/* * SMP related functions * * Copyright IBM Corp. 1999, 2012 * Author(s): Denis Joseph Barrow, * Martin Schwidefsky , * Heiko Carstens , * * based on other smp stuff by * (c) 1995 Alan Cox, CymruNET Ltd * (c) 1998 Ingo Molnar * * The code outside of smp.c uses logical cpu numbers, only smp.c does * the translation of logical to physical cpu ids. All new code that * operates on physical cpu numbers needs to go into smp.c. */ #define KMSG_COMPONENT "cpu" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "entry.h" enum { ec_schedule = 0, ec_call_function_single, ec_stop_cpu, }; enum { CPU_STATE_STANDBY, CPU_STATE_CONFIGURED, }; struct pcpu { struct cpu *cpu; struct _lowcore *lowcore; /* lowcore page(s) for the cpu */ unsigned long async_stack; /* async stack for the cpu */ unsigned long panic_stack; /* panic stack for the cpu */ unsigned long ec_mask; /* bit mask for ec_xxx functions */ int state; /* physical cpu state */ int polarization; /* physical polarization */ u16 address; /* physical cpu address */ }; static u8 boot_cpu_type; static u16 boot_cpu_address; static struct pcpu pcpu_devices[NR_CPUS]; /* * The smp_cpu_state_mutex must be held when changing the state or polarization * member of a pcpu data structure within the pcpu_devices arreay. */ DEFINE_MUTEX(smp_cpu_state_mutex); /* * Signal processor helper functions. */ static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status) { register unsigned int reg1 asm ("1") = parm; int cc; asm volatile( " sigp %1,%2,0(%3)\n" " ipm %0\n" " srl %0,28\n" : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc"); if (status && cc == 1) *status = reg1; return cc; } static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status) { int cc; while (1) { cc = __pcpu_sigp(addr, order, parm, NULL); if (cc != SIGP_CC_BUSY) return cc; cpu_relax(); } } static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm) { int cc, retry; for (retry = 0; ; retry++) { cc = __pcpu_sigp(pcpu->address, order, parm, NULL); if (cc != SIGP_CC_BUSY) break; if (retry >= 3) udelay(10); } return cc; } static inline int pcpu_stopped(struct pcpu *pcpu) { u32 uninitialized_var(status); if (__pcpu_sigp(pcpu->address, SIGP_SENSE, 0, &status) != SIGP_CC_STATUS_STORED) return 0; return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED)); } static inline int pcpu_running(struct pcpu *pcpu) { if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING, 0, NULL) != SIGP_CC_STATUS_STORED) return 1; /* Status stored condition code is equivalent to cpu not running. */ return 0; } /* * Find struct pcpu by cpu address. */ static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address) { int cpu; for_each_cpu(cpu, mask) if (pcpu_devices[cpu].address == address) return pcpu_devices + cpu; return NULL; } static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit) { int order; if (test_and_set_bit(ec_bit, &pcpu->ec_mask)) return; order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL; pcpu_sigp_retry(pcpu, order, 0); } static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu) { struct _lowcore *lc; if (pcpu != &pcpu_devices[0]) { pcpu->lowcore = (struct _lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER); pcpu->panic_stack = __get_free_page(GFP_KERNEL); if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack) goto out; } lc = pcpu->lowcore; memcpy(lc, &S390_lowcore, 512); memset((char *) lc + 512, 0, sizeof(*lc) - 512); lc->async_stack = pcpu->async_stack + ASYNC_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs); lc->panic_stack = pcpu->panic_stack + PAGE_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs); lc->cpu_nr = cpu; #ifndef CONFIG_64BIT if (MACHINE_HAS_IEEE) { lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL); if (!lc->extended_save_area_addr) goto out; } #else if (vdso_alloc_per_cpu(lc)) goto out; #endif lowcore_ptr[cpu] = lc; pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc); return 0; out: if (pcpu != &pcpu_devices[0]) { free_page(pcpu->panic_stack); free_pages(pcpu->async_stack, ASYNC_ORDER); free_pages((unsigned