######################################################################## # Copyright (c) 2013, Intel Corporation # # This software is available to you under a choice of one of two # licenses. You may choose to be licensed under the terms of the GNU # General Public License (GPL) Version 2, available from the file # COPYING in the main directory of this source tree, or the # OpenIB.org BSD license below: # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the # distribution. # # * Neither the name of the Intel Corporation nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # # THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES# LOSS OF USE, DATA, OR # PROFITS# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ######################################################################## ## ## Authors: ## Erdinc Ozturk ## Vinodh Gopal ## James Guilford ## Tim Chen ## ## References: ## This code was derived and highly optimized from the code described in paper: ## Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation ## on Intel Architecture Processors. August, 2010 ## The details of the implementation is explained in: ## Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode ## on Intel Architecture Processors. October, 2012. ## ## Assumptions: ## ## ## ## iv: ## 0 1 2 3 ## 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | Salt (From the SA) | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | Initialization Vector | ## | (This is the sequence number from IPSec header) | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | 0x1 | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## ## ## ## AAD: ## AAD padded to 128 bits with 0 ## for example, assume AAD is a u32 vector ## ## if AAD is 8 bytes: ## AAD[3] = {A0, A1}# ## padded AAD in xmm register = {A1 A0 0 0} ## ## 0 1 2 3 ## 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | SPI (A1) | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | 32-bit Sequence Number (A0) | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | 0x0 | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## ## AAD Format with 32-bit Sequence Number ## ## if AAD is 12 bytes: ## AAD[3] = {A0, A1, A2}# ## padded AAD in xmm register = {A2 A1 A0 0} ## ## 0 1 2 3 ## 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | SPI (A2) | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | 64-bit Extended Sequence Number {A1,A0} | ## | | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | 0x0 | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## ## AAD Format with 64-bit Extended Sequence Number ## ## ## aadLen: ## from the definition of the spec, aadLen can only be 8 or 12 bytes. ## The code additionally supports aadLen of length 16 bytes. ## ## TLen: ## from the definition of the spec, TLen can only be 8, 12 or 16 bytes. ## ## poly = x^128 + x^127 + x^126 + x^121 + 1 ## throughout the code, one tab and two tab indentations are used. one tab is ## for GHASH part, two tabs is for AES part. ## #include #include # constants in mergeable sections, linker can reorder and merge .section .rodata.cst16.POLY, "aM", @progbits, 16 .align 16 POLY: .octa 0xC2000000000000000000000000000001 .section .rodata.cst16.POLY2, "aM", @progbits, 16 .align 16 POLY2: .octa 0xC20000000000000000000001C2000000 .section .rodata.cst16.TWOONE, "aM", @progbits, 16 .align 16 TWOONE: .octa 0x00000001000000000000000000000001 .section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16 .align 16 SHUF_MASK: .octa 0x000102030405060708090A0B0C0D0E0F .section .rodata.cst16.ONE, "aM", @progbits, 16 .align 16 ONE: .octa 0x00000000000000000000000000000001 .section .rodata.cst16.ONEf, "aM", @progbits, 16 .align 16 ONEf: .octa 0x01000000000000000000000000000000 # order of these constants should not change. # more specifically, ALL_F should follow SHIFT_MASK, and zero should follow ALL_F .section .rodata, "a", @progbits .align 16 SHIFT_MASK: .octa 0x0f0e0d0c0b0a09080706050403020100 ALL_F: .octa 0xffffffffffffffffffffffffffffffff .octa 0x00000000000000000000000000000000 .section .rodata .align 16 .type aad_shift_arr, @object .size aad_shift_arr, 272 aad_shift_arr: .octa 0xffffffffffffffffffffffffffffffff .octa 0xffffffffffffffffffffffffffffff0C .octa 0xffffffffffffffffffffffffffff0D0C .octa 0xffffffffffffffffffffffffff0E0D0C .octa 0xffffffffffffffffffffffff0F0E0D0C .octa 0xffffffffffffffffffffff0C0B0A0908 .octa 0xffffffffffffffffffff0D0C0B0A0908 .octa 0xffffffffffffffffff0E0D0C0B0A0908 .octa 0xffffffffffffffff0F0E0D0C0B0A0908 .octa 0xffffffffffffff0C0B0A090807060504 .octa 0xffffffffffff0D0C0B0A090807060504 .octa 0xffffffffff0E0D0C0B0A090807060504 .octa 0xffffffff0F0E0D0C0B0A090807060504 .octa 0xffffff0C0B0A09080706050403020100 .octa 0xffff0D0C0B0A09080706050403020100 .octa 0xff0E0D0C0B0A09080706050403020100 .octa 0x0F0E0D0C0B0A09080706050403020100 .text ##define the fields of the gcm aes context #{ # u8 expanded_keys[16*11] store expanded keys # u8 shifted_hkey_1[16] store HashKey <<1 mod poly here # u8 shifted_hkey_2[16] store HashKey^2 <<1 mod poly here # u8 shifted_hkey_3[16] store HashKey^3 <<1 mod poly here # u8 shifted_hkey_4[16] store HashKey^4 <<1 mod poly here # u8 shifted_hkey_5[16] store HashKey^5 <<1 mod poly here # u8 shifted_hkey_6[16] store HashKey^6 <<1 mod poly here # u8 shifted_hkey_7[16] store HashKey^7 <<1 mod poly here # u8 shifted_hkey_8[16] store HashKey^8 <<1 mod poly here # u8 shifted_hkey_1_k[16] store XOR HashKey <<1 mod poly here (for Karatsuba purposes) # u8 shifted_hkey_2_k[16] store XOR HashKey^2 <<1 mod poly here (for Karatsuba purposes) # u8 shifted_hkey_3_k[16] store XOR HashKey^3 <<1 mod poly here (for Karatsuba purposes) # u8 shifted_hkey_4_k[16] store XOR HashKey^4 <<1 mod poly here (for Karatsuba purposes) # u8 shifted_hkey_5_k[16] store XOR HashKey^5 <<1 mod poly here (for Karatsuba purposes) # u8 shifted_hkey_6_k[16] store XOR HashKey^6 <<1 mod poly here (for Karatsuba purposes) # u8 shifted_hkey_7_k[16] store XOR HashKey^7 <<1 mod poly here (for Karatsuba purposes) # u8 shifted_hkey_8_k[16] store XOR HashKey^8 <<1 mod poly here (for Karatsuba purposes) #} gcm_ctx# HashKey = 16*11 # store HashKey <<1 mod poly here HashKey_2 = 16*12 # store HashKey^2 <<1 mod poly here HashKey_3 = 16*13 # store HashKey^3 <<1 mod poly here HashKey_4 = 16*14 # store HashKey^4 <<1 mod poly here HashKey_5 = 16*15 # store HashKey^5 <<1 mod poly here HashKey_6 = 16*16 # store HashKey^6 <<1 mod poly here HashKey_7 = 16*17 # store HashKey^7 <<1 mod poly here HashKey_8 = 16*18 # store HashKey^8 <<1 mod poly here HashKey_k = 16*19 # store XOR of HashKey <<1 mod poly here (for Karatsuba purposes) HashKey_2_k = 16*20 # store XOR of HashKey^2 <<1 mod poly here (for Karatsuba purposes) HashKey_3_k = 16*21 # store XOR of HashKey^3 <<1 mod poly here (for Karatsuba purposes) HashKey_4_k = 16*22 # store XOR of HashKey^4 <<1 mod poly here (for Karatsuba purposes) HashKey_5_k = 16*23 # store XOR of HashKey^5 <<1 mod poly here (for Karatsuba purposes) HashKey_6_k = 16*24 # store XOR of HashKey^6 <<1 mod poly here (for Karatsuba purposes) HashKey_7_k = 16*25 # store XOR of HashKey^7 <<1 mod poly here (for Karatsuba purposes) HashKey_8_k = 16*26 # store XOR of HashKey^8 <<1 mod poly here (for Karatsuba purposes) #define arg1 %rdi #define arg2 %rsi #define arg3 %rdx #define arg4 %rcx #define arg5 %r8 #define arg6 %r9 #define arg7 STACK_OFFSET+8*1(%r14) #define arg8 STACK_OFFSET+8*2(%r14) #define arg9 STACK_OFFSET+8*3(%r14) i = 0 j = 0 out_order = 0 in_order = 1 DEC = 0 ENC = 1 .macro define_reg r n reg_\r = %xmm\n .endm .macro setreg .altmacro define_reg i %i define_reg j %j .noaltmacro .endm # need to push 4 registers into stack to maintain STACK_OFFSET = 8*4 TMP1 = 16*0 # Temporary storage for AAD TMP2 = 16*1 # Temporary storage for AES State 2 (State 1 is stored in an XMM register) TMP3 = 16*2 # Temporary storage for AES State 3 TMP4 = 16*3 # Temporary storage for AES State 4 TMP5 = 16*4 # Temporary storage for AES State 5 TMP6 = 16*5 # Temporary storage for AES State 6 TMP7 = 16*6 # Temporary storage for AES State 7 TMP8 = 16*7 # Temporary storage for AES State 8 VARIABLE_OFFSET = 16*8 ################################ # Utility Macros ################################ # Encryption of a single block .macro ENCRYPT_SINGLE_BLOCK XMM0 vpxor (arg1), \XMM0, \XMM0 i = 1 setreg .rep 9 vaesenc 16*i(arg1), \XMM0, \XMM0 