/* * Copyright IBM Corp. 2012 * * Author(s): * Jan Glauber */ #include #include #include #include #include #include #include #include static struct kmem_cache *dma_region_table_cache; static struct kmem_cache *dma_page_table_cache; static int s390_iommu_strict; static int zpci_refresh_global(struct zpci_dev *zdev) { return zpci_refresh_trans((u64) zdev->fh << 32, zdev->start_dma, zdev->iommu_pages * PAGE_SIZE); } static unsigned long *dma_alloc_cpu_table(void) { unsigned long *table, *entry; table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC); if (!table) return NULL; for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++) *entry = ZPCI_TABLE_INVALID | ZPCI_TABLE_PROTECTED; return table; } static void dma_free_cpu_table(void *table) { kmem_cache_free(dma_region_table_cache, table); } static unsigned long *dma_alloc_page_table(void) { unsigned long *table, *entry; table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC); if (!table) return NULL; for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++) *entry = ZPCI_PTE_INVALID | ZPCI_TABLE_PROTECTED; return table; } static void dma_free_page_table(void *table) { kmem_cache_free(dma_page_table_cache, table); } static unsigned long *dma_get_seg_table_origin(unsigned long *entry) { unsigned long *sto; if (reg_entry_isvalid(*entry)) sto = get_rt_sto(*entry); else { sto = dma_alloc_cpu_table(); if (!sto) return NULL; set_rt_sto(entry, sto); validate_rt_entry(entry); entry_clr_protected(entry); } return sto; } static unsigned long *dma_get_page_table_origin(unsigned long *entry) { unsigned long *pto; if (reg_entry_isvalid(*entry)) pto = get_st_pto(*entry); else { pto = dma_alloc_page_table(); if (!pto) return NULL; set_st_pto(entry, pto); validate_st_entry(entry); entry_clr_protected(entry); } return pto; } static unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr) { unsigned long *sto, *pto; unsigned int rtx, sx, px; rtx = calc_rtx(dma_addr); sto = dma_get_seg_table_origin(&rto[rtx]); if (!sto) return NULL; sx = calc_sx(dma_addr); pto = dma_get_page_table_origin(&sto[sx]); if (!pto) return NULL; px = calc_px(dma_addr); return &pto[px]; } static void dma_update_cpu_trans(struct zpci_dev *zdev, void *page_addr, dma_addr_t dma_addr, int flags) { unsigned long *entry; entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr); if (!entry) { WARN_ON_ONCE(1); return; } if (flags & ZPCI_PTE_INVALID) { invalidate_pt_entry(entry); return; } else { set_pt_pfaa(entry, page_addr); validate_pt_entry(entry); } if (flags & ZPCI_TABLE_PROTECTED) entry_set_protected(entry); else entry_clr_protected(entry); } static int dma_update_trans(struct zpci_dev *zdev, unsigned long pa, dma_addr_t dma_addr, size_t size, int flags) { unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; u8 *page_addr = (u8 *) (pa & PAGE_MASK); dma_addr_t start_dma_addr = dma_addr; unsigned long irq_flags; int i, rc = 0; if (!nr_pages) return -EINVAL; spin_lock_irqsave(&zdev->dma_table_lock, irq_flags); if (!zdev->dma_table) goto no_refresh; for (i = 0; i < nr_pages; i++) { dma_update_cpu_trans(zdev, page_addr, dma_addr, flags); page_addr += PAGE_SIZE; dma_addr += PAGE_SIZE; } /* * With zdev->tlb_refresh == 0, rpcit is not required to establish new * translations when previously invalid translation-table entries are * validated. With lazy unmap, it also is skipped for previously valid * entries, but a global rpcit is then required before any address can * be re-used, i.e. after each iommu bitmap wrap-around. */ if (!zdev->tlb_refresh && (!s390_iommu_strict || ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID))) goto no_refresh; rc = zpci_refresh_trans((u64) zdev->fh << 32, start_dma_addr, nr_pages * PAGE_SIZE); no_refresh: spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags); return rc; } static void dma_free_seg_table(unsigned long entry) { unsigned long *sto = get_rt_sto(entry); int sx; for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++) if (reg_entry_isvalid(sto[sx])) dma_free_page_table(get_st_pto(sto[sx])); dma_free_cpu_table(sto); } static void dma_cleanup_tables(struct zpci_dev *zdev) { unsigned long *table; int rtx; if (!zdev || !zdev->dma_table) return; table = zdev->dma_table; for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++) if (reg_entry_isvalid(table[rtx])) dma_free_seg_table(table[rtx]); dma_free_cpu_table(table); zdev->dma_table = NULL; } static unsigned long __dma_alloc_iommu(struct zpci_dev *zdev, unsigned long start, int size) { unsigned long boundary_size; boundary_size = ALIGN(dma_get_seg_boundary(&zdev->pdev->dev) + 1, PAGE_SIZE) >> PAGE_SHIFT; return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages, start, size, 0, boundary_size, 0); } static unsigned long dma_alloc_iommu(struct zpci_dev *zdev, int size) { unsigned long offset, flags; int wrap = 0; spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags); offset = __dma_alloc_iommu(zdev, zdev->next_bit, size); if (offset == -1) { /* wrap-around */ offset = __dma_alloc_iommu(zdev, 0, size); wrap = 1; } if (offset != -1) { zdev->next_bit = offset + size; if (!zdev->tlb_refresh && !s390_iommu_strict && wrap) /* global flush after wrap-around with lazy unmap */ zpci_refresh_global(zdev); } spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags); return offset; } static void dma_free_iommu(struct zpci_dev *zdev, unsigned long offset, int size) { unsigned long flags; spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags); if (!zdev->iommu_bitmap) goto out; bitmap_clear(zdev->iommu_bitmap, offset, size); /* * Lazy flush for unmap: need to move next_bit to avoid address re-use * until wrap-around. */ if (!s390_iommu_strict && offset >= zdev->next_bit) zdev->next_bit = offset + size; out: spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags); } int dma_set_mask(struct device *dev, u64 mask) { if (!dev->dma_mask || !dma_supported(dev, mask)) return -EIO; *dev->dma_mask = mask; return 0; } EXPORT_SYMBOL_GPL(dma_set_mask); static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction, struct dma_attrs *attrs) { struct zpci_dev *zdev = get_zdev(to_pci_dev(dev)); unsigned long nr_pages, iommu_page_index; unsigned long pa = page_to_phys(page) + offset; int flags = ZPCI_PTE_VALID; dma_addr_t dma_addr; /* This rounds up number of pages based on size and offset */ nr_pages = iommu_num_pages(pa, size, PAGE_SIZE); iommu_page_index = dma_alloc_iommu(zdev, nr_pages); if (iommu_page_index == -1) goto out_err; /* Use rounded up size */ size = nr_pages * PAGE_SIZE; dma_addr = zdev->start_dma + iommu_page_index * PAGE_SIZE; if (dma_addr + size > zdev->end_dma) goto out_free; if (direction == DMA_NONE || direction == DMA_TO_DEVICE) flags |= ZPCI_TABLE_PROTECTED; if (!dma_update_trans(zdev, pa, dma_addr, size, flags)) { atomic64_add(nr_pages, &zdev->fmb->mapped_pages); return dma_addr + (offset & ~PAGE_MASK); } out_free: dma_free_iommu(zdev, iommu_page_index, nr_pages); out_err: zpci_err("map error:\n"); zpci_err_hex(&pa, sizeof(pa)); return DMA_ERROR_CODE; } static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction direction, struct dma_attrs *attrs) { struct zpci_dev *zdev = get_zdev(to_pci_dev(dev)); unsigned long iommu_page_index; int npages; npages = iommu_num_pages(dma_addr, size, PAGE_SIZE); dma_addr = dma_addr & PAGE_MASK; if (dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE, ZPCI_TABLE_PROTECTED | ZPCI_PTE_INVALID)) { zpci_err("unmap error:\n"); zpci_err_hex(&dma_addr, sizeof(dma_addr)); } atomic64_add(npages, &zdev->fmb->unmapped_pages); iommu_page_index = (dma_addr - zdev->start_dma) >> PAGE_SHIFT; dma_free_iommu(zdev, iommu_page_index, npages); } static void *s390_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, struct dma_attrs *attrs) { struct zpci_dev *zdev = get_zdev(to_pci_dev(dev)); struct page *page; unsigned long pa; dma_addr_t map; size = PAGE_ALIGN(size); page = alloc_pages(flag, get_order(size)); if (!page) return