chip; fasteoi = trigger != 0; } hdl = fasteoi ? handle_fasteoi_irq : handle_edge_irq; irq_set_chip_and_handler_name(irq, chip, hdl, fasteoi ? "fasteoi" : "edge"); } static int setup_ir_ioapic_entry(int irq, struct IR_IO_APIC_route_entry *entry, unsigned int destination, int vector, struct io_apic_irq_attr *attr) { int index; struct irte irte; int apic_id = mpc_ioapic_id(attr->ioapic); struct intel_iommu *iommu = map_ioapic_to_ir(apic_id); if (!iommu) { pr_warn("No mapping iommu for ioapic %d\n", apic_id); return -ENODEV; } index = alloc_irte(iommu, irq, 1); if (index < 0) { pr_warn("Failed to allocate IRTE for ioapic %d\n", apic_id); return -ENOMEM; } prepare_irte(&irte, vector, destination); /* Set source-id of interrupt request */ set_ioapic_sid(&irte, apic_id); modify_irte(irq, &irte); apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: " "Set IRTE entry (P:%d FPD:%d Dst_Mode:%d " "Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X " "Avail:%X Vector:%02X Dest:%08X " "SID:%04X SQ:%X SVT:%X)\n", apic_id, irte.present, irte.fpd, irte.dst_mode, irte.redir_hint, irte.trigger_mode, irte.dlvry_mode, irte.avail, irte.vector, irte.dest_id, irte.sid, irte.sq, irte.svt); memset(entry, 0, sizeof(*entry)); entry->index2 = (index >> 15) & 0x1; entry->zero = 0; entry->format = 1; entry->index = (index & 0x7fff); /* * IO-APIC RTE will be configured with virtual vector. * irq handler will do the explicit EOI to the io-apic. */ entry->vector = attr->ioapic_pin; entry->mask = 0; /* enable IRQ */ entry->trigger = attr->trigger; entry->polarity = attr->polarity; /* Mask level triggered irqs. * Use IRQ_DELAYED_DISABLE for edge triggered irqs. */ if (attr->trigger) entry->mask = 1; return 0; } static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry, unsigned int destination, int vector, struct io_apic_irq_attr *attr) { if (intr_remapping_enabled) return setup_ir_ioapic_entry(irq, (struct IR_IO_APIC_route_entry *)entry, destination, vector, attr); memset(entry, 0, sizeof(*entry)); entry->delivery_mode = apic->irq_delivery_mode; entry->dest_mode = apic->irq_dest_mode; entry->dest = destination; entry->vector = vector; entry->mask = 0; /* enable IRQ */ entry->trigger = attr->trigger; entry->polarity = attr->polarity; /* * Mask level triggered irqs. * Use IRQ_DELAYED_DISABLE for edge triggered irqs. */ if (attr->trigger) entry->mask = 1; return 0; } static void setup_ioapic_irq(unsigned int irq, struct irq_cfg *cfg, struct io_apic_irq_attr *attr) { struct IO_APIC_route_entry entry; unsigned int dest; if (!IO_APIC_IRQ(irq)) return; /* * For legacy irqs, cfg->domain starts with cpu 0 for legacy * controllers like 8259. Now that IO-APIC can handle this irq, update * the cfg->domain. */ if (irq < legacy_pic->nr_legacy_irqs && cpumask_test_cpu(0, cfg->domain)) apic->vector_allocation_domain(0, cfg->domain); if (assign_irq_vector(irq, cfg, apic->target_cpus())) return; dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus()); apic_printk(APIC_VERBOSE,KERN_DEBUG "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> " "IRQ %d Mode:%i Active:%i Dest:%d)\n", attr->ioapic, mpc_ioapic_id(attr->ioapic), attr->ioapic_pin, cfg->vector, irq, attr->trigger, attr->polarity, dest); if (setup_ioapic_entry(irq, &entry, dest, cfg->vector, attr)) { pr_warn("Failed to setup ioapic entry for ioapic %d, pin %d\n", mpc_ioapic_id(attr->ioapic), attr->ioapic_pin); __clear_irq_vector(irq, cfg); return; } ioapic_register_intr(irq, cfg, attr->trigger); if (irq < legacy_pic->nr_legacy_irqs) legacy_pic->mask(irq); ioapic_write_entry(attr->ioapic, attr->ioapic_pin, entry); } static bool __init io_apic_pin_not_connected(int idx, int apic_id, int pin) { if (idx != -1) return false; apic_printk(APIC_VERBOSE, KERN_DEBUG " apic %d pin %d not connected\n", mpc_ioapic_id(apic_id), pin); return true; } static void __init __io_apic_setup_irqs(unsigned int apic_id) { int idx, node = cpu_to_node(0); struct io_apic_irq_attr attr; unsigned int pin, irq; for (pin = 0; pin < ioapics[apic_id].nr_registers; pin++) { idx = find_irq_entry(apic_id, pin, mp_INT); if (io_apic_pin_not_connected(idx, apic_id, pin)) continue; irq = pin_2_irq(idx, apic_id, pin); if ((apic_id > 0) && (irq > 16)) continue; /* * Skip the timer IRQ if there's a quirk handler * installed and if it returns 1: */ if (apic->multi_timer_check && apic->multi_timer_check(apic_id, irq)) continue; set_io_apic_irq_attr(&attr, apic_id, pin, irq_trigger(idx), irq_polarity(idx)); io_apic_setup_irq_pin(irq, node, &attr); } } static void __init setup_IO_APIC_irqs(void) { unsigned int apic_id; apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n"); for (apic_id = 0; apic_id < nr_ioapics; apic_id++) __io_apic_setup_irqs(apic_id); } /* * for the gsit that is not in first ioapic * but could not use acpi_register_gsi() * like some special sci in IBM x3330 */ void setup_IO_APIC_irq_extra(u32 gsi) { int apic_id = 0, pin, idx, irq, node = cpu_to_node(0); struct io_apic_irq_attr attr; /* * Convert 'gsi' to 'ioapic.pin'. */ apic_id = mp_find_ioapic(gsi); if (apic_id < 0) return; pin = mp_find_ioapic_pin(apic_id, gsi); idx = find_irq_entry(apic_id, pin, mp_INT); if (idx == -1) return; irq = pin_2_irq(idx, apic_id, pin); /* Only handle the non legacy irqs on secondary ioapics */ if (apic_id == 0 || irq < NR_IRQS_LEGACY) return; set_io_apic_irq_attr(&attr, apic_id, pin, irq_trigger(idx), irq_polarity(idx)); io_apic_setup_irq_pin_once(irq, node, &attr); } /* * Set up the timer pin, possibly with the 8259A-master behind. */ static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin, int vector) { struct IO_APIC_route_entry entry; if (intr_remapping_enabled) return; memset(&entry, 0, sizeof(entry)); /* * We use logical delivery to get the timer IRQ * to the first CPU. */ entry.dest_mode = apic->irq_dest_mode; entry.mask = 0; /* don't mask IRQ for edge */ entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus()); entry.delivery_mode = apic->irq_delivery_mode; entry.polarity = 0; entry.trigger = 0; entry.vector = vector; /* * The timer IRQ doesn't have to know that behind the * scene we may have a 8259A-master in AEOI mode ... */ irq_set_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge"); /* * Add it to the IO-APIC irq-routing table: */ ioapic_write_entry(apic_id, pin, entry); } __apicdebuginit(void) print_IO_APIC(void) { int apic, i; union IO_APIC_reg_00 reg_00; union IO_APIC_reg_01 reg_01; union IO_APIC_reg_02 reg_02; union IO_APIC_reg_03 reg_03; unsigned long flags; struct irq_cfg *cfg; unsigned int irq; printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries); for (i = 0; i < nr_ioapics; i++) printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n", mpc_ioapic_id(i), ioapics[i].nr_registers); /* * We are a bit conservative about what we expect. We have to * know about every hardware change ASAP. */ printk(KERN_INFO "testing the IO APIC.......................\n"); for (apic = 0; apic < nr_ioapics; apic++) { raw_spin_lock_irqsave(&ioapic_lock, flags); reg_00.raw = io_apic_read(apic, 0); reg_01.raw = io_apic_read(apic, 1); if (reg_01.bits.version >= 0x10) reg_02.raw = io_apic_read(apic, 2); if (reg_01.bits.version >= 0x20) reg_03.raw = io_apic_read(apic, 3); raw_spin_unlock_irqrestore(&ioapic_lock, flags); printk("\n"); printk(KERN_DEBUG "IO APIC #%d......