i = (i+1) setreg .endr vaesenclast 16*10(arg1), \XMM0, \XMM0 .endm #ifdef CONFIG_AS_AVX ############################################################################### # GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0) # Input: A and B (128-bits each, bit-reflected) # Output: C = A*B*x mod poly, (i.e. >>1 ) # To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input # GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly. ############################################################################### .macro GHASH_MUL_AVX GH HK T1 T2 T3 T4 T5 vpshufd $0b01001110, \GH, \T2 vpshufd $0b01001110, \HK, \T3 vpxor \GH , \T2, \T2 # T2 = (a1+a0) vpxor \HK , \T3, \T3 # T3 = (b1+b0) vpclmulqdq $0x11, \HK, \GH, \T1 # T1 = a1*b1 vpclmulqdq $0x00, \HK, \GH, \GH # GH = a0*b0 vpclmulqdq $0x00, \T3, \T2, \T2 # T2 = (a1+a0)*(b1+b0) vpxor \GH, \T2,\T2 vpxor \T1, \T2,\T2 # T2 = a0*b1+a1*b0 vpslldq $8, \T2,\T3 # shift-L T3 2 DWs vpsrldq $8, \T2,\T2 # shift-R T2 2 DWs vpxor \T3, \GH, \GH vpxor \T2, \T1, \T1 # = GH x HK #first phase of the reduction vpslld $31, \GH, \T2 # packed right shifting << 31 vpslld $30, \GH, \T3 # packed right shifting shift << 30 vpslld $25, \GH, \T4 # packed right shifting shift << 25 vpxor \T3, \T2, \T2 # xor the shifted versions vpxor \T4, \T2, \T2 vpsrldq $4, \T2, \T5 # shift-R T5 1 DW vpslldq $12, \T2, \T2 # shift-L T2 3 DWs vpxor \T2, \GH, \GH # first phase of the reduction complete #second phase of the reduction vpsrld $1,\GH, \T2 # packed left shifting >> 1 vpsrld $2,\GH, \T3 # packed left shifting >> 2 vpsrld $7,\GH, \T4 # packed left shifting >> 7 vpxor \T3, \T2, \T2 # xor the shifted versions vpxor \T4, \T2, \T2 vpxor \T5, \T2, \T2 vpxor \T2, \GH, \GH vpxor \T1, \GH, \GH # the result is in GH .endm .macro PRECOMPUTE_AVX HK T1 T2 T3 T4 T5 T6 # Haskey_i_k holds XORed values of the low and high parts of the Haskey_i vmovdqa \HK, \T5 vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 vmovdqa \T1, HashKey_k(arg1) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^2<<1 mod poly vmovdqa \T5, HashKey_2(arg1) # [HashKey_2] = HashKey^2<<1 mod poly vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 vmovdqa \T1, HashKey_2_k(arg1) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^3<<1 mod poly vmovdqa \T5, HashKey_3(arg1) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 vmovdqa \T1, HashKey_3_k(arg1) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^4<<1 mod poly vmovdqa \T5, HashKey_4(arg1) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 vmovdqa \T1, HashKey_4_k(arg1) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^5<<1 mod poly vmovdqa \T5, HashKey_5(arg1) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 vmovdqa \T1, HashKey_5_k(arg1) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^6<<1 mod poly vmovdqa \T5, HashKey_6(arg1) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 vmovdqa \T1, HashKey_6_k(arg1) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^7<<1 mod poly vmovdqa \T5, HashKey_7(arg1) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 vmovdqa \T1, HashKey_7_k(arg1) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^8<<1 mod poly vmovdqa \T5, HashKey_8(arg1) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 vmovdqa \T1, HashKey_8_k(arg1) .endm ## if a = number of total plaintext bytes ## b = floor(a/16) ## num_initial_blocks = b mod 4# ## encrypt the initial num_initial_blocks blocks and apply ghash on the ciphertext ## r10, r11, r12, rax are clobbered ## arg1, arg2, arg3, r14 are used as a pointer only, not modified .macro INITIAL_BLOCKS_AVX num_initial_blocks T1 T2 T3 T4 T5 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T6 T_key ENC_DEC i = (8-\num_initial_blocks) j = 0 setreg mov arg6, %r10 # r10 = AAD mov arg7, %r12 # r12 = aadLen mov %r12, %r11 vpxor reg_j, reg_j, reg_j vpxor reg_i, reg_i, reg_i cmp $16, %r11 jl _get_AAD_rest8\@ _get_AAD_blocks\@: vmovdqu (%r10), reg_i vpshufb SHUF_MASK(%rip), reg_i, reg_i vpxor reg_i, reg_j, reg_j GHASH_MUL_AVX reg_j, \T2, \T1, \T3, \T4, \T5, \T6 add $16, %r10 sub $16, %r12 sub $16, %r11 cmp $16, %r11 jge _get_AAD_blocks\@ vmovdqu reg_j, reg_i cmp $0, %r11 je _get_AAD_done\@ vpxor reg_i, reg_i, reg_i /* read the last <16B of AAD. since we have at least 4B of data right after the AAD (the ICV, and maybe some CT), we can read 4B/8B blocks safely, and then get rid of the extra stuff */ _get_AAD_rest8\@: cmp $4, %r11 jle _get_AAD_rest4\@ movq (%r10), \T1 add $8, %r10 sub $8, %r11 vpslldq $8, \T1, \T1 vpsrldq $8, reg_i, reg_i vpxor \T1, reg_i, reg_i jmp _get_AAD_rest8\@ _get_AAD_rest4\@: cmp $0, %r11 jle _get_AAD_rest0\@ mov (%r10), %eax movq %rax, \T1 add $4, %r10 sub $4, %r11 vpslldq $12, \T1, \T1 vpsrldq $4, reg_i, reg_i vpxor \T1, reg_i, reg_i _get_AAD_rest0\@: /* finalize: shift out the extra bytes we read, and align left. since pslldq can only shift by an immediate, we use vpshufb and an array of shuffle masks */ movq %r12, %r11 salq $4, %r11 movdqu aad_shift_arr(%r11), \T1 vpshufb \T1, reg_i, reg_i _get_AAD_rest_final\@: vpshufb SHUF_MASK(%rip), reg_i, reg_i vpxor reg_j, reg_i, reg_i GHASH_MUL_AVX reg_i, \T2, \T1, \T3, \T4, \T5, \T6 _get_AAD_done\@: # initialize the data pointer offset as zero xor %r11, %r11 # start AES for num_initial_blocks blocks mov arg5, %rax # rax = *Y0 vmovdqu (%rax), \CTR # CTR = Y0 vpshufb SHUF_MASK(%rip), \CTR, \CTR i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, reg_i vpshufb SHUF_MASK(%rip), reg_i, reg_i # perform a 16Byte swap i = (i+1) setreg .endr vmovdqa (arg1), \T_key i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vpxor \T_key, reg_i, reg_i i = (i+1) setreg .endr j = 1 setreg .rep 9 vmovdqa 16*j(arg1), \T_key i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vaesenc \T_key, reg_i, reg_i i = (i+1) setreg .endr j = (j+1) setreg .endr vmovdqa 16*10(arg1), \T_key i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vaesenclast \T_key, reg_i, reg_i i = (i+1) setreg .endr i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vmovdqu (arg3, %r11), \T1 vpxor \T1, reg_i, reg_i vmovdqu reg_i, (arg2 , %r11) # write back ciphertext for num_initial_blocks blocks add $16, %r11 .if \ENC_DEC == DEC vmovdqa \T1, reg_i .endif vpshufb SHUF_MASK(%rip), reg_i, reg_i # prepare ciphertext for GHASH computations i = (i+1) setreg .endr i = (8-\num_initial_blocks) j = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vpxor reg_i, reg_j, reg_j GHASH_MUL_AVX reg_j, \T2, \T1, \T3, \T4, \T5, \T6 # apply GHASH on num_initial_blocks blocks i = (i+1) j = (j+1) setreg .endr # XMM8 has the combined result here vmovdqa \XMM8, TMP1(%rsp) vmovdqa \XMM8, \T3 cmp $128, %r13 jl _initial_blocks_done\@ # no need for precomputed constants ############################################################################### # Haskey_i_k holds XORed values of the low and high parts of the Haskey_i vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM1 vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM2 vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM3 vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM4 vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM5 vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM6 vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM7 vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM8 vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap vmovdqa (arg1), \T_key vpxor \T_key, \XMM1, \XMM1 vpxor \T_key, \XMM2, \XMM2 vpxor \T_key, \XMM3, \XMM3 vpxor \T_key, \XMM4, \XMM4 vpxor \T_key, \XMM5, \XMM5 vpxor \T_key, \XMM6, \XMM6 vpxor \T_key, \XMM7, \XMM7 vpxor \T_key, \XMM8, \XMM8 i = 1 setreg .rep 9 # do 9 rounds vmovdqa 16*i(arg1), \T_key vaesenc \T_key, \XMM1, \XMM1 vaesenc \T_key, \XMM2, \XMM2 vaesenc \T_key, \XMM3, \XMM3 vaesenc \T_key, \XMM4, \XMM4 vaesenc \T_key, \XMM5, \XMM5 vaesenc \T_key, \XMM6, \XMM6 vaesenc \T_key, \XMM7, \XMM7 vaesenc \T_key, \XMM8, \XMM8 i = (i+1) setreg .endr vmovdqa 16*i(arg1), \T_key vaesenclast \T_key, \XMM1, \XMM1 vaesenclast \T_key, \XMM2, \XMM2 vaesenclast \T_key, \XMM3, \XMM3 vaesenclast \T_key, \XMM4, \XMM4 vaesenclast \T_key, \XMM5, \XMM5 vaesenclast \T_key, \XMM6, \XMM6 vaesenclast \T_key, \XMM7, \XMM7 vaesenclast \T_key, \XMM8, \XMM8 vmovdqu (arg3, %r11), \T1 vpxor \T1, \XMM1, \XMM1 vmovdqu \XMM1, (arg2 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM1 .endif