/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. */ #include #include #include #include #include #include #include /* Generic DMA mapping functions: */ /* * Allocate what Linux calls "coherent" memory. On TILEPro this is * uncached memory; on TILE-Gx it is hash-for-home memory. */ #ifdef __tilepro__ #define PAGE_HOME_DMA PAGE_HOME_UNCACHED #else #define PAGE_HOME_DMA PAGE_HOME_HASH #endif static void *tile_dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, struct dma_attrs *attrs) { u64 dma_mask = (dev && dev->coherent_dma_mask) ? dev->coherent_dma_mask : DMA_BIT_MASK(32); int node = dev ? dev_to_node(dev) : 0; int order = get_order(size); struct page *pg; dma_addr_t addr; gfp |= __GFP_ZERO; /* * If the mask specifies that the memory be in the first 4 GB, then * we force the allocation to come from the DMA zone. We also * force the node to 0 since that's the only node where the DMA * zone isn't empty. If the mask size is smaller than 32 bits, we * may still not be able to guarantee a suitable memory address, in * which case we will return NULL. But such devices are uncommon. */ if (dma_mask <= DMA_BIT_MASK(32)) { gfp |= GFP_DMA; node = 0; } pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA); if (pg == NULL) return NULL; addr = page_to_phys(pg); if (addr + size > dma_mask) { __homecache_free_pages(pg, order); return NULL; } *dma_handle = addr; return page_address(pg); } /* * Free memory that was allocated with tile_dma_alloc_coherent. */ static void tile_dma_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, struct dma_attrs *attrs) { homecache_free_pages((unsigned long)vaddr, get_order(size)); } /* * The map routines "map" the specified address range for DMA * accesses. The memory belongs to the device after this call is * issued, until it is unmapped with dma_unmap_single. * * We don't need to do any mapping, we just flush the address range * out of the cache and return a DMA address. * * The unmap routines do whatever is necessary before the processor * accesses the memory again, and must be called before the driver * touches the memory. We can get away with a cache invalidate if we * can count on nothing having been touched. */ /* Set up a single page for DMA access. */ static void __dma_prep_page(struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction) { /* * Flush the page from cache if necessary. * On tilegx, data is delivered to hash-for-home L3; on tilepro, * data is delivered direct to memory. * * NOTE: If we were just doing DMA_TO_DEVICE we could optimize * this to be a "flush" not a "finv" and keep some of the * state in cache across the DMA operation, but it doesn't seem * worth creating the necessary flush_buffer_xxx() infrastructure. */ int home = page_home(page); switch (home) { case PAGE_HOME_HASH: #ifdef __tilegx__ return; #endif break; case PAGE_HOME_UNCACHED: #ifdef __tilepro__ return; #endif break; case PAGE_HOME_IMMUTABLE: /* Should be going to the device only. */ BUG_ON(direction == DMA_FROM_DEVICE || direction == DMA_BIDIRECTIONAL); return; case PAGE_HOME_INCOHERENT: /* Incoherent anyway, so no need to work hard here. */ return; default: BUG_ON(home < 0 || home >= NR_CPUS); break; } homecache_finv_page(page); #ifdef DEBUG_ALIGNMENT /* Warn if the region isn't cacheline aligned. */ if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1))) pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n", PFN_PHYS(page_to_pfn(page)) + offset, size); #endif } /* Make the page ready to be read by the core. */ static void __dma_complete_page(struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction) { #ifdef __tilegx__ switch (page_home(page)) { case PAGE_HOME_HASH: /* I/O device delivered data the way the cpu wanted it. */ break; case PAGE_HOME_INCOHERENT: /* Incoherent anyway, so no need to work hard here. */ break; case PAGE_HOME_IMMUTABLE: /* Extra read-only copies are not a problem. */ break; default: /* Flush the bogus hash-for-home I/O entries to memory. */ homecache_finv_map_page(page, PAGE_HOME_HASH); break; } #endif } static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size, enum dma_data_direction direction) { struct page *page = pfn_to_page(PFN_DOWN(dma_addr)); unsigned long offset = dma_addr & (PAGE_SIZE - 1); size_t bytes = min(size, (size_t)(PAGE_SIZE - offset)); while (size != 0) { __dma_prep_page(page, offset, bytes, direction); size -= bytes; ++page; offset = 0; bytes = min((size_t)PAGE_SIZE, size); } } static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size, enum dma_data_direction direction) { struct page *page = pfn_to_page(PFN_DOWN(dma_addr)); unsigned long offset = dma_addr & (PAGE_SIZE - 1); size_t bytes = min(size, (size_t)(PAGE_SIZE - offset)); while (size != 0) { __dma_complete_page(page, offset, bytes, direction); size -= bytes; ++page; offset = 0; bytes = min((size_t)PAGE_SIZE, size); } } static int tile_dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction, struct dma_attrs *attrs) { struct scatterlist *sg; int i; BUG_ON(!valid_dma_direction(direction)); WARN_ON(nents == 0 || sglist->length == 0); for_each_sg(sglist, sg, nents, i) { sg->dma_address = sg_phys(sg); __dma_prep_pa_range(sg->dma_address, sg->length, direction); #ifdef CONFIG_NEED_SG_DMA_LENGTH sg->dma_length = sg->length; #endif } return nents; } static void tile_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction, struct dma_attrs *attrs) { struct scatterlist *sg; int i; BUG_ON(!valid_dma_direction(direction)); for_each_sg(sglist, sg, nents, i) { sg->dma_address = sg_phys(sg); __dma_complete_pa_range(sg->dma_address, sg->length, direction); } } static dma_addr_t tile_dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction, struct dma_attrs *attrs) { BUG_ON(!valid_dma_direction(direction)); BUG_ON(offset + size > PAGE_SIZE); __dma_prep_page(page, offset, size, direction); return page_to_pa(page) + offset; } static void tile_dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size, enum dma_data_direction direction, struct dma_attrs *attrs) { BUG_ON(!valid_dma_direction(direction)); __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)), dma_address & (PAGE_SIZE - 1), size, direction); } static void tile_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) { BUG_ON(!valid_dma_direction(direction)); __dma_complete_pa_range(dma_handle, size, direction); } static void tile_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) { __dma_prep_pa_range(dma_handle, size, direction); } static void tile_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction direction) { struct scatterlist *sg; int i; BUG_ON(!valid_dma_direction(direction)); WARN_ON(nelems == 0 || sglist->length == 0); for_each_sg(sglist, sg, nelems, i) { dma_sync_single_for_cpu(dev, sg->dma_address, sg_dma_len(sg), direction); } } static void tile_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction direction) { struct scatterlist *sg; int i; BUG_ON(!valid_dma_direction(direction)); WARN_ON(nelems == 0 || sglist->length == 0); for_each_sg(sglist, sg, nelems, i) { dma_sync_single_for_device(dev, sg->dma_address, sg_dma_len(sg), direction); } } static inline int tile_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) { return 0; } static inline int tile_dma_supported(struct device *dev, u64 mask) { return 1; } static struct dma_map_ops tile_default_dma_map_ops = { .alloc = tile_dma_alloc_coherent, .free = tile_dma_free_coherent, .map_page = tile_dma_map_page, .unmap_page = tile_dma_unmap_page, .map_sg = tile_dma_map_sg, .unmap_sg = tile_dma_unmap_sg, .sync_single_for_cpu = tile_dma_sync_single_for_cpu, .sync_single_for_device = tile_dma_sync_single_for_device, .sync_sg_for_cpu = tile_dma_sync_sg_for_cpu, .sync_sg_for_device = tile_dma_sync_sg_for_device, .mapping_error = tile_dma_mapping_error, .dma_supported = tile_dma_supported }; struct dma_map_ops *tile_dma_map_ops = &tile_default_dma_map_ops; EXPORT_SYMBOL(tile_dma_map_ops); /* Generic PCI DMA mapping functions */ static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, struct dma_attrs *attrs) { int node = dev_to_node(dev); int order = get_order(size); struct page *pg; dma_addr_t addr; gfp |= __GFP_ZERO; pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA); if (pg == NULL) return NULL; addr = page_to_phys(pg); *dma_handle = addr + get_dma_offset(dev); return page_address(pg); } /* * Free memory that was allocated with tile_pci_dma_alloc_coherent. */ static void tile_pci_dma_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, struct dma_attrs *attrs) { homecache_free_pages((unsigned long)vaddr, get_order(size)); } static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction, struct dma_attrs *attrs) { struct scatterlist *sg; int i; BUG_ON(!valid_dma_direction(direction)); WARN_ON(nents == 0 || sglist->length == 0); for_each_sg(sglist, sg, nents, i) { sg->dma_address = sg_phys(sg); __dma_prep_pa_range(sg->dma_address, sg->length, direction); sg->dma_address = sg->dma_address + get_dma_offset(dev); #ifdef CONFIG_NEED_SG_DMA_LENGTH sg->dma_length = sg->length; #endif } return nents; } static void tile_pci_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction, struct dma_attrs *attrs) { struct scatterlist *sg; int i; BUG_ON(!valid_dma_direction(direction)); for_each_sg(sglist, sg, nents, i) { sg->dma_address = sg_phys(sg); __dma_complete_pa_range(sg->dma_address, sg->length, direction); } } static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction, struct dma_attrs *attrs) { BUG_ON(!valid_dma_direction(direction)); BUG_ON(offset + size > PAGE_SIZE); __dma_prep_page(page, offset, size, direction); return page_to_pa(page) + offset + get_dma_offset(dev); } static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size, enum dma_data_direction direction, struct dma_attrs *attrs) { BUG_ON(!valid_dma_direction(direction)); dma_address -= get_dma_offset(dev); __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)), dma_address & (PAGE_SIZE - 1), size, direction); } static void tile_pci_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) { BUG_ON(!valid_dma_direction(direction)); dma_handle -= get_dma_offset(dev); __dma_complete_pa_range(dma_handle, size, direction); } static void tile_pci_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) { dma_handle -= get_dma_offset(dev); __dma_prep_pa_range(dma_handle, size, direction); } static void tile_pci_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction direction) { struct scatterlist *sg; int i; BUG_ON(!valid_dma_direction(direction)); WARN_ON(nelems == 0 || sglist->length == 0); for_each_sg(sglist, sg, nelems, i) { dma_sync_single_for_cpu(dev, sg->dma_address, sg_dma_len(sg), direction); } } static void tile_pci_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction direction) { struct scatterlist *sg; int i; BUG_ON(!valid_dma_direction(direction)); WARN_ON(nelems == 0 || sglist->length == 0); for_each_sg(sglist, sg, nelems, i) { dma_sync_single_for_device(dev, sg->dma_address, sg_dma_len(sg), direction); } } static inline int tile_pci_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) { return 0; } static inline int tile_pci_dma_supported(struct device *dev, u64 mask) { return 1; } static struct dma_map_ops tile_pci_default_dma_map_ops = { .alloc = tile_pci_dma_alloc_coherent, .free = tile_pci_dma_free_coherent, .map_page = tile_pci_dma_map_page, .unmap_page = tile_pci_dma_unmap_page, .map_sg = tile_pci_dma_map_sg, .unmap_sg = tile_pci_dma_unmap_sg, .sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu, .sync_single_for_device = tile_pci_dma_sync_single_for_device, .sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu, .sync_sg_for_device = tile_pci_dma_sync_sg_for_device, .mapping_error = tile_pci_dma_mapping_error, .dma_supported = tile_pci_dma_supported }; struct dma_map_ops *gx_pci_dma_map_ops = &tile_pci_default_dma_map_ops; EXPORT_SYMBOL(gx_pci_dma_map_ops); /* PCI DMA mapping functions for legacy PCI devices */ #ifdef CONFIG_SWIOTLB static void *tile_swiotlb_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, struct dma_attrs *attrs) { gfp |= GFP_DMA; return swiotlb_alloc_coherent(dev, size, dma_handle, gfp); } static void tile_swiotlb_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_addr, struct dma_attrs *attrs) { swiotlb_free_coherent(dev, size, vaddr, dma_addr); } static struct dma_map_ops pci_swiotlb_dma_ops = { .alloc = tile_swiotlb_alloc_coherent, .free = tile_swiotlb_free_coherent, .map_page = swiotlb_map_page, .unmap_page = swiotlb_unmap_page, .map_sg = swiotlb_map_sg_attrs, .unmap_sg = swiotlb_unmap_sg_attrs, .sync_single_for_cpu = swiotlb_sync_single_for_cpu, .sync_single_for_device = swiotlb_sync_single_for_device, .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu, .sync_sg_for_device = swiotlb_sync_sg_for_device, .dma_supported = swiotlb_dma_supported, .mapping_error = swiotlb_dma_mapping_error, }; static struct dma_map_ops pci_hybrid_dma_ops = { .alloc = tile_swiotlb_alloc_coherent, .free = tile_swiotlb_free_coherent, .map_page = tile_pci_dma_map_page, .unmap_page = tile_pci_dma_unmap_page, .map_sg = tile_pci_dma_map_sg, .unmap_sg = tile_pci_dma_unmap_sg, .sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu, .sync_single_for_device = tile_pci_dma_sync_single_for_device, .sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu, .sync_sg_for_device = tile_pci_dma_sync_sg_for_device, .mapping_error = tile_pci_dma_mapping_error, .dma_supported = tile_pci_dma_supported }; struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops; struct dma_map_ops *gx_hybrid_pci_dma_map_ops = &pci_hybrid_dma_ops; #else struct dma_map_ops *gx_legacy_pci_dma_map_ops; struct dma_map_ops *gx_hybrid_pci_dma_map_ops; #endif EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops); EXPORT_SYMBOL(gx_hybrid_pci_dma_map_ops); #ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK int dma_set_coherent_mask(struct device *dev, u64 mask) { struct dma_map_ops *dma_ops = get_dma_ops(dev); /* * For PCI devices with 64-bit DMA addressing capability, promote * the dma_ops to full capability for both streams and consistent * memory access. For 32-bit capable devices, limit the consistent * memory DMA range to max_direct_dma_addr. */ if (dma_ops == gx_pci_dma_map_ops || dma_ops == gx_hybrid_pci_dma_map_ops || dma_ops == gx_legacy_pci_dma_map_ops) { if (mask == DMA_BIT_MASK(64)) set_dma_ops(dev, gx_pci_dma_map_ops); else if (mask > dev->archdata.max_direct_dma_addr) mask = dev->archdata.max_direct_dma_addr; } if (!dma_supported(dev, mask)) return -EIO; dev->coherent_dma_mask = mask; return 0; } EXPORT_SYMBOL(dma_set_coherent_mask); #endif #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK /* * The generic dma_get_required_mask() uses the highest physical address * (max_pfn) to provide the hint to the PCI drivers regarding 32-bit or * 64-bit DMA configuration. Since TILEGx has I/O TLB/MMU, allowing the * DMAs to use the full 64-bit PCI address space and not limited by * the physical memory space, we always let the PCI devices use * 64-bit DMA if they have that capability, by returning the 64-bit * DMA mask here. The device driver has the option to use 32-bit DMA if * the device is not capable of 64-bit DMA. */ u64 dma_get_required_mask(struct device *dev) { return DMA_BIT_MASK(64); } EXPORT_SYMBOL_GPL(dma_get_required_mask); #endif