\n", mpc_ioapic_id(apic)); printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw); printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID); printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type); printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS); printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)®_01); printk(KERN_DEBUG "....... : max redirection entries: %02X\n", reg_01.bits.entries); printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ); printk(KERN_DEBUG "....... : IO APIC version: %02X\n", reg_01.bits.version); /* * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02, * but the value of reg_02 is read as the previous read register * value, so ignore it if reg_02 == reg_01. */ if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) { printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw); printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration); } /* * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02 * or reg_03, but the value of reg_0[23] is read as the previous read * register value, so ignore it if reg_03 == reg_0[12]. */ if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw && reg_03.raw != reg_01.raw) { printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw); printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT); } printk(KERN_DEBUG ".... IRQ redirection table:\n"); if (intr_remapping_enabled) { printk(KERN_DEBUG " NR Indx Fmt Mask Trig IRR" " Pol Stat Indx2 Zero Vect:\n"); } else { printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol" " Stat Dmod Deli Vect:\n"); } for (i = 0; i <= reg_01.bits.entries; i++) { if (intr_remapping_enabled) { struct IO_APIC_route_entry entry; struct IR_IO_APIC_route_entry *ir_entry; entry = ioapic_read_entry(apic, i); ir_entry = (struct IR_IO_APIC_route_entry *) &entry; printk(KERN_DEBUG " %02x %04X ", i, ir_entry->index ); printk("%1d %1d %1d %1d %1d " "%1d %1d %X %02X\n", ir_entry->format, ir_entry->mask, ir_entry->trigger, ir_entry->irr, ir_entry->polarity, ir_entry->delivery_status, ir_entry->index2, ir_entry->zero, ir_entry->vector ); } else { struct IO_APIC_route_entry entry; entry = ioapic_read_entry(apic, i); printk(KERN_DEBUG " %02x %02X ", i, entry.dest ); printk("%1d %1d %1d %1d %1d " "%1d %1d %02X\n", entry.mask, entry.trigger, entry.irr, entry.polarity, entry.delivery_status, entry.dest_mode, entry.delivery_mode, entry.vector ); } } } printk(KERN_DEBUG "IRQ to pin mappings:\n"); for_each_active_irq(irq) { struct irq_pin_list *entry; cfg = irq_get_chip_data(irq); if (!cfg) continue; entry = cfg->irq_2_pin; if (!entry) continue; printk(KERN_DEBUG "IRQ%d ", irq); for_each_irq_pin(entry, cfg->irq_2_pin) printk("-> %d:%d", entry->apic, entry->pin); printk("\n"); } printk(KERN_INFO ".................................... done.\n"); return; } __apicdebuginit(void) print_APIC_field(int base) { int i; printk(KERN_DEBUG); for (i = 0; i < 8; i++) printk(KERN_CONT "%08x", apic_read(base + i*0x10)); printk(KERN_CONT "\n"); } __apicdebuginit(void) print_local_APIC(void *dummy) { unsigned int i, v, ver, maxlvt; u64 icr; printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n", smp_processor_id(), hard_smp_processor_id()); v = apic_read(APIC_ID); printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id()); v = apic_read(APIC_LVR); printk(KERN_INFO "... APIC VERSION: %08x\n", v); ver = GET_APIC_VERSION(v); maxlvt = lapic_get_maxlvt(); v = apic_read(APIC_TASKPRI); printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); if (APIC_INTEGRATED(ver)) { /* !82489DX */ if (!APIC_XAPIC(ver)) { v = apic_read(APIC_ARBPRI); printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v, v & APIC_ARBPRI_MASK); } v = apic_read(APIC_PROCPRI); printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v); } /* * Remote read supported only in the 82489DX and local APIC for * Pentium processors. */ if (!APIC_INTEGRATED(ver) || maxlvt == 3) { v = apic_read(APIC_RRR); printk(KERN_DEBUG "... APIC RRR: %08x\n", v); } v = apic_read(APIC_LDR); printk(KERN_DEBUG "... APIC LDR: %08x\n", v); if (!x2apic_enabled()) { v = apic_read(APIC_DFR); printk(KERN_DEBUG "... APIC DFR: %08x\n", v); } v = apic_read(APIC_SPIV); printk(KERN_DEBUG "... APIC SPIV: %08x\n", v); printk(KERN_DEBUG "... APIC ISR field:\n"); print_APIC_field(APIC_ISR); printk(KERN_DEBUG "... APIC TMR field:\n"); print_APIC_field(APIC_TMR); printk(KERN_DEBUG "... APIC IRR field:\n"); print_APIC_field(APIC_IRR); if (APIC_INTEGRATED(ver)) { /* !82489DX */ if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ apic_write(APIC_ESR, 0); v = apic_read(APIC_ESR); printk(KERN_DEBUG "... APIC ESR: %08x\n", v); } icr = apic_icr_read(); printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr); printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32)); v = apic_read(APIC_LVTT); printk(KERN_DEBUG "... APIC LVTT: %08x\n", v); if (maxlvt > 3) { /* PC is LVT#4. */ v = apic_read(APIC_LVTPC); printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v); } v = apic_read(APIC_LVT0); printk(KERN_DEBUG "... APIC LVT0: %08x\n", v); v = apic_read(APIC_LVT1); printk(KERN_DEBUG "... APIC LVT1: %08x\n", v); if (maxlvt > 2) { /* ERR is LVT#3. */ v = apic_read(APIC_LVTERR); printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v); } v = apic_read(APIC_TMICT); printk(KERN_DEBUG "... APIC TMICT: %08x\n", v); v = apic_read(APIC_TMCCT); printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v); v = apic_read(APIC_TDCR); printk(KERN_DEBUG "... APIC TDCR: %08x\n", v); if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { v = apic_read(APIC_EFEAT); maxlvt = (v >> 16) & 0xff; printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v); v = apic_read(APIC_ECTRL); printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v); for (i = 0; i < maxlvt; i++) { v = apic_read(APIC_EILVTn(i)); printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v); } } printk("\n"); } __apicdebuginit(void) print_local_APICs(int maxcpu) { int cpu; if (!maxcpu) return; preempt_disable(); for_each_online_cpu(cpu) { if (cpu >= maxcpu) break; smp_call_function_single(cpu, print_local_APIC, NULL, 1); } preempt_enable(); } __apicdebuginit(void) print_PIC(void) { unsigned int v; unsigned long flags; if (!legacy_pic->nr_legacy_irqs) return; printk(KERN_DEBUG "\nprinting PIC contents\n"); raw_spin_lock_irqsave(&i8259A_lock, flags); v = inb(0xa1) << 8 | inb(0x21); printk(KERN_DEBUG "... PIC IMR: %04x\n", v); v = inb(0xa0) << 8 | inb(0x20); printk(KERN_DEBUG "... PIC IRR: %04x\n", v); outb(0x0b,0xa0); outb(0x0b,0x20); v = inb(0xa0) << 8 | inb(0x20); outb(0x0a,0xa0); outb(0x0a,0x20); raw_spin_unlock_irqrestore(&i8259A_lock, flags); printk(KERN_DEBUG "... PIC ISR: %04x\n", v); v = inb(0x4d1) << 8 | inb(0x4d0); printk(KERN_DEBUG "... PIC ELCR: %04x\n", v); } static int __initdata show_lapic = 1; static __init int setup_show_lapic(char *arg) { int num = -1; if (strcmp(arg, "all") == 0) { show_lapic = CONFIG_NR_CPUS; } else { get_option(&arg, &num); if (num >= 0) show_lapic = num; } return 1; } __setup("show_lapic=", setup_show_lapic); __apicdebuginit(int) print_ICs(void) { if (apic_verbosity == APIC_QUIET) return 0; print_PIC(); /* don't print out if apic is not there */ if (!cpu_has_apic && !apic_from_smp_config()) return 0; print_local_APICs(show_lapic); print_IO_APIC(); return 0; } late_initcall(print_ICs); /* Where if anywhere is the i8259 connect in external int mode */ static struct { int pin, apic; } ioapic_i8259 = { -1, -1 }; void __init enable_IO_APIC(void) { int i8259_apic, i8259_pin; int apic; if (!legacy_pic->nr_legacy_irqs) return; for(apic = 0; apic < nr_ioapics; apic++) { int pin; /* See if any of the pins is in ExtINT mode */ for (pin = 0; pin < ioapics[apic].nr_registers; pin++) { struct IO_APIC_route_entry entry; entry = ioapic_read_entry(apic, pin); /* If the interrupt line is enabled and in ExtInt mode * I have found the pin where the i8259 is connected. */ if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) { ioapic_i8259.apic = apic; ioapic_i8259.pin = pin; goto found_i8259; } } } found_i8259: /* Look to see what if the MP table has reported the ExtINT */ /* If we could not find the appropriate pin by looking at the ioapic * the i8259 probably is not connected the ioapic but give the * mptable a chance anyway. */ i8259_pin = find_isa_irq_pin(0, mp_ExtINT); i8259_apic = find_isa_irq_apic(0, mp_ExtINT); /* Trust the MP table if nothing is setup in the hardware */ if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) { printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n"); ioapic_i8259.pin = i8259_pin; ioapic_i8259.apic = i8259_apic; } /* Complain if the MP table and the hardware disagree */ if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) && (i8259_pin >= 0) && (ioapic_i8259.pin >= 0)) { printk(KERN_WARNING "ExtINT in hardware and MP table differ\n"); } /* * Do not trust the IO-APIC being empty at bootup */ clear_IO_APIC(); } /* * Not an __init, needed by the reboot code */ void disable_IO_APIC(void) { /* * Clear the IO-APIC before rebooting: */ clear_IO_APIC(); if (!legacy_pic->nr_legacy_irqs) return; /* * If the i8259 is routed through an IOAPIC * Put that IOAPIC in virtual wire mode * so legacy interrupts can be delivered. * * With interrupt-remapping, for now we will use virtual wire A mode, * as virtual wire B is little complex (need to configure both * IOAPIC RTE as well as interrupt-remapping table