vmovdqu 16*1(arg3, %r11), \T1 vpxor \T1, \XMM2, \XMM2 vmovdqu \XMM2, 16*1(arg2 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM2 .endif vmovdqu 16*2(arg3, %r11), \T1 vpxor \T1, \XMM3, \XMM3 vmovdqu \XMM3, 16*2(arg2 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM3 .endif vmovdqu 16*3(arg3, %r11), \T1 vpxor \T1, \XMM4, \XMM4 vmovdqu \XMM4, 16*3(arg2 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM4 .endif vmovdqu 16*4(arg3, %r11), \T1 vpxor \T1, \XMM5, \XMM5 vmovdqu \XMM5, 16*4(arg2 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM5 .endif vmovdqu 16*5(arg3, %r11), \T1 vpxor \T1, \XMM6, \XMM6 vmovdqu \XMM6, 16*5(arg2 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM6 .endif vmovdqu 16*6(arg3, %r11), \T1 vpxor \T1, \XMM7, \XMM7 vmovdqu \XMM7, 16*6(arg2 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM7 .endif vmovdqu 16*7(arg3, %r11), \T1 vpxor \T1, \XMM8, \XMM8 vmovdqu \XMM8, 16*7(arg2 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM8 .endif add $128, %r11 vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap vpxor TMP1(%rsp), \XMM1, \XMM1 # combine GHASHed value with the corresponding ciphertext vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap ############################################################################### _initial_blocks_done\@: .endm # encrypt 8 blocks at a time # ghash the 8 previously encrypted ciphertext blocks # arg1, arg2, arg3 are used as pointers only, not modified # r11 is the data offset value .macro GHASH_8_ENCRYPT_8_PARALLEL_AVX T1 T2 T3 T4 T5 T6 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T7 loop_idx ENC_DEC vmovdqa \XMM1, \T2 vmovdqa \XMM2, TMP2(%rsp) vmovdqa \XMM3, TMP3(%rsp) vmovdqa \XMM4, TMP4(%rsp) vmovdqa \XMM5, TMP5(%rsp) vmovdqa \XMM6, TMP6(%rsp) vmovdqa \XMM7, TMP7(%rsp) vmovdqa \XMM8, TMP8(%rsp) .if \loop_idx == in_order vpaddd ONE(%rip), \CTR, \XMM1 # INCR CNT vpaddd ONE(%rip), \XMM1, \XMM2 vpaddd ONE(%rip), \XMM2, \XMM3 vpaddd ONE(%rip), \XMM3, \XMM4 vpaddd ONE(%rip), \XMM4, \XMM5 vpaddd ONE(%rip), \XMM5, \XMM6 vpaddd ONE(%rip), \XMM6, \XMM7 vpaddd ONE(%rip), \XMM7, \XMM8 vmovdqa \XMM8, \CTR vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap .else vpaddd ONEf(%rip), \CTR, \XMM1 # INCR CNT vpaddd ONEf(%rip), \XMM1, \XMM2 vpaddd ONEf(%rip), \XMM2, \XMM3 vpaddd ONEf(%rip), \XMM3, \XMM4 vpaddd ONEf(%rip), \XMM4, \XMM5 vpaddd ONEf(%rip), \XMM5, \XMM6 vpaddd ONEf(%rip), \XMM6, \XMM7 vpaddd ONEf(%rip), \XMM7, \XMM8 vmovdqa \XMM8, \CTR .endif ####################################################################### vmovdqu (arg1), \T1 vpxor \T1, \XMM1, \XMM1 vpxor \T1, \XMM2, \XMM2 vpxor \T1, \XMM3, \XMM3 vpxor \T1, \XMM4, \XMM4 vpxor \T1, \XMM5, \XMM5 vpxor \T1, \XMM6, \XMM6 vpxor \T1, \XMM7, \XMM7 vpxor \T1, \XMM8, \XMM8 ####################################################################### vmovdqu 16*1(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqu 16*2(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 ####################################################################### vmovdqa HashKey_8(arg1), \T5 vpclmulqdq $0x11, \T5, \T2, \T4 # T4 = a1*b1 vpclmulqdq $0x00, \T5, \T2, \T7 # T7 = a0*b0 vpshufd $0b01001110, \T2, \T6 vpxor \T2, \T6, \T6 vmovdqa HashKey_8_k(arg1), \T5 vpclmulqdq $0x00, \T5, \T6, \T6 vmovdqu 16*3(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP2(%rsp), \T1 vmovdqa HashKey_7(arg1), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 vmovdqa HashKey_7_k(arg1), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*4(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 ####################################################################### vmovdqa TMP3(%rsp), \T1 vmovdqa HashKey_6(arg1), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 vmovdqa HashKey_6_k(arg1), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*5(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP4(%rsp), \T1 vmovdqa HashKey_5(arg1), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 vmovdqa HashKey_5_k(arg1), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*6(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP5(%rsp), \T1 vmovdqa HashKey_4(arg1), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 vmovdqa HashKey_4_k(arg1), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*7(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP6(%rsp), \T1 vmovdqa HashKey_3(arg1), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 vmovdqa HashKey_3_k(arg1), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*8(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP7(%rsp), \T1 vmovdqa HashKey_2(arg1), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 vmovdqa HashKey_2_k(arg1), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 ####################################################################### vmovdqu 16*9(arg1), \T5 vaesenc \T5, \XMM1, \XMM1 vaesenc \T5, \XMM2, \XMM2 vaesenc \T5, \XMM3, \XMM3 vaesenc \T5, \XMM4, \XMM4 vaesenc \T5, \XMM5, \XMM5 vaesenc \T5, \XMM6, \XMM6 vaesenc \T5, \XMM7, \XMM7 vaesenc \T5, \XMM8, \XMM8 vmovdqa TMP8(%rsp), \T1 vmovdqa HashKey(arg1), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 vmovdqa HashKey_k(arg1), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 vpxor \T4, \T6, \T6 vpxor \T7, \T6, \T6 vmovdqu 16*10(arg1), \T5 i = 0 j = 1 setreg .rep 8 vpxor 16*i(arg3, %r11), \T5, \T2 .if \ENC_DEC == ENC vaesenclast \T2, reg_j, reg_j .else vaesenclast \T2, reg_j, \T3 vmovdqu 16*i(arg3, %r11), reg_j vmovdqu \T3, 16*i(arg2, %r11) .endif i = (i+1) j = (j+1) setreg .endr ####################################################################### vpslldq $8, \T6, \T3 # shift-L T3 2 DWs vpsrldq $8, \T6, \T6 # shift-R T2 2 DWs vpxor \T3, \T7, \T7 vpxor \T4, \T6, \T6 # accumulate the results in T6:T7 ####################################################################### #first phase of the reduction ####################################################################### vpslld $31, \T7, \T2 # packed right shifting << 31 vpslld $30, \T7, \T3 # packed right shifting shift << 30 vpslld $25, \T7, \T4 # packed right shifting shift << 25 vpxor \T3, \T2, \T2 # xor the shifted versions vpxor \T4, \T2, \T2 vpsrldq $4, \T2, \T1 # shift-R T1 1 DW vpslldq $12, \T2, \T2 # shift-L T2 3 DWs vpxor \T2, \T7, \T7 # first phase of the reduction complete ####################################################################### .if \ENC_DEC == ENC vmovdqu \XMM1, 16*0(arg2,%r11) # Write to the Ciphertext buffer vmovdqu \XMM2, 16*1(arg2,%r11) # Write to the Ciphertext buffer vmovdqu \XMM3, 16*2(arg2,%r11) # Write to the Ciphertext buffer vmovdqu \XMM4, 16*3(arg2,%r11) # Write to the Ciphertext buffer vmovdqu \XMM5, 16*4(arg2,%r11) # Write to the Ciphertext buffer vmovdqu \XMM6, 16*5(arg2,%r11) # Write to the Ciphertext buffer vmovdqu \XMM7, 16*6(arg2,%r11) # Write to the Ciphertext buffer vmovdqu \XMM8, 16*7(arg2,%r11) # Write to the Ciphertext buffer .endif ####################################################################### #second phase of the reduction vpsrld $1, \T7, \T2 # packed left shifting >> 1 vpsrld $2, \T7, \T3 # packed left shifting >> 2 vpsrld $7, \T7, \T4 # packed left shifting >> 7 vpxor \T3, \T2, \T2 # xor the shifted versions vpxor \T4, \T2, \T2 vpxor \T1, \T2, \T2 vpxor \T2, \T7, \T7 vpxor \T7, \T6, \T6 # the result is in T6 ####################################################################### vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap vpxor \T6, \XMM1, \XMM1 .endm # GHASH the last 4 ciphertext blocks. .macro GHASH_LAST_8_AVX T1 T2 T3 T4 T5 T6 T7 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 ## Karatsuba Method vpshufd $0b01001110, \XMM1, \T2 vpxor \XMM1, \T2, \T2 vmovdqa HashKey_8(arg1), \T5 vpclmulqdq $0x11, \T5, \XMM1, \T6 vpclmulqdq $0x00, \T5, \XMM1, \T7 vmovdqa HashKey_8_k(arg1), \T3 vpclmulqdq $0x00, \T3, \T2, \XMM1 ###################### vpshufd $0b01001110, \XMM2, \T2 vpxor \XMM2, \T2, \T2 vmovdqa HashKey_7(arg1), \T5 vpclmulqdq $0x11, \T5, \XMM2, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM2, \T4 vpxor \T4, \T7, \T7 vmovdqa HashKey_7_k(arg1), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vpshufd $0b01001110, \XMM3, \T2 vpxor \XMM3, \T2, \T2 vmovdqa HashKey_6(arg1), \T5 vpclmulqdq $0x11, \T5, \XMM3, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM3, \T4 vpxor \T4, \T7, \T7 vmovdqa