/* pci_common.c: PCI controller common support. * * Copyright (C) 1999, 2007 David S. Miller (davem@davemloft.net) */ #include #include #include #include #include #include #include #include "pci_impl.h" #include "pci_sun4v.h" static int config_out_of_range(struct pci_pbm_info *pbm, unsigned long bus, unsigned long devfn, unsigned long reg) { if (bus < pbm->pci_first_busno || bus > pbm->pci_last_busno) return 1; return 0; } static void *sun4u_config_mkaddr(struct pci_pbm_info *pbm, unsigned long bus, unsigned long devfn, unsigned long reg) { unsigned long rbits = pbm->config_space_reg_bits; if (config_out_of_range(pbm, bus, devfn, reg)) return NULL; reg = (reg & ((1 << rbits) - 1)); devfn <<= rbits; bus <<= rbits + 8; return (void *) (pbm->config_space | bus | devfn | reg); } /* At least on Sabre, it is necessary to access all PCI host controller * registers at their natural size, otherwise zeros are returned. * Strange but true, and I see no language in the UltraSPARC-IIi * programmer's manual that mentions this even indirectly. */ static int sun4u_read_pci_cfg_host(struct pci_pbm_info *pbm, unsigned char bus, unsigned int devfn, int where, int size, u32 *value) { u32 tmp32, *addr; u16 tmp16; u8 tmp8; addr = sun4u_config_mkaddr(pbm, bus, devfn, where); if (!addr) return PCIBIOS_SUCCESSFUL; switch (size) { case 1: if (where < 8) { unsigned long align = (unsigned long) addr; align &= ~1; pci_config_read16((u16 *)align, &tmp16); if (where & 1) *value = tmp16 >> 8; else *value = tmp16 & 0xff; } else { pci_config_read8((u8 *)addr, &tmp8); *value = (u32) tmp8; } break; case 2: if (where < 8) { pci_config_read16((u16 *)addr, &tmp16); *value = (u32) tmp16; } else { pci_config_read8((u8 *)addr, &tmp8); *value = (u32) tmp8; pci_config_read8(((u8 *)addr) + 1, &tmp8); *value |= ((u32) tmp8) << 8; } break; case 4: tmp32 = 0xffffffff; sun4u_read_pci_cfg_host(pbm, bus, devfn, where, 2, &tmp32); *value = tmp32; tmp32 = 0xffffffff; sun4u_read_pci_cfg_host(pbm, bus, devfn, where + 2, 2, &tmp32); *value |= tmp32 << 16; break; } return PCIBIOS_SUCCESSFUL; } static int sun4u_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn, int where, int size, u32 *value) { struct pci_pbm_info *pbm = bus_dev->sysdata; unsigned char bus = bus_dev->number; u32 *addr; u16 tmp16; u8 tmp8; switch (size) { case 1: *value = 0xff; break; case 2: *value = 0xffff; break; case 4: *value = 0xffffffff; break; } if (!bus_dev->number && !PCI_SLOT(devfn)) return sun4u_read_pci_cfg_host(pbm, bus, devfn, where, size, value); addr = sun4u_config_mkaddr(pbm, bus, devfn, where); if (!addr) return PCIBIOS_SUCCESSFUL; switch (size) { case 1: pci_config_read8((u8 *)addr, &tmp8); *value = (u32) tmp8; break; case 2: if (where & 0x01) { printk("pci_read_config_word: misaligned reg [%x]\n", where); return PCIBIOS_SUCCESSFUL; } pci_config_read16((u16 *)addr, &tmp16); *value = (u32) tmp16; break; case 4: if (where & 0x03) { printk("pci_read_config_dword: misaligned reg [%x]\n", where); return PCIBIOS_SUCCESSFUL; } pci_config_read32(addr, value); break; } return PCIBIOS_SUCCESSFUL; } static int sun4u_write_pci_cfg_host(struct pci_pbm_info *pbm, unsigned char bus, unsigned int devfn, int where, int size, u32 value) { u32 *addr; addr = sun4u_config_mkaddr(pbm, bus, devfn, where); if (!addr) return PCIBIOS_SUCCESSFUL; switch (size) { case 1: if (where < 8) { unsigned long align = (unsigned long) addr; u16 tmp16; align &= ~1; pci_config_read16((u16 *)align, &tmp16); if (where & 1) { tmp16 &= 0x00ff; tmp16 |= value << 8; } else { tmp16 &= 0xff00; tmp16 |= value; } pci_config_write16((u16 *)align, tmp16); } else pci_config_write8((u8 *)addr, value); break; case 2: if (where < 8) { pci_config_write16((u16 *)addr, value); } else { pci_config_write8((u8 *)addr, value & 0xff); pci_config_write8(((u8 *)addr) + 1, value >> 8); } break; case 4: sun4u_write_pci_cfg_host(pbm, bus, devfn, where, 2, value & 