entry). * As this gets called during crash dump, keep this simple for now. */ if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) { struct IO_APIC_route_entry entry; memset(&entry, 0, sizeof(entry)); entry.mask = 0; /* Enabled */ entry.trigger = 0; /* Edge */ entry.irr = 0; entry.polarity = 0; /* High */ entry.delivery_status = 0; entry.dest_mode = 0; /* Physical */ entry.delivery_mode = dest_ExtINT; /* ExtInt */ entry.vector = 0; entry.dest = read_apic_id(); /* * Add it to the IO-APIC irq-routing table: */ ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry); } /* * Use virtual wire A mode when interrupt remapping is enabled. */ if (cpu_has_apic || apic_from_smp_config()) disconnect_bsp_APIC(!intr_remapping_enabled && ioapic_i8259.pin != -1); } #ifdef CONFIG_X86_32 /* * function to set the IO-APIC physical IDs based on the * values stored in the MPC table. * * by Matt Domsch Tue Dec 21 12:25:05 CST 1999 */ void __init setup_ioapic_ids_from_mpc_nocheck(void) { union IO_APIC_reg_00 reg_00; physid_mask_t phys_id_present_map; int apic_id; int i; unsigned char old_id; unsigned long flags; /* * This is broken; anything with a real cpu count has to * circumvent this idiocy regardless. */ apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map); /* * Set the IOAPIC ID to the value stored in the MPC table. */ for (apic_id = 0; apic_id < nr_ioapics; apic_id++) { /* Read the register 0 value */ raw_spin_lock_irqsave(&ioapic_lock, flags); reg_00.raw = io_apic_read(apic_id, 0); raw_spin_unlock_irqrestore(&ioapic_lock, flags); old_id = mpc_ioapic_id(apic_id); if (mpc_ioapic_id(apic_id) >= get_physical_broadcast()) { printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n", apic_id, mpc_ioapic_id(apic_id)); printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", reg_00.bits.ID); ioapics[apic_id].mp_config.apicid = reg_00.bits.ID; } /* * Sanity check, is the ID really free? Every APIC in a * system must have a unique ID or we get lots of nice * 'stuck on smp_invalidate_needed IPI wait' messages. */ if (apic->check_apicid_used(&phys_id_present_map, mpc_ioapic_id(apic_id))) { printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n", apic_id, mpc_ioapic_id(apic_id)); for (i = 0; i < get_physical_broadcast(); i++) if (!physid_isset(i, phys_id_present_map)) break; if (i >= get_physical_broadcast()) panic("Max APIC ID exceeded!\n"); printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", i); physid_set(i, phys_id_present_map); ioapics[apic_id].mp_config.apicid = i; } else { physid_mask_t tmp; apic->apicid_to_cpu_present(mpc_ioapic_id(apic_id), &tmp); apic_printk(APIC_VERBOSE, "Setting %d in the " "phys_id_present_map\n", mpc_ioapic_id(apic_id)); physids_or(phys_id_present_map, phys_id_present_map, tmp); } /* * We need to adjust the IRQ routing table * if the ID changed. */ if (old_id != mpc_ioapic_id(apic_id)) for (i = 0; i < mp_irq_entries; i++) if (mp_irqs[i].dstapic == old_id) mp_irqs[i].dstapic = mpc_ioapic_id(apic_id); /* * Update the ID register according to the right value * from the MPC table if they are different. */ if (mpc_ioapic_id(apic_id) == reg_00.bits.ID) continue; apic_printk(APIC_VERBOSE, KERN_INFO "...changing IO-APIC physical APIC ID to %d ...", mpc_ioapic_id(apic_id)); reg_00.bits.ID = mpc_ioapic_id(apic_id); raw_spin_lock_irqsave(&ioapic_lock, flags); io_apic_write(apic_id, 0, reg_00.raw); raw_spin_unlock_irqrestore(&ioapic_lock, flags); /* * Sanity check */ raw_spin_lock_irqsave(&ioapic_lock, flags); reg_00.raw = io_apic_read(apic_id, 0); raw_spin_unlock_irqrestore(&ioapic_lock, flags); if (reg_00.bits.ID != mpc_ioapic_id(apic_id)) printk("could not set ID!\n"); else apic_printk(APIC_VERBOSE, " ok.\n"); } } void __init setup_ioapic_ids_from_mpc(void) { if (acpi_ioapic) return; /* * Don't check I/O APIC IDs for xAPIC systems. They have * no meaning without the serial APIC bus. */ if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) || APIC_XAPIC(apic_version[boot_cpu_physical_apicid])) return; setup_ioapic_ids_from_mpc_nocheck(); } #endif int no_timer_check __initdata; static int __init notimercheck(char *s) { no_timer_check = 1; return 1; } __setup("no_timer_check", notimercheck); /* * There is a nasty bug in some older SMP boards, their mptable lies * about the timer IRQ. We do the following to work around the situation: * * - timer IRQ defaults to IO-APIC IRQ * - if this function detects that timer IRQs are defunct, then we fall * back to ISA timer IRQs */ static int __init timer_irq_works(void) { unsigned long t1 = jiffies; unsigned long flags; if (no_timer_check) return 1; local_save_flags(flags); local_irq_enable(); /* Let ten ticks pass... */ mdelay((10 * 1000) / HZ); local_irq_restore(flags); /* * Expect a few ticks at least, to be sure some possible * glue logic does not lock up after one or two first * ticks in a non-ExtINT mode. Also the local APIC * might have cached one ExtINT interrupt. Finally, at * least one tick may be lost due to delays. */ /* jiffies wrap? */ if (time_after(jiffies, t1 + 4)) return 1; return 0; } /* * In the SMP+IOAPIC case it might happen that there are an unspecified * number of pending IRQ events unhandled. These cases are very rare, * so we 'resend' these IRQs via IPIs, to the same CPU. It's much * better to do it this way as thus we do not have to be aware of * 'pending' interrupts in the IRQ path, except at this point. */ /* * Edge triggered needs to resend any interrupt * that was delayed but this is now handled in the device * independent code. */ /* * Starting up a edge-triggered IO-APIC interrupt is * nasty - we need to make sure that we get the edge. * If it is already asserted for some reason, we need * return 1 to indicate that is was pending. * * This is not complete - we should be able to fake * an edge even if it isn't on the 8259A... */ static unsigned int startup_ioapic_irq(struct irq_data *data) { int was_pending = 0, irq = data->irq; unsigned long flags; raw_spin_lock_irqsave(&ioapic_lock, flags); if (irq < legacy_pic->nr_legacy_irqs) { legacy_pic->mask(irq); if (legacy_pic->irq_pending(irq)) was_pending = 1; } __unmask_ioapic(data->chip_data); raw_spin_unlock_irqrestore(&ioapic_lock, flags); return was_pending; } static int ioapic_retrigger_irq(struct irq_data *data) { struct irq_cfg *cfg = data->chip_data; unsigned long flags; raw_spin_lock_irqsave(&vector_lock, flags); apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector); raw_spin_unlock_irqrestore(&vector_lock, flags); return 1; } /* * Level and edge triggered IO-APIC interrupts need different handling, * so we use two separate IRQ descriptors. Edge triggered IRQs can be * handled with the level-triggered descriptor, but that one has slightly * more overhead. Level-triggered interrupts cannot be handled with the * edge-triggered handler, without risking IRQ storms and other ugly * races. */ #ifdef CONFIG_SMP void send_cleanup_vector(struct irq_cfg *cfg) { cpumask_var_t cleanup_mask; if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) { unsigned int i; for_each_cpu_and(i, cfg->old_domain, cpu_online_mask) apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR); } else { cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask); apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR); free_cpumask_var(cleanup_mask); } cfg->move_in_progress = 0; } static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg) { int apic, pin; struct irq_pin_list *entry; u8 vector = cfg->vector; for_each_irq_pin(entry, cfg->irq_2_pin) { unsigned int reg; apic = entry->apic; pin = entry->pin; /* * With interrupt-remapping, destination information comes * from interrupt-remapping table entry. */ if (!irq_remapped(cfg)) io_apic_write(apic, 0x11 + pin*2, dest); reg = io_apic_read(apic, 0x10 + pin*2); reg &= ~IO_APIC_REDIR_VECTOR_MASK; reg |= vector; io_apic_modify(apic, 0x10 + pin*2, reg); } } /* * Either sets data->affinity to a valid value, and returns * ->cpu_mask_to_apicid of that in dest_id, or returns -1 and * leaves data->affinity untouched. */ int __ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask, unsigned int *dest_id) { struct irq_cfg *cfg = data->chip_data; if (!cpumask_intersects(mask, cpu_online_mask)) return -1; if (assign_irq_vector(data->irq, data->chip_data, mask)) return -1; cpumask_copy(data->affinity, mask); *dest_id = apic->cpu_mask_to_apicid_and(mask, cfg->domain); return 