long) pcpu->lowcore, LC_ORDER); } return -ENOMEM; } #ifdef CONFIG_HOTPLUG_CPU static void pcpu_free_lowcore(struct pcpu *pcpu) { pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0); lowcore_ptr[pcpu - pcpu_devices] = NULL; #ifndef CONFIG_64BIT if (MACHINE_HAS_IEEE) { struct _lowcore *lc = pcpu->lowcore; free_page((unsigned long) lc->extended_save_area_addr); lc->extended_save_area_addr = 0; } #else vdso_free_per_cpu(pcpu->lowcore); #endif if (pcpu != &pcpu_devices[0]) { free_page(pcpu->panic_stack); free_pages(pcpu->async_stack, ASYNC_ORDER); free_pages((unsigned long) pcpu->lowcore, LC_ORDER); } } #endif /* CONFIG_HOTPLUG_CPU */ static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu) { struct _lowcore *lc = pcpu->lowcore; atomic_inc(&init_mm.context.attach_count); lc->cpu_nr = cpu; lc->percpu_offset = __per_cpu_offset[cpu]; lc->kernel_asce = S390_lowcore.kernel_asce; lc->machine_flags = S390_lowcore.machine_flags; lc->ftrace_func = S390_lowcore.ftrace_func; lc->user_timer = lc->system_timer = lc->steal_timer = 0; __ctl_store(lc->cregs_save_area, 0, 15); save_access_regs((unsigned int *) lc->access_regs_save_area); memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list, MAX_FACILITY_BIT/8); } static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk) { struct _lowcore *lc = pcpu->lowcore; struct thread_info *ti = task_thread_info(tsk); lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs); lc->thread_info = (unsigned long) task_thread_info(tsk); lc->current_task = (unsigned long) tsk; lc->user_timer = ti->user_timer; lc->system_timer = ti->system_timer; lc->steal_timer = 0; } static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data) { struct _lowcore *lc = pcpu->lowcore; lc->restart_stack = lc->kernel_stack; lc->restart_fn = (unsigned long) func; lc->restart_data = (unsigned long) data; lc->restart_source = -1UL; pcpu_sigp_retry(pcpu, SIGP_RESTART, 0); } /* * Call function via PSW restart on pcpu and stop the current cpu. */ static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *), void *data, unsigned long stack) { struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices]; unsigned long source_cpu = stap(); __load_psw_mask(PSW_KERNEL_BITS); if (pcpu->address == source_cpu) func(data); /* should not return */ /* Stop target cpu (if func returns this stops the current cpu). */ pcpu_sigp_retry(pcpu, SIGP_STOP, 0); /* Restart func on the target cpu and stop the current cpu. */ mem_assign_absolute(lc->restart_stack, stack); mem_assign_absolute(lc->restart_fn, (unsigned long) func); mem_assign_absolute(lc->restart_data, (unsigned long) data); mem_assign_absolute(lc->restart_source, source_cpu); asm volatile( "0: sigp 0,%0,%2 # sigp restart to target cpu\n" " brc 2,0b # busy, try again\n" "1: sigp 0,%1,%3 # sigp stop to current cpu\n" " brc 2,1b # busy, try again\n" : : "d" (pcpu->address), "d" (source_cpu), "K" (SIGP_RESTART), "K" (SIGP_STOP) : "0", "1", "cc"); for (;;) ; } /* * Call function on an online CPU. */ void smp_call_online_cpu(void (*func)(void *), void *data) { struct pcpu *pcpu; /* Use the current cpu if it is online. */ pcpu = pcpu_find_address(cpu_online_mask, stap()); if (!pcpu) /* Use the first online cpu. */ pcpu = pcpu_devices + cpumask_first(cpu_online_mask); pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack); } /* * Call function on the ipl CPU. */ void smp_call_ipl_cpu(void (*func)(void *), void *data) { pcpu_delegate(&pcpu_devices[0], func, data, pcpu_devices->panic_stack + PAGE_SIZE); } int smp_find_processor_id(u16 address) { int cpu; for_each_present_cpu(cpu) if (pcpu_devices[cpu].address == address) return cpu; return -1; } int smp_vcpu_scheduled(int cpu) { return pcpu_running(pcpu_devices + cpu); } void smp_yield(void) { if (MACHINE_HAS_DIAG44) asm volatile("diag 0,0,0x44"); } void smp_yield_cpu(int cpu) { if (MACHINE_HAS_DIAG9C) asm volatile("diag %0,0,0x9c" : : "d" (pcpu_devices[cpu].address)); else if (MACHINE_HAS_DIAG44) asm volatile("diag 0,0,0x44"); } /* * Send cpus emergency shutdown signal. This gives the cpus the * opportunity to complete outstanding