0xffff); sun4u_write_pci_cfg_host(pbm, bus, devfn, where + 2, 2, value >> 16); break; } return PCIBIOS_SUCCESSFUL; } static int sun4u_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn, int where, int size, u32 value) { struct pci_pbm_info *pbm = bus_dev->sysdata; unsigned char bus = bus_dev->number; u32 *addr; if (!bus_dev->number && !PCI_SLOT(devfn)) return sun4u_write_pci_cfg_host(pbm, bus, devfn, where, size, value); addr = sun4u_config_mkaddr(pbm, bus, devfn, where); if (!addr) return PCIBIOS_SUCCESSFUL; switch (size) { case 1: pci_config_write8((u8 *)addr, value); break; case 2: if (where & 0x01) { printk("pci_write_config_word: misaligned reg [%x]\n", where); return PCIBIOS_SUCCESSFUL; } pci_config_write16((u16 *)addr, value); break; case 4: if (where & 0x03) { printk("pci_write_config_dword: misaligned reg [%x]\n", where); return PCIBIOS_SUCCESSFUL; } pci_config_write32(addr, value); } return PCIBIOS_SUCCESSFUL; } struct pci_ops sun4u_pci_ops = { .read = sun4u_read_pci_cfg, .write = sun4u_write_pci_cfg, }; static int sun4v_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn, int where, int size, u32 *value) { struct pci_pbm_info *pbm = bus_dev->sysdata; u32 devhandle = pbm->devhandle; unsigned int bus = bus_dev->number; unsigned int device = PCI_SLOT(devfn); unsigned int func = PCI_FUNC(devfn); unsigned long ret; if (config_out_of_range(pbm, bus, devfn, where)) { ret = ~0UL; } else { ret = pci_sun4v_config_get(devhandle, HV_PCI_DEVICE_BUILD(bus, device, func), where, size); } switch (size) { case 1: *value = ret & 0xff; break; case 2: *value = ret & 0xffff; break; case 4: *value = ret & 0xffffffff; break; } return PCIBIOS_SUCCESSFUL; } static int sun4v_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn, int where, int size, u32 value) { struct pci_pbm_info *pbm = bus_dev->sysdata; u32 devhandle = pbm->devhandle; unsigned int bus = bus_dev->number; unsigned int device = PCI_SLOT(devfn); unsigned int func = PCI_FUNC(devfn); if (config_out_of_range(pbm, bus, devfn, where)) { /* Do nothing. */ } else { /* We don't check for hypervisor errors here, but perhaps * we should and influence our return value depending upon * what kind of error is thrown. */ pci_sun4v_config_put(devhandle, HV_PCI_DEVICE_BUILD(bus, device, func), where, size, value); } return PCIBIOS_SUCCESSFUL; } struct pci_ops sun4v_pci_ops = { .read = sun4v_read_pci_cfg, .write = sun4v_write_pci_cfg, }; void pci_get_pbm_props(struct pci_pbm_info *pbm) { const u32 *val = of_get_property(pbm->op->dev.of_node, "bus-range", NULL); pbm->pci_first_busno = val[0]; pbm->pci_last_busno = val[1]; val = of_get_property(pbm->op->dev.of_node, "ino-bitmap", NULL); if (val) { pbm->ino_bitmap = (((u64)val[1] << 32UL) | ((u64)val[0] << 0UL)); } } static void pci_register_legacy_regions(struct resource *io_res, struct resource *mem_res) { struct resource *p; /* VGA Video RAM. */ p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) return; p->name = "Video RAM area"; p->start = mem_res->start + 0xa0000UL; p->end = p->start + 0x1ffffUL; p->flags = IORESOURCE_BUSY; request_resource(mem_res, p); p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) return; p->name = "System ROM"; p->start = mem_res->start + 0xf0000UL; p->end = p->start + 0xffffUL; p->flags = IORESOURCE_BUSY; request_resource(mem_res, p); p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) return; p->name = "Video ROM"; p->start = mem_res->start + 0xc0000UL; p->end = p->start + 0x7fffUL; p->flags = IORESOURCE_BUSY; request_resource(mem_res, p); } static void pci_register_iommu_region(struct pci_pbm_info *pbm) { const u32 *vdma = of_get_property(pbm->op->dev.of_node, "virtual-dma", NULL); if (vdma) { struct resource *rp = kzalloc(sizeof(*rp), GFP_KERNEL); if (!rp) { pr_info("%s: Cannot allocate IOMMU resource.