0; } static int ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { unsigned int dest, irq = data->irq; unsigned long flags; int ret; raw_spin_lock_irqsave(&ioapic_lock, flags); ret = __ioapic_set_affinity(data, mask, &dest); if (!ret) { /* Only the high 8 bits are valid. */ dest = SET_APIC_LOGICAL_ID(dest); __target_IO_APIC_irq(irq, dest, data->chip_data); } raw_spin_unlock_irqrestore(&ioapic_lock, flags); return ret; } #ifdef CONFIG_INTR_REMAP /* * Migrate the IO-APIC irq in the presence of intr-remapping. * * For both level and edge triggered, irq migration is a simple atomic * update(of vector and cpu destination) of IRTE and flush the hardware cache. * * For level triggered, we eliminate the io-apic RTE modification (with the * updated vector information), by using a virtual vector (io-apic pin number). * Real vector that is used for interrupting cpu will be coming from * the interrupt-remapping table entry. */ static int ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { struct irq_cfg *cfg = data->chip_data; unsigned int dest, irq = data->irq; struct irte irte; if (!cpumask_intersects(mask, cpu_online_mask)) return -EINVAL; if (get_irte(irq, &irte)) return -EBUSY; if (assign_irq_vector(irq, cfg, mask)) return -EBUSY; dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask); irte.vector = cfg->vector; irte.dest_id = IRTE_DEST(dest); /* * Modified the IRTE and flushes the Interrupt entry cache. */ modify_irte(irq, &irte); if (cfg->move_in_progress) send_cleanup_vector(cfg); cpumask_copy(data->affinity, mask); return 0; } #else static inline int ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { return 0; } #endif asmlinkage void smp_irq_move_cleanup_interrupt(void) { unsigned vector, me; ack_APIC_irq(); exit_idle(); irq_enter(); me = smp_processor_id(); for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { unsigned int irq; unsigned int irr; struct irq_desc *desc; struct irq_cfg *cfg; irq = __this_cpu_read(vector_irq[vector]); if (irq == -1) continue; desc = irq_to_desc(irq); if (!desc) continue; cfg = irq_cfg(irq); raw_spin_lock(&desc->lock); /* * Check if the irq migration is in progress. If so, we * haven't received the cleanup request yet for this irq. */ if (cfg->move_in_progress) goto unlock; if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) goto unlock; irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); /* * Check if the vector that needs to be cleanedup is * registered at the cpu's IRR. If so, then this is not * the best time to clean it up. Lets clean it up in the * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR * to myself. */ if (irr & (1 << (vector % 32))) { apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); goto unlock; } __this_cpu_write(vector_irq[vector], -1); unlock: raw_spin_unlock(&desc->lock); } irq_exit(); } static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector) { unsigned me; if (likely(!cfg->move_in_progress)) return; me = smp_processor_id(); if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) send_cleanup_vector(cfg); } static void irq_complete_move(struct irq_cfg *cfg) { __irq_complete_move(cfg, ~get_irq_regs()->orig_ax); } void irq_force_complete_move(int irq) { struct irq_cfg *cfg = irq_get_chip_data(irq); if (!cfg) return; __irq_complete_move(cfg, cfg->vector); } #else static inline void irq_complete_move(struct irq_cfg *cfg) { } #endif static void ack_apic_edge(struct irq_data *data) { irq_complete_move(data->chip_data); irq_move_irq(data); ack_APIC_irq(); } atomic_t irq_mis_count; /* * IO-APIC versions below 0x20 don't support EOI register. * For the record, here is the information about various versions: * 0Xh 82489DX * 1Xh I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant * 2Xh I/O(x)APIC which is PCI 2.2 Compliant * 30h-FFh Reserved * * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic * version as 0x2. This is an error with documentation and these ICH chips * use io-apic's of version 0x20. * * For IO-APIC's with EOI register, we use that to do an explicit EOI. * Otherwise, we simulate the EOI message manually by changing the trigger * mode to edge and then back to level, with RTE being masked during this. */ static void eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg) { struct irq_pin_list *entry; unsigned long flags; raw_spin_lock_irqsave(&ioapic_lock, flags); for_each_irq_pin(entry, cfg->irq_2_pin) { if (mpc_ioapic_ver(entry->apic) >= 0x20) { /* * Intr-remapping uses pin number as the virtual vector * in the RTE. Actual vector is programmed in * intr-remapping table entry. Hence for the io-apic * EOI we use the pin number. */ if (irq_remapped(cfg)) io_apic_eoi(entry->apic, entry->pin); else io_apic_eoi(entry->apic, cfg->vector); } else { __mask_and_edge_IO_APIC_irq(entry); __unmask_and_level_IO_APIC_irq(entry); } } raw_spin_unlock_irqrestore(&ioapic_lock, flags); } static void ack_apic_level(struct irq_data *data) { struct irq_cfg *cfg = data->chip_data; int i, do_unmask_irq = 0, irq = data->irq; unsigned long v; irq_complete_move(cfg); #ifdef CONFIG_GENERIC_PENDING_IRQ /* If we are moving the irq we need to mask it */ if (unlikely(irqd_is_setaffinity_pending(data))) { do_unmask_irq = 1; mask_ioapic(cfg); } #endif /* * It appears there is an erratum which affects at least version 0x11 * of I/O APIC (that's the 82093AA and cores integrated into various * chipsets). Under certain conditions a level-triggered interrupt is * erroneously delivered as edge-triggered one but the respective IRR * bit gets set nevertheless. As a result the I/O unit expects an EOI * message but it will never arrive and further interrupts are blocked * from the source. The exact reason is so far unknown, but the * phenomenon was observed when two consecutive interrupt requests * from a given source get delivered to the same CPU and the source is * temporarily disabled in between. * * A workaround is to simulate an EOI message manually. We achieve it * by setting the trigger mode to edge and then to level when the edge * trigger mode gets detected in the TMR of a local APIC for a * level-triggered interrupt. We mask the source for the time of the * operation to prevent an edge-triggered interrupt escaping meanwhile. * The idea is from Manfred Spraul. --macro * * Also in the case when cpu goes offline, fixup_irqs() will forward * any unhandled interrupt on the offlined cpu to the new cpu * destination that is handling the corresponding interrupt. This * interrupt forwarding is done via IPI's. Hence, in this case also * level-triggered io-apic interrupt will be seen as an edge * interrupt in the IRR. And we can't rely on the cpu's EOI * to be broadcasted to the IO-APIC's which will clear the remoteIRR * corresponding to the level-triggered interrupt. Hence on IO-APIC's * supporting EOI register, we do an explicit EOI to clear the * remote IRR and on IO-APIC's which don't have an EOI register, * we use the above logic (mask+edge followed by unmask+level) from * Manfred Spraul to clear the remote IRR. */ i = cfg->vector; v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1)); /* * We must acknowledge the irq before we move it or the acknowledge will * not propagate properly. */ ack_APIC_irq(); /* * Tail end of clearing remote IRR bit (either by delivering the EOI * message via io-apic EOI register write or simulating it using * mask+edge followed by unnask+level logic) manually when the * level triggered interrupt is seen as the edge triggered interrupt * at the cpu. */ if (!