interrupts. */ static void smp_emergency_stop(cpumask_t *cpumask) { u64 end; int cpu; end = get_tod_clock() + (1000000UL << 12); for_each_cpu(cpu, cpumask) { struct pcpu *pcpu = pcpu_devices + cpu; set_bit(ec_stop_cpu, &pcpu->ec_mask); while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL, 0, NULL) == SIGP_CC_BUSY && get_tod_clock() < end) cpu_relax(); } while (get_tod_clock() < end) { for_each_cpu(cpu, cpumask) if (pcpu_stopped(pcpu_devices + cpu)) cpumask_clear_cpu(cpu, cpumask); if (cpumask_empty(cpumask)) break; cpu_relax(); } } /* * Stop all cpus but the current one. */ void smp_send_stop(void) { cpumask_t cpumask; int cpu; /* Disable all interrupts/machine checks */ __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT); trace_hardirqs_off(); debug_set_critical(); cpumask_copy(&cpumask, cpu_online_mask); cpumask_clear_cpu(smp_processor_id(), &cpumask); if (oops_in_progress) smp_emergency_stop(&cpumask); /* stop all processors */ for_each_cpu(cpu, &cpumask) { struct pcpu *pcpu = pcpu_devices + cpu; pcpu_sigp_retry(pcpu, SIGP_STOP, 0); while (!pcpu_stopped(pcpu)) cpu_relax(); } } /* * Stop the current cpu. */ void smp_stop_cpu(void) { pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0); for (;;) ; } /* * This is the main routine where commands issued by other * cpus are handled. */ static void smp_handle_ext_call(void) { unsigned long bits; /* handle bit signal external calls */ bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0); if (test_bit(ec_stop_cpu, &bits)) smp_stop_cpu(); if (test_bit(ec_schedule, &bits)) scheduler_ipi(); if (test_bit(ec_call_function_single, &bits)) generic_smp_call_function_single_interrupt(); } static void do_ext_call_interrupt(struct ext_code ext_code, unsigned int param32, unsigned long param64) { inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS); smp_handle_ext_call(); } void arch_send_call_function_ipi_mask(const struct cpumask *mask) { int cpu; for_each_cpu(cpu, mask) pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); } void arch_send_call_function_single_ipi(int cpu) { pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); } #ifndef CONFIG_64BIT /* * this function sends a 'purge tlb' signal to another CPU. */ static void smp_ptlb_callback(void *info) { __tlb_flush_local(); } void smp_ptlb_all(void) { on_each_cpu(smp_ptlb_callback, NULL, 1); } EXPORT_SYMBOL(smp_ptlb_all); #endif /* ! CONFIG_64BIT */ /* * this function sends a 'reschedule' IPI to another CPU. * it goes straight through and wastes no time serializing * anything. Worst case is that we lose a reschedule ... */ void smp_send_reschedule(int cpu) { pcpu_ec_call(pcpu_devices + cpu, ec_schedule); } /* * parameter area for the set/clear control bit callbacks */ struct ec_creg_mask_parms { unsigned long orval; unsigned long andval; int cr; }; /* * callback for setting/clearing control bits */ static void smp_ctl_bit_callback(void *info) { struct ec_creg_mask_parms *pp = info; unsigned long cregs[16]; __ctl_store(cregs, 0, 15); cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval; __ctl_load(cregs, 0, 15); } /* * Set a bit in a control register of all cpus */ void smp_ctl_set_bit(int cr, int bit) { struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr }; on_each_cpu(smp_ctl_bit_callback, &parms, 1); } EXPORT_SYMBOL(smp_ctl_set_bit); /* * Clear a bit in a control register of all cpus */ void smp_ctl_clear_bit(int cr, int bit) { struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr }; on_each_cpu(smp_ctl_bit_callback, &parms, 1); } EXPORT_SYMBOL(smp_ctl_clear_bit); #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP) static void __init smp_get_save_area(int cpu, u16 address) { void *lc = pcpu_devices[0].lowcore; struct save_area *save_area; if (is_kdump_kernel()) return; if (!OLDMEM_BASE && (address == boot_cpu_address || ipl_info.type != IPL_TYPE_FCP_DUMP)) return; save_area = dump_save_area_create(cpu); if (!save_area) panic("could not allocate memory for save area\n"); #ifdef CONFIG_CRASH_DUMP if (address == boot_cpu_address) { /* Copy the registers of the boot