HashKey_6_k(arg1), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vpshufd $0b01001110, \XMM4, \T2 vpxor \XMM4, \T2, \T2 vmovdqa HashKey_5(arg1), \T5 vpclmulqdq $0x11, \T5, \XMM4, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM4, \T4 vpxor \T4, \T7, \T7 vmovdqa HashKey_5_k(arg1), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vpshufd $0b01001110, \XMM5, \T2 vpxor \XMM5, \T2, \T2 vmovdqa HashKey_4(arg1), \T5 vpclmulqdq $0x11, \T5, \XMM5, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM5, \T4 vpxor \T4, \T7, \T7 vmovdqa HashKey_4_k(arg1), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vpshufd $0b01001110, \XMM6, \T2 vpxor \XMM6, \T2, \T2 vmovdqa HashKey_3(arg1), \T5 vpclmulqdq $0x11, \T5, \XMM6, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM6, \T4 vpxor \T4, \T7, \T7 vmovdqa HashKey_3_k(arg1), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vpshufd $0b01001110, \XMM7, \T2 vpxor \XMM7, \T2, \T2 vmovdqa HashKey_2(arg1), \T5 vpclmulqdq $0x11, \T5, \XMM7, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM7, \T4 vpxor \T4, \T7, \T7 vmovdqa HashKey_2_k(arg1), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vpshufd $0b01001110, \XMM8, \T2 vpxor \XMM8, \T2, \T2 vmovdqa HashKey(arg1), \T5 vpclmulqdq $0x11, \T5, \XMM8, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM8, \T4 vpxor \T4, \T7, \T7 vmovdqa HashKey_k(arg1), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 vpxor \T6, \XMM1, \XMM1 vpxor \T7, \XMM1, \T2 vpslldq $8, \T2, \T4 vpsrldq $8, \T2, \T2 vpxor \T4, \T7, \T7 vpxor \T2, \T6, \T6 # holds the result of # the accumulated carry-less multiplications ####################################################################### #first phase of the reduction vpslld $31, \T7, \T2 # packed right shifting << 31 vpslld $30, \T7, \T3 # packed right shifting shift << 30 vpslld $25, \T7, \T4 # packed right shifting shift << 25 vpxor \T3, \T2, \T2 # xor the shifted versions vpxor \T4, \T2, \T2 vpsrldq $4, \T2, \T1 # shift-R T1 1 DW vpslldq $12, \T2, \T2 # shift-L T2 3 DWs vpxor \T2, \T7, \T7 # first phase of the reduction complete ####################################################################### #second phase of the reduction vpsrld $1, \T7, \T2 # packed left shifting >> 1 vpsrld $2, \T7, \T3 # packed left shifting >> 2 vpsrld $7, \T7, \T4 # packed left shifting >> 7 vpxor \T3, \T2, \T2 # xor the shifted versions vpxor \T4, \T2, \T2 vpxor \T1, \T2, \T2 vpxor \T2, \T7, \T7 vpxor \T7, \T6, \T6 # the result is in T6 .endm # combined for GCM encrypt and decrypt functions # clobbering all xmm registers # clobbering r10, r11, r12, r13, r14, r15 .macro GCM_ENC_DEC_AVX ENC_DEC #the number of pushes must equal STACK_OFFSET push %r12 push %r13 push %r14 push %r15 mov %rsp, %r14 sub $VARIABLE_OFFSET, %rsp and $~63, %rsp # align rsp to 64 bytes vmovdqu HashKey(arg1), %xmm13 # xmm13 = HashKey mov arg4, %r13 # save the number of bytes of plaintext/ciphertext and $-16, %r13 # r13 = r13 - (r13 mod 16) mov %r13, %r12 shr $4, %r12 and $7, %r12 jz _initial_num_blocks_is_0\@ cmp $7, %r12 je _initial_num_blocks_is_7\@ cmp $6, %r12 je _initial_num_blocks_is_6\@ cmp $5, %r12 je _initial_num_blocks_is_5\@ cmp $4, %r12 je _initial_num_blocks_is_4\@ cmp $3, %r12 je _initial_num_blocks_is_3\@ cmp $2, %r12 je _initial_num_blocks_is_2\@ jmp _initial_num_blocks_is_1\@ _initial_num_blocks_is_7\@: INITIAL_BLOCKS_AVX 7, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*7, %r13 jmp _initial_blocks_encrypted\@ _initial_num_blocks_is_6\@: INITIAL_BLOCKS_AVX 6, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*6, %r13 jmp _initial_blocks_encrypted\@ _initial_num_blocks_is_5\@: INITIAL_BLOCKS_AVX 5, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*5, %r13 jmp _initial_blocks_encrypted\@ _initial_num_blocks_is_4\@: INITIAL_BLOCKS_AVX 4, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*4, %r13 jmp _initial_blocks_encrypted\@ _initial_num_blocks_is_3\@: INITIAL_BLOCKS_AVX 3, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*3, %r13 jmp _initial_blocks_encrypted\@ _initial_num_blocks_is_2\@: INITIAL_BLOCKS_AVX 2, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*2, %r13 jmp _initial_blocks_encrypted\@ _initial_num_blocks_is_1\@: INITIAL_BLOCKS_AVX 1, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*1, %r13 jmp _initial_blocks_encrypted\@ _initial_num_blocks_is_0\@: INITIAL_BLOCKS_AVX 0, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC _initial_blocks_encrypted\@: cmp $0, %r13 je _zero_cipher_left\@ sub $128, %r13 je _eight_cipher_left\@ vmovd %xmm9, %r15d and $255, %r15d vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 _encrypt_by_8_new\@: cmp $(255-8), %r15d jg _encrypt_by_8\@ add $8, %r15b GHASH_8_ENCRYPT_8_PARALLEL_AVX %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, out_order, \ENC_DEC add $128, %r11 sub $128, %r13 jne _encrypt_by_8_new\@ vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 jmp _eight_cipher_left\@ _encrypt_by_8\@: vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 add $8, %r15b GHASH_8_ENCRYPT_8_PARALLEL_AVX %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, in_order, \ENC_DEC vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 add $128, %r11 sub $128, %r13 jne _encrypt_by_8_new\@ vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 _eight_cipher_left\@: GHASH_LAST_8_AVX %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8 _zero_cipher_left\@: cmp $16, arg4 jl _only_less_than_16\@ mov arg4, %r13 and $15, %r13 # r13 = (arg4 mod 16) je _multiple_of_16_bytes\@ # handle the last <16 Byte block seperately vpaddd ONE(%rip), %xmm9, %xmm9 # INCR CNT to get Yn vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 ENCRYPT_SINGLE_BLOCK %xmm9 # E(K, Yn) sub $16, %r11 add %r13, %r11 vmovdqu (arg3, %r11), %xmm1 # receive the last <16 Byte block lea SHIFT_MASK+16(%rip), %r12 sub %r13, %r12 # adjust the shuffle mask pointer to be # able to shift 16-r13 bytes (r13 is the # number of bytes in plaintext mod 16) vmovdqu (%r12), %xmm2 # get the appropriate shuffle mask vpshufb %xmm2, %xmm1, %xmm1 # shift right 16-r13 bytes jmp _final_ghash_mul\@ _only_less_than_16\@: # check for 0 length mov arg4, %r13 and $15, %r13 # r13 = (arg4 mod 16) je _multiple_of_16_bytes\@ # handle the last <16 Byte block seperately vpaddd ONE(%rip), %xmm9, %xmm9 # INCR CNT to get Yn vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 ENCRYPT_SINGLE_BLOCK %xmm9 # E(K, Yn) lea SHIFT_MASK+16(%rip), %r12 sub %r13, %r12 # adjust the shuffle mask pointer to be # able to shift 16-r13 bytes (r13 is the # number of bytes in plaintext mod 16) _get_last_16_byte_loop\@: movb (arg3, %r11), %al movb %al, TMP1 (%rsp , %r11) add $1, %r11 cmp %r13, %r11 jne _get_last_16_byte_loop\@ vmovdqu TMP1(%rsp), %xmm1 sub $16, %r11 _final_ghash_mul\@: .if \ENC_DEC == DEC vmovdqa %xmm1, %xmm2 vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn) vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 # get the appropriate mask to # mask out top 16-r13 bytes of xmm9 vpand %xmm1, %xmm9, %xmm9 # mask out top 16-r13 bytes of xmm9 vpand %xmm1, %xmm2, %xmm2 vpshufb SHUF_MASK(%rip), %xmm2, %xmm2 vpxor %xmm2, %xmm14, %xmm14 #GHASH computation for the last <16 Byte block GHASH_MUL_AVX %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 sub %r13, %r11 add $16, %r11 .else vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn) vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 # get the appropriate mask to # mask out top 16-r13 bytes of xmm9 vpand %xmm1, %xmm9, %xmm9 # mask out top 16-r13 bytes of xmm9 vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 vpxor %xmm9, %xmm14, %xmm14 #GHASH computation for the last <16 Byte block GHASH_MUL_AVX %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 sub %r13, %r11 add $16, %r11 vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 # shuffle xmm9 back to output as ciphertext .endif ############################# # output r13 Bytes vmovq %xmm9, %rax cmp $8, %r13 jle _less_than_8_bytes_left\@ mov %rax, (arg2 , %r11) add $8, %r11 vpsrldq $8, %xmm9, %xmm9 vmovq %xmm9, %rax sub $8, %r13 _less_than_8_bytes_left\@: movb %al, (arg2 , %r11) add $1, %r11 shr $8, %rax sub $1, %r13 jne _less_than_8_bytes_left\@ ############################# _multiple_of_16_bytes\@: mov arg7, %r12 # r12 = aadLen (number of bytes) shl $3, %r12 # convert into number of bits vmovd %r12d, %xmm15 # len(A) in