(v & (1 << (i & 0x1f)))) { atomic_inc(&irq_mis_count); eoi_ioapic_irq(irq, cfg); } /* Now we can move and renable the irq */ if (unlikely(do_unmask_irq)) { /* Only migrate the irq if the ack has been received. * * On rare occasions the broadcast level triggered ack gets * delayed going to ioapics, and if we reprogram the * vector while Remote IRR is still set the irq will never * fire again. * * To prevent this scenario we read the Remote IRR bit * of the ioapic. This has two effects. * - On any sane system the read of the ioapic will * flush writes (and acks) going to the ioapic from * this cpu. * - We get to see if the ACK has actually been delivered. * * Based on failed experiments of reprogramming the * ioapic entry from outside of irq context starting * with masking the ioapic entry and then polling until * Remote IRR was clear before reprogramming the * ioapic I don't trust the Remote IRR bit to be * completey accurate. * * However there appears to be no other way to plug * this race, so if the Remote IRR bit is not * accurate and is causing problems then it is a hardware bug * and you can go talk to the chipset vendor about it. */ if (!io_apic_level_ack_pending(cfg)) irq_move_masked_irq(data); unmask_ioapic(cfg); } } #ifdef CONFIG_INTR_REMAP static void ir_ack_apic_edge(struct irq_data *data) { ack_APIC_irq(); } static void ir_ack_apic_level(struct irq_data *data) { ack_APIC_irq(); eoi_ioapic_irq(data->irq, data->chip_data); } #endif /* CONFIG_INTR_REMAP */ static struct irq_chip ioapic_chip __read_mostly = { .name = "IO-APIC", .irq_startup = startup_ioapic_irq, .irq_mask = mask_ioapic_irq, .irq_unmask = unmask_ioapic_irq, .irq_ack = ack_apic_edge, .irq_eoi = ack_apic_level, #ifdef CONFIG_SMP .irq_set_affinity = ioapic_set_affinity, #endif .irq_retrigger = ioapic_retrigger_irq, }; static struct irq_chip ir_ioapic_chip __read_mostly = { .name = "IR-IO-APIC", .irq_startup = startup_ioapic_irq, .irq_mask = mask_ioapic_irq, .irq_unmask = unmask_ioapic_irq, #ifdef CONFIG_INTR_REMAP .irq_ack = ir_ack_apic_edge, .irq_eoi = ir_ack_apic_level, #ifdef CONFIG_SMP .irq_set_affinity = ir_ioapic_set_affinity, #endif #endif .irq_retrigger = ioapic_retrigger_irq, }; static inline void init_IO_APIC_traps(void) { struct irq_cfg *cfg; unsigned int irq; /* * NOTE! The local APIC isn't very good at handling * multiple interrupts at the same interrupt level. * As the interrupt level is determined by taking the * vector number and shifting that right by 4, we * want to spread these out a bit so that they don't * all fall in the same interrupt level. * * Also, we've got to be careful not to trash gate * 0x80, because int 0x80 is hm, kind of importantish. ;) */ for_each_active_irq(irq) { cfg = irq_get_chip_data(irq); if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) { /* * Hmm.. We don't have an entry for this, * so default to an old-fashioned 8259 * interrupt if we can.. */ if (irq < legacy_pic->nr_legacy_irqs) legacy_pic->make_irq(irq); else /* Strange. Oh, well.. */ irq_set_chip(irq, &no_irq_chip); } } } /* * The local APIC irq-chip implementation: */ static void mask_lapic_irq(struct irq_data *data) { unsigned long v; v = apic_read(APIC_LVT0); apic_write(APIC_LVT0, v | APIC_LVT_MASKED); } static void unmask_lapic_irq(struct irq_data *data) { unsigned long v; v = apic_read(APIC_LVT0); apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED); } static void ack_lapic_irq(struct irq_data *data) { ack_APIC_irq(); } static struct irq_chip lapic_chip __read_mostly = { .name = "local-APIC", .irq_mask = mask_lapic_irq, .irq_unmask = unmask_lapic_irq, .irq_ack = ack_lapic_irq, }; static void lapic_register_intr(int irq) { irq_clear_status_flags(irq, IRQ_LEVEL); irq_set_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq, "edge"); } /* * This looks a bit hackish but it's about the only one way of sending * a few INTA cycles to 8259As and any associated glue logic. ICR does * not support the ExtINT mode, unfortunately. We need to send these * cycles as some i82489DX-based boards have glue logic that keeps the * 8259A interrupt line asserted until INTA. --macro */ static inline void __init unlock_ExtINT_logic(void) { int apic, pin, i; struct IO_APIC_route_entry entry0, entry1; unsigned char save_control, save_freq_select; pin = find_isa_irq_pin(8, mp_INT); if (pin == -1) { WARN_ON_ONCE(1); return; } apic = find_isa_irq_apic(8, mp_INT); if (apic == -1) { WARN_ON_ONCE(1); return; } entry0 = ioapic_read_entry(apic, pin); clear_IO_APIC_pin(apic, pin); memset(&entry1, 0, sizeof(entry1)); entry1.dest_mode = 0; /* physical delivery */ entry1.mask = 0; /* unmask IRQ now */ entry1.dest = hard_smp_processor_id(); entry1.delivery_mode = dest_ExtINT; entry1.polarity = entry0.polarity; entry1.trigger = 0; entry1.vector = 0; ioapic_write_entry(apic, pin, entry1); save_control = CMOS_READ(RTC_CONTROL); save_freq_select = CMOS_READ(RTC_FREQ_SELECT); CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6, RTC_FREQ_SELECT); CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL); i = 100; while (i-- > 0) { mdelay(10); if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF) i -= 10; } CMOS_WRITE(save_control, RTC_CONTROL); CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); clear_IO_APIC_pin(apic, pin); ioapic_write_entry(apic, pin, entry0); } static int disable_timer_pin_1 __initdata; /* Actually the next is obsolete, but keep it for paranoid reasons -AK */ static int __init disable_timer_pin_setup(char *arg) { disable_timer_pin_1 = 1; return 0; } early_param("disable_timer_pin_1", disable_timer_pin_setup); int timer_through_8259 __initdata; /* * This code may look a bit paranoid, but it's supposed to cooperate with * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ * is so screwy. Thanks to Brian Perkins for testing/hacking this beast * fanatically on his truly buggy board. * * FIXME: really need to revamp this for all platforms. */ static inline void __init check_timer(void) { struct irq_cfg *cfg = irq_get_chip_data(0); int node = cpu_to_node(0); int apic1, pin1, apic2, pin2; unsigned long flags; int no_pin1 = 0; local_irq_save(flags); /* * get/set the timer IRQ vector: */ legacy_pic->mask(0); assign_irq_vector(0, cfg, apic->target_cpus()); /* * As IRQ0 is to be enabled in the 8259A, the virtual * wire has to be disabled in the local APIC. Also * timer interrupts need to be acknowledged manually in * the 8259A for the i82489DX when using the NMI * watchdog as that APIC treats NMIs as level-triggered. * The AEOI mode will finish them in the 8259A * automatically. */ apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT); legacy_pic->init(1); pin1 = find_isa_irq_pin(0, mp_INT); apic1 = find_isa_irq_apic(0, mp_INT); pin2 = ioapic_i8259.pin; apic2 = ioapic_i8259.apic; apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X " "apic1=%d pin1=%d apic2=%d pin2=%d\n", cfg->vector, apic1, pin1, apic2, pin2); /* * Some BIOS writers are clueless and report the ExtINTA * I/O APIC input from the cascaded 8259A as the timer * interrupt input. So just in case, if only one pin * was found above, try it both directly and through the * 8259A. */ if (pin1 == -1) { if (intr_remapping_enabled) panic("BIOS bug: timer not connected to IO-APIC"); pin1 = pin2; apic1 = apic2; no_pin1 = 1; } else if (pin2 == -1) { pin2 = pin1; apic2 = apic1; } if (pin1 != -1) { /* * Ok, does IRQ0 through the IOAPIC work? */ if (no_pin1) { add_pin_to_irq_node(cfg, node, apic1, pin1); setup_timer_IRQ0_pin(apic1, pin1, cfg->vector); } else { /* for edge trigger, setup_ioapic_irq already * leave it unmasked. * so only need to unmask if it is level-trigger * do we really have level trigger timer? */ int idx; idx = find_irq_entry(apic1, pin1, mp_INT); if (idx != -1 && irq_trigger(idx)) unmask_ioapic(cfg); } if (timer_irq_works()) { if (disable_timer_pin_1 > 0) clear_IO_APIC_pin(0, pin1); goto out; } if (intr_remapping_enabled) panic("timer doesn't work through Interrupt-remapped IO-APIC"); local_irq_disable(); clear_IO_APIC_pin(apic1, pin1); if (!no_pin1) apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: " "8254 timer not connected to IO-APIC\n"); apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer " "(IRQ0) through the 8259A ...\n"); apic_printk(APIC_QUIET, KERN_INFO "..... (found apic %d pin %d) ...\n", apic2, pin2); /* * legacy devices should be connected to IO APIC #0 */ replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2); setup_timer_IRQ0_pin(apic2, pin2, cfg->vector); legacy_pic->unmask(0); if (timer_irq_works()) { apic_printk(APIC_QUIET, KERN_INFO "....... works.\n"); timer_through_8259 = 1; goto out; } /* * Cleanup, just in case ... */ local_irq_disable(); legacy_pic->mask(0); clear_IO_APIC_pin(apic2, pin2); apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n"); } apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer as Virtual Wire IRQ...\n"); lapic_register_intr(0); apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */ legacy_pic->unmask(0); if (timer_irq_works()) { apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); goto out; } local_irq_disable(); legacy_pic->mask(0); apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector); apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n"); apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer as ExtINT IRQ...