cpu. */ copy_oldmem_page(1, (void *) save_area, sizeof(*save_area), SAVE_AREA_BASE - PAGE_SIZE, 0); return; } #endif /* Get the registers of a non-boot cpu. */ __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL); memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area)); } int smp_store_status(int cpu) { struct pcpu *pcpu; pcpu = pcpu_devices + cpu; if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS, 0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED) return -EIO; return 0; } #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */ static inline void smp_get_save_area(int cpu, u16 address) { } #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */ void smp_cpu_set_polarization(int cpu, int val) { pcpu_devices[cpu].polarization = val; } int smp_cpu_get_polarization(int cpu) { return pcpu_devices[cpu].polarization; } static struct sclp_cpu_info *smp_get_cpu_info(void) { static int use_sigp_detection; struct sclp_cpu_info *info; int address; info = kzalloc(sizeof(*info), GFP_KERNEL); if (info && (use_sigp_detection || sclp_get_cpu_info(info))) { use_sigp_detection = 1; for (address = 0; address <= MAX_CPU_ADDRESS; address++) { if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) == SIGP_CC_NOT_OPERATIONAL) continue; info->cpu[info->configured].address = address; info->configured++; } info->combined = info->configured; } return info; } static int smp_add_present_cpu(int cpu); static int __smp_rescan_cpus(struct sclp_cpu_info *info, int sysfs_add) { struct pcpu *pcpu; cpumask_t avail; int cpu, nr, i; nr = 0; cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask); cpu = cpumask_first(&avail); for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) { if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type) continue; if (pcpu_find_address(cpu_present_mask, info->cpu[i].address)) continue; pcpu = pcpu_devices + cpu; pcpu->address = info->cpu[i].address; pcpu->state = (i >= info->configured) ? CPU_STATE_STANDBY : CPU_STATE_CONFIGURED; smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); set_cpu_present(cpu, true); if (sysfs_add && smp_add_present_cpu(cpu) != 0) set_cpu_present(cpu, false); else nr++; cpu = cpumask_next(cpu, &avail); } return nr; } static void __init smp_detect_cpus(void) { unsigned int cpu, c_cpus, s_cpus; struct sclp_cpu_info *info; info = smp_get_cpu_info(); if (!info) panic("smp_detect_cpus failed to allocate memory\n"); if (info->has_cpu_type) { for (cpu = 0; cpu < info->combined; cpu++) { if (info->cpu[cpu].address != boot_cpu_address) continue; /* The boot cpu dictates the cpu type. */ boot_cpu_type = info->cpu[cpu].type; break; } } c_cpus = s_cpus = 0; for (cpu = 0; cpu < info->combined; cpu++) { if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type) continue; if (cpu < info->configured) { smp_get_save_area(c_cpus, info->cpu[cpu].address); c_cpus++; } else s_cpus++; } pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus); get_online_cpus(); __smp_rescan_cpus(info, 0); put_online_cpus(); kfree(info); } /* * Activate a secondary processor. */ static void smp_start_secondary(void *cpuvoid) { S390_lowcore.last_update_clock = get_tod_clock(); S390_lowcore.restart_stack = (unsigned long) restart_stack; S390_lowcore.restart_fn = (unsigned long) do_restart; S390_lowcore.restart_data = 0; S390_lowcore.restart_source = -1UL; restore_access_regs(S390_lowcore.access_regs_save_area); __ctl_load(S390_lowcore.cregs_save_area, 0, 15); __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT); cpu_init(); preempt_disable(); init_cpu_timer(); init_cpu_vtimer(); pfault_init(); notify_cpu_starting(smp_processor_id()); set_cpu_online(smp_processor_id(), true); inc_irq_stat(CPU_RST); local_irq_enable(); cpu_startup_entry(CPUHP_ONLINE); } /* Upping and downing of CPUs */ int __cpu_up(unsigned int cpu, struct task_struct *tidle) { struct pcpu *pcpu; int rc; pcpu = pcpu_devices + cpu; if (pcpu->state != CPU_STATE_CONFIGURED) return -EIO; if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) != SIGP_CC_ORDER_CODE_ACCEPTED) return -EIO; rc = pcpu_alloc_lowcore(pcpu, cpu); if (rc) return rc; pcpu_prepare_secondary(pcpu, cpu); pcpu_attach_task(pcpu, tidle); pcpu_start_fn(pcpu, smp_start_secondary, NULL); while (!cpu_online(cpu)) cpu_relax(); return 0; } static unsigned int setup_possible_cpus __initdata; static int __init _setup_possible_cpus(char *s) { get_option(&s, &setup_possible_cpus); return 0; } early_param("possible_cpus", _setup_possible_cpus); #ifdef CONFIG_HOTPLUG_CPU int __cpu_disable(void) { unsigned long cregs[16]; /* Handle possible pending IPIs */ smp_handle_ext_call(); set_cpu_online(smp_processor_id(), false); /* Disable pseudo page faults on this cpu. */ pfault_fini(); /* Disable interrupt sources via control register. */ __ctl_store(cregs, 0, 15); cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */ cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */ cregs[14] &= ~0x1f000000UL; /* disable most machine checks */ __ctl_load(cregs, 0, 15); return 0; } void __cpu_die(unsigned int cpu) { struct pcpu *pcpu; /* Wait until target cpu is down */ pcpu = pcpu_devices + cpu; while (!pcpu_stopped(pcpu)) cpu_relax(); pcpu_free_lowcore(pcpu); atomic_dec(&init_mm.context.attach_count); } void __noreturn cpu_die(void) { idle_task_exit(); pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0); for (;;) ; } #endif /* CONFIG_HOTPLUG_CPU */ void __init smp_fill_possible_mask(void) { unsigned int possible, sclp, cpu; sclp = sclp_get_max_cpu() ?: nr_cpu_ids; possible = setup_possible_cpus ?: nr_cpu_ids; possible = min(possible, sclp); for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++) set_cpu_possible(cpu, true); } void __init smp_prepare_cpus(unsigned int max_cpus) { /* request the 0x1201 emergency signal external interrupt */ if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt)) panic("Couldn't request external interrupt 0x1201"); /* request the 0x1202 external call external interrupt */ if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt)) panic("Couldn't request external interrupt 0x1202"); smp_detect_cpus(); } void __init smp_prepare_boot_cpu(void) { struct pcpu *pcpu = pcpu_devices; boot_cpu_address = stap(); pcpu->state = CPU_STATE_CONFIGURED; pcpu->address = boot_cpu_address; pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix(); pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs); pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs); S390_lowcore.percpu_offset = __per_cpu_offset[0]; smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN); set_cpu_present(0, true); set_cpu_online(0, true); } void __init smp_cpus_done(unsigned int max_cpus) { } void __init smp_setup_processor_id(void) { S390_lowcore.cpu_nr = 0; } /* * the frequency of the profiling timer can be changed * by writing a multiplier value into /proc/profile. * * usually you want to run this on all CPUs ;) */ int setup_profiling_timer(unsigned int multiplier) { return 0; } #ifdef CONFIG_HOTPLUG_CPU static ssize_t cpu_configure_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t count; mutex_lock(&smp_cpu_state_mutex); count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state); mutex_unlock(&smp_cpu_state_mutex); return count; } static ssize_t cpu_configure_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct pcpu *pcpu; int cpu, val, rc; char delim; if (sscanf(buf, "%d %c", &val, &delim) != 1) return -EINVAL; if (val != 0 && val != 1) return -EINVAL; get_online_cpus(); mutex_lock(&smp_cpu_state_mutex); rc = -EBUSY; /* disallow configuration changes of online cpus and cpu 0 */ cpu = dev->id; if (cpu_online(cpu) || cpu == 0) goto out; pcpu = pcpu_devices + cpu; rc = 0; switch (val) { case 0: if (pcpu->state != CPU_STATE_CONFIGURED) break; rc = sclp_cpu_deconfigure(pcpu->address); if (rc) break; pcpu->state = CPU_STATE_STANDBY; smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); topology_expect_change(); break; case 1: if (pcpu->state != CPU_STATE_STANDBY) break; rc = sclp_cpu_configure(pcpu->address); if (rc) break; pcpu->state = CPU_STATE_CONFIGURED; smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); topology_expect_change(); break; default: break; } out: mutex_unlock(&smp_cpu_state_mutex); put_online_cpus(); return rc ? rc : count; } static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); #endif /* CONFIG_HOTPLUG_CPU */ static ssize_t show_cpu_address(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", pcpu_devices[dev->id].address); } static DEVICE_ATTR(address, 0444, show_cpu_address, NULL); static struct attribute *cpu_common_attrs[] = { #ifdef CONFIG_HOTPLUG_CPU &dev_attr_configure.attr, #endif &dev_attr_address.attr, NULL, }; static struct attribute_group cpu_common_attr_group = { .attrs = cpu_common_attrs, }; static ssize_t show_idle_count(struct device *dev, struct device_attribute *attr, char *buf) { struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id); unsigned long long idle_count; unsigned int sequence; do { sequence = ACCESS_ONCE(idle->sequence); idle_count = ACCESS_ONCE(idle->idle_count); if (ACCESS_ONCE(idle->clock_idle_enter)) idle_count++; } while ((sequence & 1) || (ACCESS_ONCE(idle->sequence) != sequence)); return sprintf(buf, "%llu\n", idle_count); } static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL); static ssize_t show_idle_time(struct device *dev, struct device_attribute *attr, char *buf) { struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id); unsigned long long now, idle_time, idle_enter, idle_exit; unsigned int sequence; do { now = get_tod_clock(); sequence = ACCESS_ONCE(idle->sequence); idle_time = ACCESS_ONCE(idle->idle_time); idle_enter = ACCESS_ONCE(idle->clock_idle_enter); idle_exit = ACCESS_ONCE(idle->clock_idle_exit); } while ((sequence & 1) || (ACCESS_ONCE(idle->sequence) != sequence)); idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0; return sprintf(buf, "%llu\n", idle_time >> 12); } static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL); static struct attribute *cpu_online_attrs[] = { &dev_attr_idle_count.attr, &dev_attr_idle_time_us.attr, NULL, }; static struct attribute_group cpu_online_attr_group = { .attrs = cpu_online_attrs, }; static int smp_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned int)(long)hcpu; struct cpu *c = pcpu_devices[cpu].cpu; struct device *s = &c->dev; int err = 0; switch (action & ~CPU_TASKS_FROZEN) { case CPU_ONLINE: err = sysfs_create_group(&s->kobj, &cpu_online_attr_group); break; case CPU_DEAD: sysfs_remove_group(&s->kobj, &cpu_online_attr_group); break; } return notifier_from_errno(err); } static int smp_add_present_cpu(int cpu) { struct device *s; struct cpu *c; int rc; c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) return -ENOMEM; pcpu_devices[cpu].cpu = c; s = &c->dev; c->hotpluggable = 1; rc = register_cpu(c, cpu); if (rc) goto out; rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group); if (rc) goto out_cpu; if (cpu_online(cpu)) { rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group); if (rc) goto out_online; } rc = topology_cpu_init(c); if (rc) goto out_topology; return 0; out_topology: if (cpu_online(cpu)) sysfs_remove_group(&s->kobj, &cpu_online_attr_group); out_online: sysfs_remove_group(&s->kobj, &cpu_common_attr_group); out_cpu: #ifdef CONFIG_HOTPLUG_CPU unregister_cpu(c); #endif out: return rc; } #ifdef CONFIG_HOTPLUG_CPU int __ref smp_rescan_cpus(void) { struct sclp_cpu_info *info; int nr; info = smp_get_cpu_info(); if (!info) return -ENOMEM; get_online_cpus(); mutex_lock(&smp_cpu_state_mutex); nr = __smp_rescan_cpus(info, 1); mutex_unlock(&smp_cpu_state_mutex); put_online_cpus(); kfree(info); if (nr) topology_schedule_update(); return 0; } static ssize_t __ref rescan_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int rc; rc = smp_rescan_cpus(); return rc ? rc : count; } static DEVICE_ATTR(rescan, 0200, NULL, rescan_store); #endif /* CONFIG_HOTPLUG_CPU */ static int __init s390_smp_init(void) { int cpu, rc; hotcpu_notifier(smp_cpu_notify, 0); #ifdef CONFIG_HOTPLUG_CPU rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan); if (rc) return rc; #endif for_each_present_cpu(cpu) { rc = smp_add_present_cpu(cpu); if (rc) return rc; } return 0; } subsys_initcall(s390_smp_init);