xmm15 shl $3, arg4 # len(C) in bits (*128) vmovq arg4, %xmm1 vpslldq $8, %xmm15, %xmm15 # xmm15 = len(A)|| 0x0000000000000000 vpxor %xmm1, %xmm15, %xmm15 # xmm15 = len(A)||len(C) vpxor %xmm15, %xmm14, %xmm14 GHASH_MUL_AVX %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 # final GHASH computation vpshufb SHUF_MASK(%rip), %xmm14, %xmm14 # perform a 16Byte swap mov arg5, %rax # rax = *Y0 vmovdqu (%rax), %xmm9 # xmm9 = Y0 ENCRYPT_SINGLE_BLOCK %xmm9 # E(K, Y0) vpxor %xmm14, %xmm9, %xmm9 _return_T\@: mov arg8, %r10 # r10 = authTag mov arg9, %r11 # r11 = auth_tag_len cmp $16, %r11 je _T_16\@ cmp $8, %r11 jl _T_4\@ _T_8\@: vmovq %xmm9, %rax mov %rax, (%r10) add $8, %r10 sub $8, %r11 vpsrldq $8, %xmm9, %xmm9 cmp $0, %r11 je _return_T_done\@ _T_4\@: vmovd %xmm9, %eax mov %eax, (%r10) add $4, %r10 sub $4, %r11 vpsrldq $4, %xmm9, %xmm9 cmp $0, %r11 je _return_T_done\@ _T_123\@: vmovd %xmm9, %eax cmp $2, %r11 jl _T_1\@ mov %ax, (%r10) cmp $2, %r11 je _return_T_done\@ add $2, %r10 sar $16, %eax _T_1\@: mov %al, (%r10) jmp _return_T_done\@ _T_16\@: vmovdqu %xmm9, (%r10) _return_T_done\@: mov %r14, %rsp pop %r15 pop %r14 pop %r13 pop %r12 .endm ############################################################# #void aesni_gcm_precomp_avx_gen2 # (gcm_data *my_ctx_data, # u8 *hash_subkey)# /* H, the Hash sub key input. Data starts on a 16-byte boundary. */ ############################################################# ENTRY(aesni_gcm_precomp_avx_gen2) #the number of pushes must equal STACK_OFFSET push %r12 push %r13 push %r14 push %r15 mov %rsp, %r14 sub $VARIABLE_OFFSET, %rsp and $~63, %rsp # align rsp to 64 bytes vmovdqu (arg2), %xmm6 # xmm6 = HashKey vpshufb SHUF_MASK(%rip), %xmm6, %xmm6 ############### PRECOMPUTATION of HashKey<<1 mod poly from the HashKey vmovdqa %xmm6, %xmm2 vpsllq $1, %xmm6, %xmm6 vpsrlq $63, %xmm2, %xmm2 vmovdqa %xmm2, %xmm1 vpslldq $8, %xmm2, %xmm2 vpsrldq $8, %xmm1, %xmm1 vpor %xmm2, %xmm6, %xmm6 #reduction vpshufd $0b00100100, %xmm1, %xmm2 vpcmpeqd TWOONE(%rip), %xmm2, %xmm2 vpand POLY(%rip), %xmm2, %xmm2 vpxor %xmm2, %xmm6, %xmm6 # xmm6 holds the HashKey<<1 mod poly ####################################################################### vmovdqa %xmm6, HashKey(arg1) # store HashKey<<1 mod poly PRECOMPUTE_AVX %xmm6, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5 mov %r14, %rsp pop %r15 pop %r14 pop %r13 pop %r12 ret ENDPROC(aesni_gcm_precomp_avx_gen2) ############################################################################### #void aesni_gcm_enc_avx_gen2( # gcm_data *my_ctx_data, /* aligned to 16 Bytes */ # u8 *out, /* Ciphertext output. Encrypt in-place is allowed. */ # const u8 *in, /* Plaintext input */ # u64 plaintext_len, /* Length of data in Bytes for encryption. */ # u8 *iv, /* Pre-counter block j0: 4 byte salt # (from Security Association) concatenated with 8 byte # Initialisation Vector (from IPSec ESP Payload) # concatenated with 0x00000001. 16-byte aligned pointer. */ # const u8 *aad, /* Additional Authentication Data (AAD)*/ # u64 aad_len, /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */ # u8 *auth_tag, /* Authenticated Tag output. */ # u64 auth_tag_len)# /* Authenticated Tag Length in bytes. # Valid values are 16 (most likely), 12 or 8. */ ############################################################################### ENTRY(aesni_gcm_enc_avx_gen2) GCM_ENC_DEC_AVX ENC ret ENDPROC(aesni_gcm_enc_avx_gen2) ############################################################################### #void aesni_gcm_dec_avx_gen2( # gcm_data *my_ctx_data, /* aligned to 16 Bytes */ # u8 *out, /* Plaintext output. Decrypt in-place is allowed. */ # const u8 *in, /* Ciphertext input */ # u64 plaintext_len, /* Length of data in Bytes for encryption. */ # u8 *iv, /* Pre-counter block j0: 4 byte salt # (from Security Association) concatenated with 8 byte # Initialisation Vector (from IPSec ESP Payload) # concatenated with 0x00000001. 16-byte aligned pointer. */ # const u8 *aad, /* Additional Authentication Data (AAD)*/ # u64 aad_len, /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */ # u8 *auth_tag, /* Authenticated Tag output. */ # u64 auth_tag_len)# /* Authenticated Tag Length in bytes. # Valid values are 16 (most likely), 12 or 8. */ ############################################################################### ENTRY(aesni_gcm_dec_avx_gen2) GCM_ENC_DEC_AVX DEC ret ENDPROC(aesni_gcm_dec_avx_gen2) #endif /* CONFIG_AS_AVX */ #ifdef CONFIG_AS_AVX2 ############################################################################### # GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0) # Input: A and B (128-bits each, bit-reflected) # Output: C = A*B*x mod poly, (i.e. >>1 ) # To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input # GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly. ############################################################################### .macro GHASH_MUL_AVX2 GH HK T1 T2 T3 T4 T5 vpclmulqdq $0x11,\HK,\GH,\T1 # T1 = a1*b1 vpclmulqdq $0x00,\HK,\GH,\T2 # T2 = a0*b0 vpclmulqdq $0x01,\HK,\GH,\T3 # T3 = a1*b0 vpclmulqdq $0x10,\HK,\GH,\GH # GH = a0*b1 vpxor \T3, \GH, \GH vpsrldq $8 , \GH, \T3 # shift-R GH 2 DWs vpslldq $8 , \GH, \GH # shift-L GH 2 DWs vpxor \T3, \T1, \T1 vpxor \T2, \GH, \GH ####################################################################### #first phase of the reduction vmovdqa POLY2(%rip), \T3 vpclmulqdq $0x01, \GH, \T3, \T2 vpslldq $8, \T2, \T2 # shift-L T2 2 DWs vpxor \T2, \GH, \GH # first phase of the reduction complete ####################################################################### #second phase of the reduction vpclmulqdq $0x00, \GH, \T3, \T2 vpsrldq $4, \T2, \T2 # shift-R T2 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R) vpclmulqdq $0x10, \GH, \T3, \GH vpslldq $4, \GH, \GH # shift-L GH 1 DW (Shift-L 1-DW to obtain result with no shifts) vpxor \T2, \GH, \GH # second phase of the reduction complete ####################################################################### vpxor \T1, \GH, \GH # the result is in GH .endm .macro PRECOMPUTE_AVX2 HK T1 T2 T3 T4 T5 T6 # Haskey_i_k holds XORed values of the low and high parts of the Haskey_i vmovdqa \HK, \T5 GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^2<<1 mod poly vmovdqa \T5, HashKey_2(arg1) # [HashKey_2] = HashKey^2<<1 mod poly GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^3<<1 mod poly vmovdqa \T5, HashKey_3(arg1) GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^4<<1 mod poly vmovdqa \T5, HashKey_4(arg1) GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^5<<1 mod poly vmovdqa \T5, HashKey_5(arg1) GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^6<<1 mod poly vmovdqa \T5, HashKey_6(arg1) GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^7<<1 mod poly vmovdqa \T5, HashKey_7(arg1) GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^8<<1 mod poly vmovdqa \T5, HashKey_8(arg1) .endm ## if a = number of total plaintext bytes ## b = floor(a/16) ## num_initial_blocks = b mod 4# ## encrypt the initial num_initial_blocks blocks and apply ghash on the ciphertext ## r10, r11, r12, rax are clobbered ## arg1, arg2, arg3, r14 are used as a pointer only, not modified .macro INITIAL_BLOCKS_AVX2 num_initial_blocks T1 T2 T3 T4 T5 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T6 T_key ENC_DEC VER i = (8-\num_initial_blocks) j = 0 setreg mov arg6, %r10 # r10 = AAD mov arg7, %r12 # r12 = aadLen mov %r12, %r11 vpxor reg_j, reg_j, reg_j vpxor reg_i, reg_i, reg_i cmp $16, %r11 jl _get_AAD_rest8\@ _get_AAD_blocks\@: vmovdqu (%r10), reg_i vpshufb SHUF_MASK(%rip), reg_i, reg_i vpxor reg_i, reg_j, reg_j GHASH_MUL_AVX2 reg_j, \T2, \T1, \T3, \T4, \T5, \T6 add $16, %r10 sub $16, %r12 sub $16, %r11 cmp $16, %r11 jge _get_AAD_blocks\@ vmovdqu reg_j, reg_i cmp $0, %r11 je _get_AAD_done\@ vpxor reg_i, reg_i, reg_i /* read the last <16B of AAD. since we have at least 4B of data right after the AAD (the ICV, and maybe some CT), we can read 4B/8B blocks safely, and then get rid of the extra stuff */ _get_AAD_rest8\@: cmp $4, %r11 jle _get_AAD_rest4\@ movq (%r10), \T1 add $8, %r10 sub $8, %r11 vpslldq $8, \T1, \T1 vpsrldq $8, reg_i, reg_i vpxor \T1, reg_i, reg_i jmp _get_AAD_rest8\@ _get_AAD_rest4\@: cmp $0, %r11 jle _get_AAD_rest0\@ mov (%r10), %eax movq %rax, \T1 add $4, %r10 sub $4, %r11 vpslldq $12, \T1, \T1 vpsrldq $4, reg_i, reg_i vpxor \T1, reg_i, reg_i _get_AAD_rest0\@: /* finalize: shift out the extra bytes we read, and align left. since pslldq can only shift by an immediate, we use vpshufb and an array of shuffle masks */ movq %r12, %r11 salq $4, %r11 movdqu aad_shift_arr(%r11), \T1 vpshufb \T1, reg_i, reg_i _get_AAD_rest_final\@: vpshufb SHUF_MASK(%rip), reg_i, reg_i vpxor reg_j, reg_i, reg_i GHASH_MUL_AVX2 reg_i, \T2, \T1, \T3, \T4, \T5, \T6 _get_AAD_done\@: # initialize the data pointer offset as zero xor %r11, %r11 # start AES for num_initial_blocks blocks mov arg5, %rax # rax = *Y0 vmovdqu (%rax), \CTR # CTR = Y0 vpshufb SHUF_MASK(%rip), \CTR, \CTR i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, reg_i vpshufb SHUF_MASK(%rip), reg_i, reg_i # perform a 16Byte swap i = (i+1) setreg .endr vmovdqa (arg1), \T_key i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vpxor \T_key, reg_i, reg_i i = (i+1) setreg .endr j = 1 setreg .rep 9 vmovdqa 16*j(arg1), \T_key i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vaesenc \T_key, reg_i, reg_i i = (i+1) setreg .endr j = (j+1) setreg .endr vmovdqa 16*10(arg1), \T_key i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vaesenclast \T_key, reg_i, reg_i i = (i+1) setreg .endr i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vmovdqu (arg3, %r11), \T1 vpxor \T1, reg_i, reg_i vmovdqu reg_i, (arg2 , %r11) # write back ciphertext for # num_initial_blocks blocks add $16, %r11 .if \ENC_DEC == DEC vmovdqa \T1, reg_i .endif vpshufb SHUF_MASK(%rip), reg_i, reg_i # prepare ciphertext for GHASH computations i = (i+1) setreg .endr i = (8-\num_initial_blocks) j = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vpxor reg_i, reg_j, reg_j GHASH_MUL_AVX2 reg_j, \T2, \T1, \T3, \T4, \T5, \T6 # apply GHASH on num_initial_blocks blocks i = (i+1) j = (j+1) setreg .endr # XMM8 has the combined result here vmovdqa \XMM8, TMP1(%rsp) vmovdqa \XMM8, \T3 cmp $128, %r13 jl _initial_blocks_done\@ # no need for precomputed constants ############################################################################### # Haskey_i_k holds XORed values of the low and high parts of the Haskey_i vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM1 vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM2 vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM3 vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM4 vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM5 vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM6 vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM7 vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM8 vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap vmovdqa (arg1), \T_key vpxor \T_key, \XMM1, \XMM1 vpxor \T_key, \XMM2, \XMM2 vpxor \T_key, \XMM3, \XMM3 vpxor \T_key, \XMM4, \XMM4 vpxor \T_key, \XMM5, \XMM5 vpxor \T_key, \XMM6, \XMM6 vpxor \T_key, \XMM7, \XMM7 vpxor \T_key, \XMM8, \XMM8 i = 1 setreg .rep 9 # do 9 rounds vmovdqa 16*i(arg1), \T_key vaesenc \T_key, \XMM1, \XMM1 vaesenc \T_key, \XMM2, \XMM2 vaesenc \T_key, \XMM3, \XMM3 vaesenc \T_key, \XMM4, \XMM4 vaesenc \T_key, \XMM5, \XMM5 vaesenc \T_key, \XMM6, \XMM6 vaesenc \T_key, \XMM7, \XMM7 vaesenc \T_key, \XMM8, \XMM8 i = (i+1) setreg .endr vmovdqa 16*i(arg1), \T_key vaesenclast \T_key, \XMM1, \XMM1 vaesenclast \T_key, \XMM2, \XMM2 vaesenclast \T_key, \XMM3, \XMM3 vaesenclast \T_key, \XMM4, \XMM4 vaesenclast \T_key, \XMM5, \XMM5 vaesenclast \T_key, \XMM6, \XMM6 vaesenclast \T_key, \XMM7, \XMM7 vaesenclast \T_key, \XMM8, \XMM8 vmovdqu (arg3, %r11), \T1 vpxor \T1, \XMM1, \XMM1 vmovdqu \XMM1, (arg2 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM1 .endif vmovdqu 16*1(arg3, %r11), \T1 vpxor \T1, \XMM2, \XMM2 vmovdqu \XMM2, 16*1(arg2 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM2 .endif vmovdqu 16*2(arg3, %r11), \T1 vpxor \T1, \XMM3, \XMM3 vmovdqu \XMM3, 16*2(arg2 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM3 .endif vmovdqu 16*3(arg3, %r11), \T1 vpxor \T1, \XMM4, \XMM4 vmovdqu \XMM4, 16*3(arg2 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM4 .endif vmovdqu 16*4(arg3, %r11), \T1 vpxor \T1, \XMM5, \XMM5 vmovdqu \XMM5, 16*4(arg2 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM5 .endif vmovdqu 16*5(arg3, %r11), \T1 vpxor \T1, \XMM6, \XMM6 vmovdqu \XMM6, 16*5(arg2 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM6 .endif vmovdqu 16*6(arg3, %r11), \T1 vpxor \T1, \XMM7, \XMM7 vmovdqu \XMM7, 16*6(arg2 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM7 .endif vmovdqu 16*7(arg3, %r11), \T1 vpxor \T1, \XMM8, \XMM8 vmovdqu \XMM8, 16*7(arg2 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM8 .endif add $128, %r11 vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap vpxor TMP1(%rsp), \XMM1, \XMM1 # combine GHASHed value with # the corresponding ciphertext vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap ############################################################################### _initial_blocks_done\@: .endm # encrypt 8 blocks at a time # ghash the 8 previously encrypted ciphertext blocks # arg1, arg2, arg3 are used as pointers only, not modified # r11 is the data offset value .macro GHASH_8_ENCRYPT_8_PARALLEL_AVX2 T1 T2 T3 T4 T5 T6 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T7 loop_idx ENC_DEC vmovdqa \XMM1, \T2 vmovdqa \XMM2, TMP2(%rsp) vmovdqa \XMM3, TMP3(%rsp) vmovdqa \XMM4, TMP4(%rsp) vmovdqa \XMM5, TMP5(%rsp) vmovdqa \XMM6, TMP6(%rsp) vmovdqa \XMM7, TMP7(%rsp) vmovdqa \XMM8, TMP8(%rsp) .if \loop_idx == in_order vpaddd ONE(%rip), \CTR, \XMM1 # INCR CNT vpaddd ONE(%rip), \XMM1, \XMM2 vpaddd ONE(%rip), \XMM2, \XMM3 vpaddd ONE(%rip), \XMM3, \XMM4 vpaddd ONE(%rip), \XMM4, \XMM5 vpaddd ONE(%rip), \XMM5, \XMM6 vpaddd ONE(%rip), \XMM6, \XMM7 vpaddd ONE(%rip), \XMM7, \XMM8 vmovdqa \XMM8, \CTR vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap .else vpaddd ONEf(%rip), \CTR, \XMM1 # INCR CNT vpaddd ONEf(%rip), \XMM1, \XMM2 vpaddd ONEf(%rip), \XMM2, \XMM3 vpaddd ONEf(%rip), \XMM3, \XMM4 vpaddd ONEf(%rip), \XMM4, \XMM5 vpaddd ONEf(%rip), \XMM5, \XMM6 vpaddd ONEf(%rip), \XMM6, \XMM7 vpaddd ONEf(%rip), \XMM7, \XMM8 vmovdqa \XMM8, \CTR .endif ####################################################################### vmovdqu (arg1), \T1 vpxor \T1, \XMM1, \XMM1 vpxor \T1, \XMM2, \XMM2 vpxor \T1, \XMM3, \XMM3 vpxor \T1, \XMM4, \XMM4 vpxor \T1, \XMM5, \XMM5 vpxor \T1, \XMM6, \XMM6 vpxor \T1, \XMM7, \XMM7 vpxor \T1, \XMM8, \XMM8 ####################################################################### vmovdqu 16*1(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqu 16*2(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 ####################################################################### vmovdqa HashKey_8(arg1), \T5 vpclmulqdq $0x11, \T5, \T2, \T4 # T4 = a1*b1 vpclmulqdq $0x00, \T5, \T2, \T7 # T7 = a0*b0 vpclmulqdq $0x01, \T5, \T2, \T6 # T6 = a1*b0 vpclmulqdq $0x10, \T5, \T2, \T5 # T5 = a0*b1 vpxor \T5, \T6, \T6 vmovdqu 16*3(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP2(%rsp), \T1 vmovdqa HashKey_7(arg1), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpclmulqdq $0x01, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vpclmulqdq $0x10, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*4(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 ####################################################################### vmovdqa TMP3(%rsp), \T1 vmovdqa HashKey_6(arg1), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpclmulqdq $0x01, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vpclmulqdq $0x10, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*5(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP4(%rsp), \T1 vmovdqa HashKey_5(arg1), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpclmulqdq $0x01, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vpclmulqdq $0x10, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*6(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP5(%rsp), \T1 vmovdqa HashKey_4(arg1), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpclmulqdq $0x01, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vpclmulqdq $0x10, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*7(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP6(%rsp), \T1 vmovdqa HashKey_3(arg1), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpclmulqdq $0x01, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vpclmulqdq $0x10, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*8(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP7(%rsp), \T1 vmovdqa HashKey_2(arg1), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpclmulqdq $0x01, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vpclmulqdq $0x10, \T5, \T1, \T3 vpxor \T3, \T6, \T6 ####################################################################### vmovdqu 16*9(arg1), \T5 vaesenc \T5, \XMM1, \XMM1 vaesenc \T5, \XMM2, \XMM2 vaesenc \T5, \XMM3, \XMM3 vaesenc \T5, \XMM4, \XMM4 vaesenc \T5, \XMM5, \XMM5 vaesenc \T5, \XMM6, \XMM6 vaesenc \T5, \XMM7, \XMM7 vaesenc \T5, \XMM8, \XMM8 vmovdqa TMP8(%rsp), \T1 vmovdqa HashKey(arg1), \T5 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpclmulqdq $0x01, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vpclmulqdq $0x10, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T1 vmovdqu 16*10(arg1), \T5 i = 0 j = 1 setreg .rep 8 vpxor 16*i(arg3, %r11), \T5, \T2 .if \ENC_DEC == ENC vaesenclast \T2, reg_j, reg_j .else vaesenclast \T2, reg_j, \T3 vmovdqu 16*i(arg3, %r11), reg_j vmovdqu \T3, 16*i(arg2, %r11) .endif i = (i+1) j = (j+1) setreg .endr ####################################################################### vpslldq $8, \T6, \T3 # shift-L T3 2 DWs vpsrldq $8, \T6, \T6 # shift-R T2 2 DWs vpxor \T3, \T7, \T7 vpxor \T6, \T1, \T1 # accumulate the results in T1:T7 ####################################################################### #first phase of the reduction vmovdqa POLY2(%rip), \T3 vpclmulqdq $0x01, \T7, \T3, \T2 vpslldq $8, \T2, \T2 # shift-L xmm2 2 DWs vpxor \T2, \T7, \T7 # first phase of the reduction complete ####################################################################### .if \ENC_DEC == ENC vmovdqu \XMM1, 16*0(arg2,%r11) # Write to the Ciphertext buffer vmovdqu \XMM2, 16*1(arg2,%r11) # Write to the Ciphertext buffer vmovdqu \XMM3, 16*2(arg2,%r11) # Write to the Ciphertext buffer vmovdqu \XMM4, 16*3(arg2,%r11) # Write to the Ciphertext buffer vmovdqu \XMM5, 16*4(arg2,%r11) # Write to the Ciphertext buffer vmovdqu \XMM6, 16*5(arg2,%r11) # Write to the Ciphertext buffer vmovdqu \XMM7, 16*6(arg2,%r11) # Write to the Ciphertext buffer vmovdqu \XMM8, 16*7(arg2,%r11) # Write to the Ciphertext buffer .endif ####################################################################### #second phase of the reduction vpclmulqdq $0x00, \T7, \T3, \T2 vpsrldq $4, \T2, \T2 # shift-R xmm2 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R) vpclmulqdq $0x10, \T7, \T3, \T4 vpslldq $4, \T4, \T4 # shift-L xmm0 1 DW (Shift-L 1-DW to obtain result with no shifts) vpxor \T2, \T4, \T4 # second phase of the reduction complete ####################################################################### vpxor \T4, \T1, \T1 # the result is in T1 vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap vpxor \T1, \XMM1, \XMM1 .endm # GHASH the last 4 ciphertext blocks. .macro GHASH_LAST_8_AVX2 T1 T2 T3 T4 T5 T6 T7 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 ## Karatsuba Method vmovdqa HashKey_8(arg1), \T5 vpshufd $0b01001110, \XMM1, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM1, \T2, \T2 vpxor \T5, \T3, \T3 vpclmulqdq $0x11, \T5, \XMM1, \T6 vpclmulqdq $0x00, \T5, \XMM1, \T7 vpclmulqdq $0x00, \T3, \T2, \XMM1 ###################### vmovdqa HashKey_7(arg1), \T5 vpshufd $0b01001110, \XMM2, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM2, \T2, \T2 vpxor \T5, \T3, \T3 vpclmulqdq $0x11, \T5, \XMM2, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM2, \T4 vpxor \T4, \T7, \T7 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vmovdqa HashKey_6(arg1), \T5 vpshufd $0b01001110, \XMM3, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM3, \T2, \T2 vpxor \T5, \T3, \T3 vpclmulqdq $0x11, \T5, \XMM3, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM3, \T4 vpxor \T4, \T7, \T7 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vmovdqa HashKey_5(arg1), \T5 vpshufd $0b01001110, \XMM4, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM4, \T2, \T2 vpxor \T5, \T3, \T3 vpclmulqdq $0x11, \T5, \XMM4, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM4, \T4 vpxor \T4, \T7, \T7 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vmovdqa HashKey_4(arg1), \T5 vpshufd $0b01001110, \XMM5, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM5, \T2, \T2 vpxor \T5, \T3, \T3 vpclmulqdq $0x11, \T5, \XMM5, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM5, \T4 vpxor \T4, \T7, \T7 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vmovdqa HashKey_3(arg1), \T5 vpshufd $0b01001110, \XMM6, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM6, \T2, \T2 vpxor \T5, \T3, \T3 vpclmulqdq $0x11, \T5, \XMM6, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM6, \T4 vpxor \T4, \T7, \T7 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vmovdqa HashKey_2(arg1), \T5 vpshufd $0b01001110, \XMM7, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM7, \T2, \T2 vpxor \T5, \T3, \T3 vpclmulqdq $0x11, \T5, \XMM7, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM7, \T4 vpxor \T4, \T7, \T7 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vmovdqa HashKey(arg1), \T5 vpshufd $0b01001110, \XMM8, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM8, \T2, \T2 vpxor \T5, \T3, \T3 vpclmulqdq $0x11, \T5, \XMM8, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM8, \T4 vpxor \T4, \T7, \T7 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 vpxor \T6, \XMM1, \XMM1 vpxor \T7, \XMM1, \T2 vpslldq $8, \T2, \T4 vpsrldq $8, \T2, \T2 vpxor \T4, \T7, \T7 vpxor \T2, \T6, \T6 # holds the result of the # accumulated carry-less multiplications ####################################################################### #first phase of the reduction vmovdqa POLY2(%rip), \T3 vpclmulqdq $0x01, \T7, \T3, \T2 vpslldq $8, \T2, \T2 # shift-L xmm2 2 DWs vpxor \T2, \T7, \T7 # first phase of the reduction complete ####################################################################### #second phase of the reduction vpclmulqdq $0x00, \T7, \T3, \T2 vpsrldq $4, \T2, \T2 # shift-R T2 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R) vpclmulqdq $0x10, \T7, \T3, \T4 vpslldq $4, \T4, \T4 # shift-L T4 1 DW (Shift-L 1-DW to obtain result with no shifts) vpxor \T2, \T4, \T4 # second phase of the reduction complete ####################################################################### vpxor \T4, \T6, \T6 # the result is in T6 .endm # combined for GCM encrypt and decrypt functions # clobbering all xmm registers # clobbering r10, r11, r12, r13, r14, r15 .macro GCM_ENC_DEC_AVX2 ENC_DEC #the number of pushes must equal STACK_OFFSET push %r12 push %r13 push %r14 push %r15 mov %rsp, %r14 sub $VARIABLE_OFFSET, %rsp and $~63, %rsp # align rsp to 64 bytes vmovdqu HashKey(arg1), %xmm13 # xmm13 = HashKey mov arg4, %r13 # save the number of bytes of plaintext/ciphertext and $-16, %r13 # r13 = r13 - (r13 mod 16) mov %r13, %r12 shr $4, %r12 and $7, %r12 jz _initial_num_blocks_is_0\@ cmp $7, %r12 je _initial_num_blocks_is_7\@ cmp $6, %r12 je _initial_num_blocks_is_6\@ cmp $5, %r12 je _initial_num_blocks_is_5\@ cmp $4, %r12 je _initial_num_blocks_is_4\@ cmp $3, %r12 je _initial_num_blocks_is_3\@ cmp $2, %r12 je _initial_num_blocks_is_2\@ jmp _initial_num_blocks_is_1\@ _initial_num_blocks_is_7\@: INITIAL_BLOCKS_AVX2 7, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*7, %r13 jmp _initial_blocks_encrypted\@ _initial_num_blocks_is_6\@: INITIAL_BLOCKS_AVX2 6, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*6, %r13 jmp _initial_blocks_encrypted\@ _initial_num_blocks_is_5\@: INITIAL_BLOCKS_AVX2 5, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*5, %r13 jmp _initial_blocks_encrypted\@ _initial_num_blocks_is_4\@: INITIAL_BLOCKS_AVX2 4, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*4, %r13 jmp _initial_blocks_encrypted\@ _initial_num_blocks_is_3\@: INITIAL_BLOCKS_AVX2 3, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*3, %r13 jmp _initial_blocks_encrypted\@ _initial_num_blocks_is_2\@: INITIAL_BLOCKS_AVX2 2, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*2, %r13 jmp _initial_blocks_encrypted\@ _initial_num_blocks_is_1\@: INITIAL_BLOCKS_AVX2 1, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*1, %r13 jmp _initial_blocks_encrypted\@ _initial_num_blocks_is_0\@: INITIAL_BLOCKS_AVX2 0, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC _initial_blocks_encrypted\@: cmp $0, %r13 je _zero_cipher_left\@ sub $128, %r13 je _eight_cipher_left\@ vmovd %xmm9, %r15d and $255, %r15d vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 _encrypt_by_8_new\@: cmp $(255-8), %r15d jg _encrypt_by_8\@ add $8, %r15b GHASH_8_ENCRYPT_8_PARALLEL_AVX2 %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, out_order, \ENC_DEC add $128, %r11 sub $128, %r13 jne _encrypt_by_8_new\@ vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 jmp _eight_cipher_left\@ _encrypt_by_8\@: vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 add $8, %r15b GHASH_8_ENCRYPT_8_PARALLEL_AVX2 %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, in_order, \ENC_DEC vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 add $128, %r11 sub $128, %r13 jne _encrypt_by_8_new\@ vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 _eight_cipher_left\@: GHASH_LAST_8_AVX2 %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8 _zero_cipher_left\@: cmp $16, arg4 jl _only_less_than_16\@ mov arg4, %r13 and $15, %r13 # r13 = (arg4 mod 16) je _multiple_of_16_bytes\@ # handle the last <16 Byte block seperately vpaddd ONE(%rip), %xmm9, %xmm9 # INCR CNT to get Yn vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 ENCRYPT_SINGLE_BLOCK %xmm9 # E(K, Yn) sub $16, %r11 add %r13, %r11 vmovdqu (arg3, %r11), %xmm1 # receive the last <16 Byte block lea SHIFT_MASK+16(%rip), %r12 sub %r13, %r12 # adjust the shuffle mask pointer # to be able to shift 16-r13 bytes # (r13 is the number of bytes in plaintext mod 16) vmovdqu (%r12), %xmm2 # get the appropriate shuffle mask vpshufb %xmm2, %xmm1, %xmm1 # shift right 16-r13 bytes jmp _final_ghash_mul\@ _only_less_than_16\@: # check for 0 length mov arg4, %r13 and $15, %r13 # r13 = (arg4 mod 16) je _multiple_of_16_bytes\@ # handle the last <16 Byte block seperately vpaddd ONE(%rip), %xmm9, %xmm9 # INCR CNT to get Yn vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 ENCRYPT_SINGLE_BLOCK %xmm9 # E(K, Yn) lea SHIFT_MASK+16(%rip), %r12 sub %r13, %r12 # adjust the shuffle mask pointer to be # able to shift 16-r13 bytes (r13 is the # number of bytes in plaintext mod 16) _get_last_16_byte_loop\@: movb (arg3, %r11), %al movb %al, TMP1 (%rsp , %r11) add $1, %r11 cmp %r13, %r11 jne _get_last_16_byte_loop\@ vmovdqu TMP1(%rsp), %xmm1 sub $16, %r11 _final_ghash_mul\@: .if \ENC_DEC == DEC vmovdqa %xmm1, %xmm2 vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn) vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 # get the appropriate mask to mask out top 16-r13 bytes of xmm9 vpand %xmm1, %xmm9, %xmm9 # mask out top 16-r13 bytes of xmm9 vpand %xmm1, %xmm2, %xmm2 vpshufb SHUF_MASK(%rip), %xmm2, %xmm2 vpxor %xmm2, %xmm14, %xmm14 #GHASH computation for the last <16 Byte block GHASH_MUL_AVX2 %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 sub %r13, %r11 add $16, %r11 .else vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn) vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 # get the appropriate mask to mask out top 16-r13 bytes of xmm9 vpand %xmm1, %xmm9, %xmm9 # mask out top 16-r13 bytes of xmm9 vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 vpxor %xmm9, %xmm14, %xmm14 #GHASH computation for the last <16 Byte block GHASH_MUL_AVX2 %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 sub %r13, %r11 add $16, %r11 vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 # shuffle xmm9 back to output as ciphertext .endif ############################# # output r13 Bytes vmovq %xmm9, %rax cmp $8, %r13 jle _less_than_8_bytes_left\@ mov %rax, (arg2 , %r11) add $8, %r11 vpsrldq $8, %xmm9, %xmm9 vmovq %xmm9, %rax sub $8, %r13 _less_than_8_bytes_left\@: movb %al, (arg2 , %r11) add $1, %r11 shr $8, %rax sub $1, %r13 jne _less_than_8_bytes_left\@ ############################# _multiple_of_16_bytes\@: mov arg7, %r12 # r12 = aadLen (number of bytes) shl $3, %r12 # convert into number of bits vmovd %r12d, %xmm15 # len(A) in xmm15 shl $3, arg4 # len(C) in bits (*128) vmovq arg4, %xmm1 vpslldq $8, %xmm15, %xmm15 # xmm15 = len(A)|| 0x0000000000000000 vpxor %xmm1, %xmm15, %xmm15 # xmm15 = len(A)||len(C) vpxor %xmm15, %xmm14, %xmm14 GHASH_MUL_AVX2 %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 # final GHASH computation vpshufb SHUF_MASK(%rip), %xmm14, %xmm14 # perform a 16Byte swap mov arg5, %rax # rax = *Y0 vmovdqu (%rax), %xmm9 # xmm9 = Y0 ENCRYPT_SINGLE_BLOCK %xmm9 # E(K, Y0) vpxor %xmm14, %xmm9, %xmm9 _return_T\@: mov arg8, %r10 # r10 = authTag mov arg9, %r11 # r11 = auth_tag_len cmp $16, %r11 je _T_16\@ cmp $8, %r11 jl _T_4\@ _T_8\@: vmovq %xmm9, %rax mov %rax, (%r10) add $8, %r10 sub $8, %r11 vpsrldq $8, %xmm9, %xmm9 cmp $0, %r11 je _return_T_done\@ _T_4\@: vmovd %xmm9, %eax mov %eax, (%r10) add $4, %r10 sub $4, %r11 vpsrldq $4, %xmm9, %xmm9 cmp $0, %r11 je _return_T_done\@ _T_123\@: vmovd %xmm9, %eax cmp $2, %r11 jl _T_1\@ mov %ax, (%r10) cmp $2, %r11 je _return_T_done\@ add $2, %r10 sar $16, %eax _T_1\@: mov %al, (%r10) jmp _return_T_done\@ _T_16\@: vmovdqu %xmm9, (%r10) _return_T_done\@: mov %r14, %rsp pop %r15 pop %r14 pop %r13 pop %r12 .endm ############################################################# #void aesni_gcm_precomp_avx_gen4 # (gcm_data *my_ctx_data, # u8 *hash_subkey)# /* H, the Hash sub key input. # Data starts on a 16-byte boundary. */ ############################################################# ENTRY(aesni_gcm_precomp_avx_gen4) #the number of pushes must equal STACK_OFFSET push %r12 push %r13 push %r14 push %r15 mov %rsp, %r14 sub $VARIABLE_OFFSET, %rsp and $~63, %rsp # align rsp to 64 bytes vmovdqu (arg2), %xmm6 # xmm6 = HashKey vpshufb SHUF_MASK(%rip), %xmm6, %xmm6 ############### PRECOMPUTATION of HashKey<<1 mod poly from the HashKey vmovdqa %xmm6, %xmm2 vpsllq $1, %xmm6, %xmm6 vpsrlq $63, %xmm2, %xmm2 vmovdqa %xmm2, %xmm1 vpslldq $8, %xmm2, %xmm2 vpsrldq $8, %xmm1, %xmm1 vpor %xmm2, %xmm6, %xmm6 #reduction vpshufd $0b00100100, %xmm1, %xmm2 vpcmpeqd TWOONE(%rip), %xmm2, %xmm2 vpand POLY(%rip), %xmm2, %xmm2 vpxor %xmm2, %xmm6, %xmm6 # xmm6 holds the HashKey<<1 mod poly ####################################################################### vmovdqa %xmm6, HashKey(arg1) # store HashKey<<1 mod poly PRECOMPUTE_AVX2 %xmm6, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5 mov %r14, %rsp pop %r15 pop %r14 pop %r13 pop %r12 ret ENDPROC(aesni_gcm_precomp_avx_gen4) ############################################################################### #void aesni_gcm_enc_avx_gen4( # gcm_data *my_ctx_data, /* aligned to 16 Bytes */ # u8 *out, /* Ciphertext output. Encrypt in-place is allowed. */ # const u8 *in, /* Plaintext input */ # u64 plaintext_len, /* Length of data in Bytes for encryption. */ # u8 *iv, /* Pre-counter block j0: 4 byte salt # (from Security Association) concatenated with 8 byte # Initialisation Vector (from IPSec ESP Payload) # concatenated with 0x00000001. 16-byte aligned pointer. */ # const u8 *aad, /* Additional Authentication Data (AAD)*/ # u64 aad_len, /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */ # u8 *auth_tag, /* Authenticated Tag output. */ # u64 auth_tag_len)# /* Authenticated Tag Length in bytes. # Valid values are 16 (most likely), 12 or 8. */ ############################################################################### ENTRY(aesni_gcm_enc_avx_gen4) GCM_ENC_DEC_AVX2 ENC ret ENDPROC(aesni_gcm_enc_avx_gen4) ############################################################################### #void aesni_gcm_dec_avx_gen4( # gcm_data *my_ctx_data, /* aligned to 16 Bytes */ # u8 *out, /* Plaintext output. Decrypt in-place is allowed. */ # const u8 *in, /* Ciphertext input */ # u64 plaintext_len, /* Length of data in Bytes for encryption. */ # u8 *iv, /* Pre-counter block j0: 4 byte salt # (from Security Association) concatenated with 8 byte # Initialisation Vector (from IPSec ESP Payload) # concatenated with 0x00000001. 16-byte aligned pointer. */ # const u8 *aad, /* Additional Authentication Data (AAD)*/ # u64 aad_len, /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */ # u8 *auth_tag, /* Authenticated Tag output. */ # u64 auth_tag_len)# /* Authenticated Tag Length in bytes. # Valid values are 16 (most likely), 12 or 8. */ ############################################################################### ENTRY(aesni_gcm_dec_avx_gen4) GCM_ENC_DEC_AVX2 DEC ret ENDPROC(aesni_gcm_dec_avx_gen4) #endif /* CONFIG_AS_AVX2 */