\n"); legacy_pic->init(0); legacy_pic->make_irq(0); apic_write(APIC_LVT0, APIC_DM_EXTINT); unlock_ExtINT_logic(); if (timer_irq_works()) { apic_printk(APIC_QUIET, KERN_INFO "..... works.\n"); goto out; } local_irq_disable(); apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n"); panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a " "report. Then try booting with the 'noapic' option.\n"); out: local_irq_restore(flags); } /* * Traditionally ISA IRQ2 is the cascade IRQ, and is not available * to devices. However there may be an I/O APIC pin available for * this interrupt regardless. The pin may be left unconnected, but * typically it will be reused as an ExtINT cascade interrupt for * the master 8259A. In the MPS case such a pin will normally be * reported as an ExtINT interrupt in the MP table. With ACPI * there is no provision for ExtINT interrupts, and in the absence * of an override it would be treated as an ordinary ISA I/O APIC * interrupt, that is edge-triggered and unmasked by default. We * used to do this, but it caused problems on some systems because * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using * the same ExtINT cascade interrupt to drive the local APIC of the * bootstrap processor. Therefore we refrain from routing IRQ2 to * the I/O APIC in all cases now. No actual device should request * it anyway. --macro */ #define PIC_IRQS (1UL << PIC_CASCADE_IR) void __init setup_IO_APIC(void) { /* * calling enable_IO_APIC() is moved to setup_local_APIC for BP */ io_apic_irqs = legacy_pic->nr_legacy_irqs ? ~PIC_IRQS : ~0UL; apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n"); /* * Set up IO-APIC IRQ routing. */ x86_init.mpparse.setup_ioapic_ids(); sync_Arb_IDs(); setup_IO_APIC_irqs(); init_IO_APIC_traps(); if (legacy_pic->nr_legacy_irqs) check_timer(); } /* * Called after all the initialization is done. If we didn't find any * APIC bugs then we can allow the modify fast path */ static int __init io_apic_bug_finalize(void) { if (sis_apic_bug == -1) sis_apic_bug = 0; return 0; } late_initcall(io_apic_bug_finalize); static void resume_ioapic_id(int ioapic_id) { unsigned long flags; union IO_APIC_reg_00 reg_00; raw_spin_lock_irqsave(&ioapic_lock, flags); reg_00.raw = io_apic_read(ioapic_id, 0); if (reg_00.bits.ID != mpc_ioapic_id(ioapic_id)) { reg_00.bits.ID = mpc_ioapic_id(ioapic_id); io_apic_write(ioapic_id, 0, reg_00.raw); } raw_spin_unlock_irqrestore(&ioapic_lock, flags); } static void ioapic_resume(void) { int ioapic_id; for (ioapic_id = nr_ioapics - 1; ioapic_id >= 0; ioapic_id--) resume_ioapic_id(ioapic_id); restore_ioapic_entries(); } static struct syscore_ops ioapic_syscore_ops = { .suspend = save_ioapic_entries, .resume = ioapic_resume, }; static int __init ioapic_init_ops(void) { register_syscore_ops(&ioapic_syscore_ops); return 0; } device_initcall(ioapic_init_ops); /* * Dynamic irq allocate and deallocation */ unsigned int create_irq_nr(unsigned int from, int node) { struct irq_cfg *cfg; unsigned long flags; unsigned int ret = 0; int irq; if (from < nr_irqs_gsi) from = nr_irqs_gsi; irq = alloc_irq_from(from, node); if (irq < 0) return 0; cfg = alloc_irq_cfg(irq, node); if (!cfg) { free_irq_at(irq, NULL); return 0; } raw_spin_lock_irqsave(&vector_lock, flags); if (!__assign_irq_vector(irq, cfg, apic->target_cpus())) ret = irq; raw_spin_unlock_irqrestore(&vector_lock, flags); if (ret) { irq_set_chip_data(irq, cfg); irq_clear_status_flags(irq, IRQ_NOREQUEST); } else { free_irq_at(irq, cfg); } return ret; } int create_irq(void) { int node = cpu_to_node(0); unsigned int irq_want; int irq; irq_want = nr_irqs_gsi; irq = create_irq_nr(irq_want, node); if (irq == 0) irq = -1; return irq; } void destroy_irq(unsigned int irq) { struct irq_cfg *cfg = irq_get_chip_data(irq); unsigned long flags; irq_set_status_flags(irq, IRQ_NOREQUEST|IRQ_NOPROBE); if (irq_remapped(cfg)) free_irte(irq); raw_spin_lock_irqsave(&vector_lock, flags); __clear_irq_vector(irq, cfg); raw_spin_unlock_irqrestore(&vector_lock, flags); free_irq_at(irq, cfg); } /* * MSI message composition */ #ifdef CONFIG_PCI_MSI static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg, u8 hpet_id) { struct irq_cfg *cfg; int err; unsigned dest; if (disable_apic) return -ENXIO; cfg = irq_cfg(irq); err = assign_irq_vector(irq, cfg, apic->target_cpus()); if (err) return err; dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus()); if (irq_remapped(cfg)) { struct irte irte; int ir_index; u16 sub_handle; ir_index = map_irq_to_irte_handle(irq, &sub_handle); BUG_ON(ir_index == -1); prepare_irte(&irte, cfg->vector, dest); /* Set source-id of interrupt request */ if (pdev) set_msi_sid(&irte, pdev); else set_hpet_sid(&irte, hpet_id); modify_irte(irq, &irte); msg->address_hi = MSI_ADDR_BASE_HI; msg->data = sub_handle; msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT | MSI_ADDR_IR_SHV | MSI_ADDR_IR_INDEX1(ir_index) | MSI_ADDR_IR_INDEX2(ir_index); } else { if (x2apic_enabled()) msg->address_hi = MSI_ADDR_BASE_HI | MSI_ADDR_EXT_DEST_ID(dest); else msg->address_hi = MSI_ADDR_BASE_HI; msg->address_lo = MSI_ADDR_BASE_LO | ((apic->irq_dest_mode == 0) ? MSI_ADDR_DEST_MODE_PHYSICAL: MSI_ADDR_DEST_MODE_LOGICAL) | ((apic->irq_delivery_mode != dest_LowestPrio) ? MSI_ADDR_REDIRECTION_CPU: MSI_ADDR_REDIRECTION_LOWPRI) | MSI_ADDR_DEST_ID(dest); msg->data = MSI_DATA_TRIGGER_EDGE | MSI_DATA_LEVEL_ASSERT | ((apic->irq_delivery_mode != dest_LowestPrio) ? MSI_DATA_DELIVERY_FIXED: MSI_DATA_DELIVERY_LOWPRI) | MSI_DATA_VECTOR(cfg->vector); } return err; } #ifdef CONFIG_SMP static int msi_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { struct irq_cfg *cfg = data->chip_data; struct msi_msg msg; unsigned int dest; if (__ioapic_set_affinity(data, mask, &dest)) return -1; __get_cached_msi_msg(data->msi_desc, &msg); msg.data &= ~MSI_DATA_VECTOR_MASK; msg.data |= MSI_DATA_VECTOR(cfg->vector); msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; msg.address_lo |= MSI_ADDR_DEST_ID(dest); __write_msi_msg(data->msi_desc, &msg); return 0; } #ifdef CONFIG_INTR_REMAP /* * Migrate the MSI irq to another cpumask. This migration is * done in the process context using interrupt-remapping hardware. */ static int ir_msi_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { struct irq_cfg *cfg = data->chip_data; unsigned int dest, irq = data->irq; struct irte irte; if (get_irte(irq, &irte)) return -1; if (__ioapic_set_affinity(data, mask, &dest)) return -1; irte.vector = cfg->vector; irte.dest_id = IRTE_DEST(dest); /* * atomically update the IRTE with the new destination and vector. */ modify_irte(irq, &irte); /* * After this point, all the interrupts will start arriving * at the new destination. So, time to cleanup the previous * vector allocation. */ if (cfg->move_in_progress) send_cleanup_vector(cfg); return 0; } #endif #endif /* CONFIG_SMP */ /* * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices, * which implement the MSI or MSI-X Capability Structure. */ static struct irq_chip msi_chip = { .name = "PCI-MSI", .irq_unmask = unmask_msi_irq, .irq_mask = mask_msi_irq, .irq_ack = ack_apic_edge, #ifdef CONFIG_SMP .irq_set_affinity = msi_set_affinity, #endif .irq_retrigger = ioapic_retrigger_irq, }; static struct irq_chip msi_ir_chip = { .name = "IR-PCI-MSI", .irq_unmask = unmask_msi_irq, .irq_mask = mask_msi_irq, #ifdef CONFIG_INTR_REMAP .irq_ack = ir_ack_apic_edge, #ifdef CONFIG_SMP .irq_set_affinity = ir_msi_set_affinity, #endif #endif .irq_retrigger = ioapic_retrigger_irq, }; /* * Map the PCI dev to the corresponding remapping hardware unit * and allocate 'nvec' consecutive interrupt-remapping table entries * in it. */ static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec) { struct intel_iommu *iommu; int index; iommu = map_dev_to_ir(dev); if (!iommu) { printk(KERN_ERR "Unable to map PCI %s to iommu\n", pci_name(dev)); return -ENOENT; } index = alloc_irte(iommu, irq, nvec); if (index < 0) { printk(KERN_ERR "Unable to allocate %d IRTE for PCI %s\n", nvec, pci_name(dev)); return -ENOSPC; } return index; } static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq) { struct irq_chip *chip = &msi_chip; struct msi_msg msg; int ret; ret = msi_compose_msg(dev, irq, &msg, -1); if (ret < 0) return ret; irq_set_msi_desc(irq, msidesc); write_msi_msg(irq, &msg); if (irq_remapped(irq_get_chip_data(irq))) { irq_set_status_flags(irq, IRQ_MOVE_PCNTXT); chip = &msi_ir_chip; } irq_set_chip_and_handler_name(irq, chip, handle_edge_irq, "edge"); dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq); return 0; } int native_setup_msi_irqs(struct pci_dev *dev, int nvec, int type) { int node, ret, sub_handle, index = 0; unsigned int irq, irq_want; struct msi_desc *msidesc; struct intel_iommu *iommu = NULL; /* x86 doesn't support multiple MSI yet */ if (type == PCI_CAP_ID_MSI && nvec > 1) return 1; node = dev_to_node(&dev->dev); irq_want = nr_irqs_gsi; sub_handle = 0; list_for_each_entry(msidesc, &dev->msi_list, list) { irq = create_irq_nr(irq_want, node); if (irq == 0) return -1; irq_want = irq + 1; if (!intr_remapping_enabled) goto no_ir; if (!sub_handle) { /* * allocate the consecutive block of IRTE's * for 'nvec' */ index = msi_alloc_irte(dev, irq, nvec); if (index < 0) { ret = index; goto error; } } else { iommu = map_dev_to_ir(dev); if (!iommu) { ret = -ENOENT; goto error; } /* * setup the mapping between the irq and the IRTE * base index, the sub_handle pointing to the * appropriate interrupt remap table entry. */ set_irte_irq(irq, iommu, index, sub_handle); } no_ir: ret = setup_msi_irq(dev, msidesc, irq); if (ret < 0) goto error; sub_handle++; } return 0; error: destroy_irq(irq); return ret; } void native_teardown_msi_irq(unsigned int irq) { destroy_irq(irq); } #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP) #ifdef CONFIG_SMP static int dmar_msi_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { struct irq_cfg *cfg = data->chip_data; unsigned int dest, irq = data->irq; struct msi_msg msg; if (__ioapic_set_affinity(data, mask, &dest)) return -1; dmar_msi_read(irq, &msg); msg.data &= ~MSI_DATA_VECTOR_MASK; msg.data |= MSI_DATA_VECTOR(cfg->vector); msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; msg.address_lo |= MSI_ADDR_DEST_ID(dest); msg.address_hi = MSI_ADDR_BASE_HI | MSI_ADDR_EXT_DEST_ID(dest); dmar_msi_write(irq, &msg); return 0; } #endif /* CONFIG_SMP */ static struct irq_chip dmar_msi_type = { .name = "DMAR_MSI", .irq_unmask = dmar_msi_unmask, .irq_mask = dmar_msi_mask, .irq_ack = ack_apic_edge, #ifdef CONFIG_SMP .irq_set_affinity = dmar_msi_set_affinity, #endif .irq_retrigger = ioapic_retrigger_irq, }; int arch_setup_dmar_msi(unsigned int irq) { int ret; struct msi_msg msg; ret = msi_compose_msg(NULL, irq, &msg, -1); if (ret < 0) return ret; dmar_msi_write(irq, &msg); irq_set_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq, "edge"); return 0; } #endif #ifdef CONFIG_HPET_TIMER #ifdef CONFIG_SMP static int hpet_msi_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { struct irq_cfg *cfg = data->chip_data; struct msi_msg msg; unsigned int dest; if (__ioapic_set_affinity(data, mask, &dest)) return -1; hpet_msi_read(data->handler_data, &msg); msg.data &= ~MSI_DATA_VECTOR_MASK; msg.data |= MSI_DATA_VECTOR(cfg->vector); msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK; msg.address_lo |= MSI_ADDR_DEST_ID(dest); hpet_msi_write(data->handler_data, &msg); return 0; } #endif /* CONFIG_SMP */ static struct irq_chip ir_hpet_msi_type = { .name = "IR-HPET_MSI", .irq_unmask = hpet_msi_unmask, .irq_mask = hpet_msi_mask, #ifdef CONFIG_INTR_REMAP .irq_ack = ir_ack_apic_edge, #ifdef CONFIG_SMP .irq_set_affinity = ir_msi_set_affinity, #endif #endif .irq_retrigger = ioapic_retrigger_irq, }; static struct irq_chip hpet_msi_type = { .name = "HPET_MSI", .irq_unmask = hpet_msi_unmask, .irq_mask = hpet_msi_mask, .irq_ack = ack_apic_edge, #ifdef CONFIG_SMP .irq_set_affinity = hpet_msi_set_affinity, #endif .irq_retrigger = ioapic_retrigger_irq, }; int arch_setup_hpet_msi(unsigned int irq, unsigned int id) { struct irq_chip *chip = &hpet_msi_type; struct msi_msg msg; int ret; if (intr_remapping_enabled) { struct intel_iommu *iommu = map_hpet_to_ir(id); int index; if (!iommu) return -1; index = alloc_irte(iommu, irq, 1); if (index < 0) return -1; } ret = msi_compose_msg(NULL, irq, &msg, id); if (ret < 0) return ret; hpet_msi_write(irq_get_handler_data(irq), &msg); irq_set_status_flags(irq, IRQ_MOVE_PCNTXT); if (irq_remapped(irq_get_chip_data(irq))) chip = &ir_hpet_msi_type; irq_set_chip_and_handler_name(irq, chip, handle_edge_irq, "edge"); return 0; } #endif #endif /* CONFIG_PCI_MSI */ /* * Hypertransport interrupt support */ #ifdef CONFIG_HT_IRQ #ifdef CONFIG_SMP static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector) { struct ht_irq_msg msg; fetch_ht_irq_msg(irq, &msg); msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK); msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK); msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest); msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest); write_ht_irq_msg(irq, &msg); } static int ht_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { struct irq_cfg *cfg = data->chip_data; unsigned int dest; if (__ioapic_set_affinity(data, mask, &dest)) return -1; target_ht_irq(data->irq, dest, cfg->vector); return 0; } #endif static struct irq_chip ht_irq_chip = { .name = "PCI-HT", .irq_mask = mask_ht_irq, .irq_unmask = unmask_ht_irq, .irq_ack = ack_apic_edge, #ifdef CONFIG_SMP .irq_set_affinity = ht_set_affinity, #endif .irq_retrigger = ioapic_retrigger_irq, }; int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev) { struct irq_cfg *cfg; int err; if (disable_apic) return -ENXIO; cfg = irq_cfg(irq); err = assign_irq_vector(irq, cfg, apic->target_cpus()); if (!err) { struct ht_irq_msg msg; unsigned dest; dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus()); msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest); msg.address_lo = HT_IRQ_LOW_BASE | HT_IRQ_LOW_DEST_ID(dest) | HT_IRQ_LOW_VECTOR(cfg->vector) | ((apic->irq_dest_mode == 0) ? HT_IRQ_LOW_DM_PHYSICAL : HT_IRQ_LOW_DM_LOGICAL) | HT_IRQ_LOW_RQEOI_EDGE | ((apic->irq_delivery_mode != dest_LowestPrio) ? HT_IRQ_LOW_MT_FIXED : HT_IRQ_LOW_MT_ARBITRATED) | HT_IRQ_LOW_IRQ_MASKED; write_ht_irq_msg(irq, &msg); irq_set_chip_and_handler_name(irq, &ht_irq_chip, handle_edge_irq, "edge"); dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq); } return err; } #endif /* CONFIG_HT_IRQ */ static int io_apic_setup_irq_pin(unsigned int irq, int node, struct io_apic_irq_attr *attr) { struct irq_cfg *cfg = alloc_irq_and_cfg_at(irq, node); int ret; if (!cfg) return -EINVAL; ret = __add_pin_to_irq_node(cfg, node, attr->ioapic, attr->ioapic_pin); if (!ret) setup_ioapic_irq(irq, cfg, attr); return ret; } int io_apic_setup_irq_pin_once(unsigned int irq, int node, struct io_apic_irq_attr *attr) { unsigned int id = attr->ioapic, pin = attr->ioapic_pin; int ret; /* Avoid redundant programming */ if (test_bit(pin, ioapics[id].pin_programmed)) { pr_debug("Pin %d-%d already programmed\n", mpc_ioapic_id(id), pin); return 0; } ret = io_apic_setup_irq_pin(irq, node, attr); if (!ret) set_bit(pin, ioapics[id].pin_programmed); return ret; } static int __init io_apic_get_redir_entries(int ioapic) { union IO_APIC_reg_01 reg_01; unsigned long flags; raw_spin_lock_irqsave(&ioapic_lock, flags); reg_01.raw = io_apic_read(ioapic, 1); raw_spin_unlock_irqrestore(&ioapic_lock, flags); /* The register returns the maximum index redir index * supported, which is one less than the total number of redir * entries. */ return reg_01.bits.entries + 1; } static void __init probe_nr_irqs_gsi(void) { int nr; nr = gsi_top + NR_IRQS_LEGACY; if (nr > nr_irqs_gsi) nr_irqs_gsi = nr; printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi); } int get_nr_irqs_gsi(void) { return nr_irqs_gsi; } #ifdef CONFIG_SPARSE_IRQ int __init arch_probe_nr_irqs(void) { int nr; if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) nr_irqs = NR_VECTORS * nr_cpu_ids; nr = nr_irqs_gsi + 8 * nr_cpu_ids; #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ) /* * for MSI and HT dyn irq */ nr += nr_irqs_gsi * 16; #endif if (nr < nr_irqs) nr_irqs = nr; return NR_IRQS_LEGACY; } #endif int io_apic_set_pci_routing(struct device *dev, int irq, struct io_apic_irq_attr *irq_attr) { int node; if (!IO_APIC_IRQ(irq)) { apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n", irq_attr->ioapic); return -EINVAL; } node = dev ? dev_to_node(dev) : cpu_to_node(0); return io_apic_setup_irq_pin_once(irq, node, irq_attr); } #ifdef CONFIG_X86_32 static int __init io_apic_get_unique_id(int ioapic, int apic_id) { union IO_APIC_reg_00 reg_00; static physid_mask_t apic_id_map = PHYSID_MASK_NONE; physid_mask_t tmp; unsigned long flags; int i = 0; /* * The P4 platform supports up to 256 APIC IDs on two separate APIC * buses (one for LAPICs, one for IOAPICs), where predecessors only * supports up to 16 on one shared APIC bus. * * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full * advantage of new APIC bus architecture. */ if (physids_empty(apic_id_map)) apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map); raw_spin_lock_irqsave(&ioapic_lock, flags); reg_00.raw = io_apic_read(ioapic, 0); raw_spin_unlock_irqrestore(&ioapic_lock, flags); if (apic_id >= get_physical_broadcast()) { printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying " "%d\n", ioapic, apic_id, reg_00.bits.ID); apic_id = reg_00.bits.ID; } /* * Every APIC in a system must have a unique ID or we get lots of nice * 'stuck on smp_invalidate_needed IPI wait' messages. */ if (apic->check_apicid_used(&apic_id_map, apic_id)) { for (i = 0; i < get_physical_broadcast(); i++) { if (!apic->check_apicid_used(&apic_id_map, i)) break; } if (i == get_physical_broadcast()) panic("Max apic_id exceeded!