/* smp.c: Sparc SMP support. * * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include volatile int smp_processors_ready = 0; int smp_num_cpus = 1; volatile unsigned long cpu_callin_map[NR_CPUS] __initdata = {0,}; unsigned char boot_cpu_id = 0; unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */ int smp_activated = 0; volatile int __cpu_number_map[NR_CPUS]; volatile int __cpu_logical_map[NR_CPUS]; cpumask_t cpu_online_map = CPU_MASK_NONE; cpumask_t phys_cpu_present_map = CPU_MASK_NONE; cpumask_t smp_commenced_mask = CPU_MASK_NONE; /* The only guaranteed locking primitive available on all Sparc * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically * places the current byte at the effective address into dest_reg and * places 0xff there afterwards. Pretty lame locking primitive * compared to the Alpha and the Intel no? Most Sparcs have 'swap' * instruction which is much better... */ /* Used to make bitops atomic */ unsigned char bitops_spinlock = 0; void __init smp_store_cpu_info(int id) { int cpu_node; cpu_data(id).udelay_val = loops_per_jiffy; cpu_find_by_mid(id, &cpu_node); cpu_data(id).clock_tick = prom_getintdefault(cpu_node, "clock-frequency", 0); cpu_data(id).prom_node = cpu_node; cpu_data(id).mid = cpu_get_hwmid(cpu_node); if (cpu_data(id).mid < 0) panic("No MID found for CPU%d at node 0x%08d", id, cpu_node); } void __init smp_cpus_done(unsigned int max_cpus) { extern void smp4m_smp_done(void); unsigned long bogosum = 0; int cpu, num; for (cpu = 0, num = 0; cpu < NR_CPUS; cpu++) if (cpu_online(cpu)) { num++; bogosum += cpu_data(cpu).udelay_val; } printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n", num, bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); BUG_ON(sparc_cpu_model != sun4m); smp4m_smp_done(); } void cpu_panic(void) { printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); panic("SMP bolixed\n"); } struct linux_prom_registers smp_penguin_ctable __initdata = { 0 }; void smp_send_reschedule(int cpu) { /* See sparc64 */ } void smp_send_stop(void) { } void smp_flush_cache_all(void) { xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all)); local_flush_cache_all(); } void smp_flush_tlb_all(void) { xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all)); local_flush_tlb_all(); } void smp_flush_cache_mm(struct mm_struct *mm) { if(mm->context != NO_CONTEXT) { cpumask_t cpu_mask = mm->cpu_vm_mask; cpu_clear(smp_processor_id(), cpu_mask); if (!cpus_empty(cpu_mask)) xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm); local_flush_cache_mm(mm); } } void smp_flush_tlb_mm(struct mm_struct *mm) { if(mm->context != NO_CONTEXT) { cpumask_t cpu_mask = mm->cpu_vm_mask; cpu_clear(smp_processor_id(), cpu_mask); if (!cpus_empty(cpu_mask)) { xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm); if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm) mm->cpu_vm_mask = cpumask_of_cpu(smp_processor_id()); } local_flush_tlb_mm(mm); } } void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; if (mm->context != NO_CONTEXT) { cpumask_t cpu_mask = mm->cpu_vm_mask; cpu_clear(smp_processor_id(), cpu_mask); if (!cpus_empty(cpu_mask)) xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end); local_flush_cache_range(vma, start, end); } } void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; if (mm->context != NO_CONTEXT) { cpumask_t cpu_mask = mm->cpu_vm_mask; cpu_clear(smp_processor_id(), cpu_mask); if (!cpus_empty(cpu_mask)) xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end); local_flush_tlb_range(vma, start, end); } } void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; if(mm->context != NO_CONTEXT) { cpumask_t cpu_mask = mm->cpu_vm_mask; cpu_clear(smp_processor_id(), cpu_mask); if (!cpus_empty(cpu_mask)) xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page); local_flush_cache_page(vma, page); } } void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; if(mm->context != NO_CONTEXT) { cpumask_t cpu_mask = mm->cpu_vm_mask; cpu_clear(smp_processor_id(), cpu_mask); if (!cpus_empty(cpu_mask)) xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page); local_flush_tlb_page(vma, page); } } void smp_reschedule_irq(void) { set_need_resched(); } void smp_flush_page_to_ram(unsigned long page) { /* Current theory is that those who call this are the one's * who have just dirtied their cache with the pages contents * in kernel space, therefore we only run this on local cpu. * * XXX This experiment failed, research further... -DaveM */ #if 1 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page); #endif local_flush_page_to_ram(page); } void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) { cpumask_t cpu_mask = mm->cpu_vm_mask; cpu_clear(smp_processor_id(), cpu_mask); if (!cpus_empty(cpu_mask)) xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr); local_flush_sig_insns(mm, insn_addr); } extern unsigned int lvl14_resolution; /* /proc/profile writes can call this, don't __init it please. */ static DEFINE_SPINLOCK(prof_setup_lock); int setup_profiling_timer(unsigned int multiplier) { int i; unsigned long flags; /* Prevent level14 ticker IRQ flooding. */ if((!multiplier) || (lvl14_resolution / multiplier) < 500) return -EINVAL; spin_lock_irqsave(&prof_setup_lock, flags); for_each_possible_cpu(i) { load_profile_irq(i, lvl14_resolution / multiplier); prof_multiplier(i) = multiplier; } spin_unlock_irqrestore(&prof_setup_lock, flags); return 0; } void __init smp_prepare_cpus(unsigned int max_cpus) { extern void smp4m_boot_cpus(void); int i, cpuid, ncpus, extra; BUG_ON(sparc_cpu_model != sun4m); printk("Entering SMP Mode...\n"); ncpus = 1; extra = 0; for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) { if (cpuid == boot_cpu_id) continue; if (cpuid < NR_CPUS && ncpus++ < max_cpus) cpu_set(cpuid, phys_cpu_present_map); else extra++; } if (max_cpus >= NR_CPUS && extra) printk("Warning: NR_CPUS is too low to start all cpus\n"); smp_store_cpu_info(boot_cpu_id); smp4m_boot_cpus(); } void __devinit smp_prepare_boot_cpu(void) { int cpuid = hard_smp_processor_id(); if (cpuid >= NR_CPUS) { prom_printf("Serious problem, boot cpu id >= NR_CPUS\n"); prom_halt(); } if (cpuid != 0) printk("boot cpu id != 0, this could work but is untested\n"); current_thread_info()->cpu = cpuid; cpu_set(cpuid, cpu_online_map); cpu_set(cpuid, phys_cpu_present_map); } int __devinit __cpu_up(unsigned int cpu) { extern int smp4m_boot_one_cpu(int); int ret; ret = smp4m_boot_one_cpu(cpu); if (!ret) { cpu_set(cpu, smp_commenced_mask); while (!cpu_online(cpu)) mb(); } return ret; } void smp_bogo(struct seq_file *m) { int i; for_each_online_cpu(i) { seq_printf(m, "Cpu%dBogo\t: %lu.%02lu\n", i, cpu_data(i).udelay_val/(500000/HZ), (cpu_data(i).udelay_val/(5000/HZ))%100); } } void smp_info(struct seq_file *m) { int i; seq_printf(m, "State:\n"); for_each_online_cpu(i) seq_printf(m, "CPU%d\t\t: online\n", i); }