\n", pbm->name); return; } rp->name = "IOMMU"; rp->start = pbm->mem_space.start + (unsigned long) vdma[0]; rp->end = rp->start + (unsigned long) vdma[1] - 1UL; rp->flags = IORESOURCE_BUSY; if (request_resource(&pbm->mem_space, rp)) { pr_info("%s: Unable to request IOMMU resource.\n", pbm->name); kfree(rp); } } } void pci_determine_mem_io_space(struct pci_pbm_info *pbm) { const struct linux_prom_pci_ranges *pbm_ranges; int i, saw_mem, saw_io; int num_pbm_ranges; saw_mem = saw_io = 0; pbm_ranges = of_get_property(pbm->op->dev.of_node, "ranges", &i); if (!pbm_ranges) { prom_printf("PCI: Fatal error, missing PBM ranges property " " for %s\n", pbm->name); prom_halt(); } num_pbm_ranges = i / sizeof(*pbm_ranges); for (i = 0; i < num_pbm_ranges; i++) { const struct linux_prom_pci_ranges *pr = &pbm_ranges[i]; unsigned long a, size; u32 parent_phys_hi, parent_phys_lo; u32 size_hi, size_lo; int type; parent_phys_hi = pr->parent_phys_hi; parent_phys_lo = pr->parent_phys_lo; if (tlb_type == hypervisor) parent_phys_hi &= 0x0fffffff; size_hi = pr->size_hi; size_lo = pr->size_lo; type = (pr->child_phys_hi >> 24) & 0x3; a = (((unsigned long)parent_phys_hi << 32UL) | ((unsigned long)parent_phys_lo << 0UL)); size = (((unsigned long)size_hi << 32UL) | ((unsigned long)size_lo << 0UL)); switch (type) { case 0: /* PCI config space, 16MB */ pbm->config_space = a; break; case 1: /* 16-bit IO space, 16MB */ pbm->io_space.start = a; pbm->io_space.end = a + size - 1UL; pbm->io_space.flags = IORESOURCE_IO; saw_io = 1; break; case 2: /* 32-bit MEM space, 2GB */ pbm->mem_space.start = a; pbm->mem_space.end = a + size - 1UL; pbm->mem_space.flags = IORESOURCE_MEM; saw_mem = 1; break; case 3: /* XXX 64-bit MEM handling XXX */ default: break; } } if (!saw_io || !saw_mem) { prom_printf("%s: Fatal error, missing %s PBM range.\n", pbm->name, (!saw_io ? "IO" : "MEM")); prom_halt(); } printk("%s: PCI IO[%llx] MEM[%llx]\n", pbm->name, pbm->io_space.start, pbm->mem_space.start); pbm->io_space.name = pbm->mem_space.name = pbm->name; request_resource(&ioport_resource, &pbm->io_space); request_resource(&iomem_resource, &pbm->mem_space); pci_register_legacy_regions(&pbm->io_space, &pbm->mem_space); pci_register_iommu_region(pbm); } /* Generic helper routines for PCI error reporting. */ void pci_scan_for_target_abort(struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct pci_dev *pdev; struct pci_bus *bus; list_for_each_entry(pdev, &pbus->devices, bus_list) { u16 status, error_bits; pci_read_config_word(pdev, PCI_STATUS, &status); error_bits = (status & (PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_REC_TARGET_ABORT)); if (error_bits) { pci_write_config_word(pdev, PCI_STATUS, error_bits); printk("%s: Device %s saw Target Abort [%016x]\n", pbm->name, pci_name(pdev), status); } } list_for_each_entry(bus, &pbus->children, node) pci_scan_for_target_abort(pbm, bus); } void pci_scan_for_master_abort(struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct pci_dev *pdev; struct pci_bus *bus; list_for_each_entry(pdev, &pbus->devices, bus_list) { u16 status, error_bits; pci_read_config_word(pdev, PCI_STATUS, &status); error_bits = (status & (PCI_STATUS_REC_MASTER_ABORT)); if (error_bits) { pci_write_config_word(pdev, PCI_STATUS, error_bits); printk("%s: Device %s received Master Abort [%016x]\n", pbm->name, pci_name(pdev), status); } } list_for_each_entry(bus, &pbus->children, node) pci_scan_for_master_abort(pbm, bus); } void pci_scan_for_parity_error(struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct pci_dev *pdev; struct pci_bus *bus; list_for_each_entry(pdev, &pbus->devices, bus_list) { u16 status, error_bits; pci_read_config_word(pdev, PCI_STATUS, &status); error_bits = (status & (PCI_STATUS_PARITY | PCI_STATUS_DETECTED_PARITY)); if (error_bits) { pci_write_config_word(pdev, PCI_STATUS, error_bits); printk("%s: Device %s saw Parity Error [%016x]\n", pbm->name, pci_name(pdev), status); } } list_for_each_entry(bus, &pbus->children, node) pci_scan_for_parity_error(pbm, bus); }