\n"); printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, " "trying %d\n", ioapic, apic_id, i); apic_id = i; } apic->apicid_to_cpu_present(apic_id, &tmp); physids_or(apic_id_map, apic_id_map, tmp); if (reg_00.bits.ID != apic_id) { reg_00.bits.ID = apic_id; raw_spin_lock_irqsave(&ioapic_lock, flags); io_apic_write(ioapic, 0, reg_00.raw); reg_00.raw = io_apic_read(ioapic, 0); raw_spin_unlock_irqrestore(&ioapic_lock, flags); /* Sanity check */ if (reg_00.bits.ID != apic_id) { printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic); return -1; } } apic_printk(APIC_VERBOSE, KERN_INFO "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id); return apic_id; } static u8 __init io_apic_unique_id(u8 id) { if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && !APIC_XAPIC(apic_version[boot_cpu_physical_apicid])) return io_apic_get_unique_id(nr_ioapics, id); else return id; } #else static u8 __init io_apic_unique_id(u8 id) { int i; DECLARE_BITMAP(used, 256); bitmap_zero(used, 256); for (i = 0; i < nr_ioapics; i++) { __set_bit(mpc_ioapic_id(i), used); } if (!test_bit(id, used)) return id; return find_first_zero_bit(used, 256); } #endif static int __init io_apic_get_version(int ioapic) { union IO_APIC_reg_01 reg_01; unsigned long flags; raw_spin_lock_irqsave(&ioapic_lock, flags); reg_01.raw = io_apic_read(ioapic, 1); raw_spin_unlock_irqrestore(&ioapic_lock, flags); return reg_01.bits.version; } int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity) { int ioapic, pin, idx; if (skip_ioapic_setup) return -1; ioapic = mp_find_ioapic(gsi); if (ioapic < 0) return -1; pin = mp_find_ioapic_pin(ioapic, gsi); if (pin < 0) return -1; idx = find_irq_entry(ioapic, pin, mp_INT); if (idx < 0) return -1; *trigger = irq_trigger(idx); *polarity = irq_polarity(idx); return 0; } /* * This function currently is only a helper for the i386 smp boot process where * we need to reprogram the ioredtbls to cater for the cpus which have come online * so mask in all cases should simply be apic->target_cpus() */ #ifdef CONFIG_SMP void __init setup_ioapic_dest(void) { int pin, ioapic, irq, irq_entry; const struct cpumask *mask; struct irq_data *idata; if (skip_ioapic_setup == 1) return; for (ioapic = 0; ioapic < nr_ioapics; ioapic++) for (pin = 0; pin < ioapics[ioapic].nr_registers; pin++) { irq_entry = find_irq_entry(ioapic, pin, mp_INT); if (irq_entry == -1) continue; irq = pin_2_irq(irq_entry, ioapic, pin); if ((ioapic > 0) && (irq > 16)) continue; idata = irq_get_irq_data(irq); /* * Honour affinities which have been set in early boot */ if (!irqd_can_balance(idata) || irqd_affinity_was_set(idata)) mask = idata->affinity; else mask = apic->target_cpus(); if (intr_remapping_enabled) ir_ioapic_set_affinity(idata, mask, false); else ioapic_set_affinity(idata, mask, false); } } #endif #define IOAPIC_RESOURCE_NAME_SIZE 11 static struct resource *ioapic_resources; static struct resource * __init ioapic_setup_resources(int nr_ioapics) { unsigned long n; struct resource *res; char *mem; int i; if (nr_ioapics <= 0) return NULL; n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource); n *= nr_ioapics; mem = alloc_bootmem(n); res = (void *)mem; mem += sizeof(struct resource) * nr_ioapics; for (i = 0; i < nr_ioapics; i++) { res[i].name = mem; res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY; snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i); mem += IOAPIC_RESOURCE_NAME_SIZE; } ioapic_resources = res; return res; } void __init ioapic_and_gsi_init(void) { unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0; struct resource *ioapic_res; int i; ioapic_res = ioapic_setup_resources(nr_ioapics); for (i = 0; i < nr_ioapics; i++) { if (smp_found_config) { ioapic_phys = mpc_ioapic_addr(i); #ifdef CONFIG_X86_32 if (!ioapic_phys) { printk(KERN_ERR "WARNING: bogus zero IO-APIC " "address found in MPTABLE, " "disabling IO/APIC support!\n"); smp_found_config = 0; skip_ioapic_setup = 1; goto fake_ioapic_page; } #endif } else { #ifdef CONFIG_X86_32 fake_ioapic_page: #endif ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE); ioapic_phys = __pa(ioapic_phys); } set_fixmap_nocache(idx, ioapic_phys); apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n", __fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK), ioapic_phys); idx++; ioapic_res->start = ioapic_phys; ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1; ioapic_res++; } probe_nr_irqs_gsi(); } void __init ioapic_insert_resources(void) { int i; struct resource *r = ioapic_resources; if (!r) { if (nr_ioapics > 0) printk(KERN_ERR "IO APIC resources couldn't be allocated.\n"); return; } for (i = 0; i < nr_ioapics; i++) { insert_resource(&iomem_resource, r); r++; } } int mp_find_ioapic(u32 gsi) { int i = 0; if (nr_ioapics == 0) return -1; /* Find the IOAPIC that manages this GSI. */ for (i = 0; i < nr_ioapics; i++) { struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(i); if ((gsi >= gsi_cfg->gsi_base) && (gsi <= gsi_cfg->gsi_end)) return i; } printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi); return -1; } int mp_find_ioapic_pin(int ioapic, u32 gsi) { struct mp_ioapic_gsi *gsi_cfg; if (WARN_ON(ioapic == -1)) return -1; gsi_cfg = mp_ioapic_gsi_routing(ioapic); if (WARN_ON(gsi > gsi_cfg->gsi_end)) return -1; return gsi - gsi_cfg->gsi_base; } static __init int bad_ioapic(unsigned long address) { if (nr_ioapics >= MAX_IO_APICS) { printk(KERN_WARNING "WARNING: Max # of I/O APICs (%d) exceeded " "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics); return 1; } if (!address) { printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address" " found in table, skipping!\n"); return 1; } return 0; } void __init mp_register_ioapic(int id, u32 address, u32 gsi_base) { int idx = 0; int entries; struct mp_ioapic_gsi *gsi_cfg; if (bad_ioapic(address)) return; idx = nr_ioapics; ioapics[idx].mp_config.type = MP_IOAPIC; ioapics[idx].mp_config.flags = MPC_APIC_USABLE; ioapics[idx].mp_config.apicaddr = address; set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address); ioapics[idx].mp_config.apicid = io_apic_unique_id(id); ioapics[idx].mp_config.apicver = io_apic_get_version(idx); /* * Build basic GSI lookup table to facilitate gsi->io_apic lookups * and to prevent reprogramming of IOAPIC pins (PCI GSIs). */ entries = io_apic_get_redir_entries(idx); gsi_cfg = mp_ioapic_gsi_routing(idx); gsi_cfg->gsi_base = gsi_base; gsi_cfg->gsi_end = gsi_base + entries - 1; /* * The number of IO-APIC IRQ registers (== #pins): */ ioapics[idx].nr_registers = entries; if (gsi_cfg->gsi_end >= gsi_top) gsi_top = gsi_cfg->gsi_end + 1; printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, " "GSI %d-%d\n", idx, mpc_ioapic_id(idx), mpc_ioapic_ver(idx), mpc_ioapic_addr(idx), gsi_cfg->gsi_base, gsi_cfg->gsi_end); nr_ioapics++; } /* Enable IOAPIC early just for system timer */ void __init pre_init_apic_IRQ0(void) { struct io_apic_irq_attr attr = { 0, 0, 0, 0 }; printk(KERN_INFO "Early APIC setup for system timer0\n"); #ifndef CONFIG_SMP physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); #endif setup_local_APIC(); io_apic_setup_irq_pin(0, 0, &attr); irq_set_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge"); }