NULL; pa = page_to_phys(page); memset((void *) pa, 0, size); map = s390_dma_map_pages(dev, page, pa % PAGE_SIZE, size, DMA_BIDIRECTIONAL, NULL); if (dma_mapping_error(dev, map)) { free_pages(pa, get_order(size)); return NULL; } atomic64_add(size / PAGE_SIZE, &zdev->fmb->allocated_pages); if (dma_handle) *dma_handle = map; return (void *) pa; } static void s390_dma_free(struct device *dev, size_t size, void *pa, dma_addr_t dma_handle, struct dma_attrs *attrs) { struct zpci_dev *zdev = get_zdev(to_pci_dev(dev)); size = PAGE_ALIGN(size); atomic64_sub(size / PAGE_SIZE, &zdev->fmb->allocated_pages); s390_dma_unmap_pages(dev, dma_handle, size, DMA_BIDIRECTIONAL, NULL); free_pages((unsigned long) pa, get_order(size)); } static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg, int nr_elements, enum dma_data_direction dir, struct dma_attrs *attrs) { int mapped_elements = 0; struct scatterlist *s; int i; for_each_sg(sg, s, nr_elements, i) { struct page *page = sg_page(s); s->dma_address = s390_dma_map_pages(dev, page, s->offset, s->length, dir, NULL); if (!dma_mapping_error(dev, s->dma_address)) { s->dma_length = s->length; mapped_elements++; } else goto unmap; } out: return mapped_elements; unmap: for_each_sg(sg, s, mapped_elements, i) { if (s->dma_address) s390_dma_unmap_pages(dev, s->dma_address, s->dma_length, dir, NULL); s->dma_address = 0; s->dma_length = 0; } mapped_elements = 0; goto out; } static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nr_elements, enum dma_data_direction dir, struct dma_attrs *attrs) { struct scatterlist *s; int i; for_each_sg(sg, s, nr_elements, i) { s390_dma_unmap_pages(dev, s->dma_address, s->dma_length, dir, NULL); s->dma_address = 0; s->dma_length = 0; } } int zpci_dma_init_device(struct zpci_dev *zdev) { int rc; spin_lock_init(&zdev->iommu_bitmap_lock); spin_lock_init(&zdev->dma_table_lock); zdev->dma_table = dma_alloc_cpu_table(); if (!zdev->dma_table) { rc = -ENOMEM; goto out_clean; } zdev->iommu_size = (unsigned long) high_memory - PAGE_OFFSET; zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT; zdev->iommu_bitmap = vzalloc(zdev->iommu_pages / 8); if (!zdev->iommu_bitmap) { rc = -ENOMEM; goto out_reg; } rc = zpci_register_ioat(zdev, 0, zdev->start_dma + PAGE_OFFSET, zdev->start_dma + zdev->iommu_size - 1, (u64) zdev->dma_table); if (rc) goto out_reg; return 0; out_reg: dma_free_cpu_table(zdev->dma_table); out_clean: return rc; } void zpci_dma_exit_device(struct zpci_dev *zdev) { zpci_unregister_ioat(zdev, 0); dma_cleanup_tables(zdev); vfree(zdev->iommu_bitmap); zdev->iommu_bitmap = NULL; zdev->next_bit = 0; } static int __init dma_alloc_cpu_table_caches(void) { dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables", ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN, 0, NULL); if (!dma_region_table_cache) return -ENOMEM; dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables", ZPCI_PT_SIZE, ZPCI_PT_ALIGN, 0, NULL); if (!dma_page_table_cache) { kmem_cache_destroy(dma_region_table_cache); return -ENOMEM; } return 0; } int __init zpci_dma_init(void) { return dma_alloc_cpu_table_caches(); } void zpci_dma_exit(void) { kmem_cache_destroy(dma_page_table_cache); kmem_cache_destroy(dma_region_table_cache); } #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16) static int __init dma_debug_do_init(void) { dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); return 0; } fs_initcall(dma_debug_do_init); struct dma_map_ops s390_dma_ops = { .alloc = s390_dma_alloc, .free = s390_dma_free, .map_sg = s390_dma_map_sg, .unmap_sg = s390_dma_unmap_sg, .map_page = s390_dma_map_pages, .unmap_page = s390_dma_unmap_pages, /* if we support direct DMA this must be conditional */ .is_phys = 0, /* dma_supported is unconditionally true without a callback */ }; EXPORT_SYMBOL_GPL(s390_dma_ops); static int __init s390_iommu_setup(char *str) { if (!strncmp(str, "strict", 6)) s390_iommu_strict = 1; return 0; } __setup("s390_iommu=", s390_iommu_setup);