/* * Ethernet driver for Motorola MPC8260. * Copyright (c) 1999 Dan Malek (dmalek@jlc.net) * Copyright (c) 2000 MontaVista Software Inc. (source@mvista.com) * 2.3.99 Updates * * I copied this from the 8xx CPM Ethernet driver, so follow the * credits back through that. * * This version of the driver is somewhat selectable for the different * processor/board combinations. It works for the boards I know about * now, and should be easily modified to include others. Some of the * configuration information is contained in and the * remainder is here. * * Buffer descriptors are kept in the CPM dual port RAM, and the frame * buffers are in the host memory. * * Right now, I am very watseful with the buffers. I allocate memory * pages and then divide them into 2K frame buffers. This way I know I * have buffers large enough to hold one frame within one buffer descriptor. * Once I get this working, I will use 64 or 128 byte CPM buffers, which * will be much more memory efficient and will easily handle lots of * small packets. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Theory of Operation * * The MPC8260 CPM performs the Ethernet processing on an SCC. It can use * an aribtrary number of buffers on byte boundaries, but must have at * least two receive buffers to prevent constant overrun conditions. * * The buffer descriptors are allocated from the CPM dual port memory * with the data buffers allocated from host memory, just like all other * serial communication protocols. The host memory buffers are allocated * from the free page pool, and then divided into smaller receive and * transmit buffers. The size of the buffers should be a power of two, * since that nicely divides the page. This creates a ring buffer * structure similar to the LANCE and other controllers. * * Like the LANCE driver: * The driver runs as two independent, single-threaded flows of control. One * is the send-packet routine, which enforces single-threaded use by the * cep->tx_busy flag. The other thread is the interrupt handler, which is * single threaded by the hardware and other software. */ /* The transmitter timeout */ #define TX_TIMEOUT (2*HZ) /* The number of Tx and Rx buffers. These are allocated from the page * pool. The code may assume these are power of two, so it is best * to keep them that size. * We don't need to allocate pages for the transmitter. We just use * the skbuffer directly. */ #define CPM_ENET_RX_PAGES 4 #define CPM_ENET_RX_FRSIZE 2048 #define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE) #define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES) #define TX_RING_SIZE 8 /* Must be power of two */ #define TX_RING_MOD_MASK 7 /* for this to work */ /* The CPM stores dest/src/type, data, and checksum for receive packets. */ #define PKT_MAXBUF_SIZE 1518 #define PKT_MINBUF_SIZE 64 #define PKT_MAXBLR_SIZE 1520 /* The CPM buffer descriptors track the ring buffers. The rx_bd_base and * tx_bd_base always point to the base of the buffer descriptors. The * cur_rx and cur_tx point to the currently available buffer. * The dirty_tx tracks the current buffer that is being sent by the * controller. The cur_tx and dirty_tx are equal under both completely * empty and completely full conditions. The empty/ready indicator in * the buffer descriptor determines the actual condition. */ struct scc_enet_private { /* The saved address of a sent-in-place packet/buffer, for skfree(). */ struct sk_buff* tx_skbuff[TX_RING_SIZE]; ushort skb_cur; ushort skb_dirty; /* CPM dual port RAM relative addresses. */ cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ cbd_t *tx_bd_base; cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ cbd_t *dirty_tx; /* The ring entries to be free()ed. */ scc_t *sccp; struct net_device_stats stats; uint tx_full; spinlock_t lock; }; static int scc_enet_open(struct net_device *dev); static int scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); static int scc_enet_rx(struct net_device *dev); static irqreturn_t scc_enet_interrupt(int irq, void *dev_id, struct pt_regs *); static int scc_enet_close(struct net_device *dev); static struct net_device_stats *scc_enet_get_stats(struct net_device *dev); static void set_multicast_list(struct net_device *dev); /* These will be configurable for the SCC choice. */ #define CPM_ENET_BLOCK CPM_CR_SCC1_SBLOCK #define CPM_ENET_PAGE CPM_CR_SCC1_PAGE #define PROFF_ENET PROFF_SCC1 #define SCC_ENET 0 #define SIU_INT_ENET SIU_INT_SCC1 /* These are both board and SCC dependent.... */ #define PD_ENET_RXD ((uint)0x00000001) #define PD_ENET_TXD ((uint)0x00000002) #define PD_ENET_TENA ((uint)0x00000004) #define PC_ENET_RENA ((uint)0x00020000) #define PC_ENET_CLSN ((uint)0x00000004) #define PC_ENET_TXCLK ((uint)0x00000800) #define PC_ENET_RXCLK ((uint)0x00000400) #define CMX_CLK_ROUTE ((uint)0x25000000) #define CMX_CLK_MASK ((uint)0xff000000) /* Specific to a board. */ #define PC_EST8260_ENET_LOOPBACK ((uint)0x80000000) #define PC_EST8260_ENET_SQE ((uint)0x40000000) #define PC_EST8260_ENET_NOTFD ((uint)0x20000000) static int scc_enet_open(struct net_device *dev) { /* I should reset the ring buffers here, but I don't yet know * a simple way to do that. */ netif_start_queue(dev); return 0; /* Always succeed */ } static int scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv; volatile cbd_t *bdp; /* Fill in a Tx ring entry */ bdp = cep->cur_tx; #ifndef final_version if (bdp->cbd_sc & BD_ENET_TX_READY) { /* Ooops. All transmit buffers are full. Bail out. * This should not happen, since cep->tx_full should be set. */ printk("%s: tx queue full!.\n", dev->name); return 1; } #endif /* Clear all of the status flags. */ bdp->cbd_sc &= ~BD_ENET_TX_STATS; /* If the frame is short, tell CPM to pad it. */ if (skb->len <= ETH_ZLEN) bdp->cbd_sc |= BD_ENET_TX_PAD; else bdp->cbd_sc &= ~BD_ENET_TX_PAD; /* Set buffer length and buffer pointer. */ bdp->cbd_datlen = skb->len; bdp->cbd_bufaddr = __pa(skb->data); /* Save skb pointer. */ cep->tx_skbuff[cep->skb_cur] = skb; cep->stats.tx_bytes += skb->len; cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK; spin_lock_irq(&cep->lock); /* Send it on its way. Tell CPM its ready, interrupt when done, * its the last BD of the frame, and to put the CRC on the end. */ bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC); dev->trans_start = jiffies; /* If this was the last BD in the ring, start at the beginning again. */ if (bdp->cbd_sc & BD_ENET_TX_WRAP) bdp = cep->tx_bd_base; else bdp++; if (bdp->cbd_sc & BD_ENET_TX_READY) { netif_stop_queue(dev); cep->tx_full = 1; } cep->cur_tx = (cbd_t *)bdp; spin_unlock_irq(&cep->lock); return 0; } static void scc_enet_timeout(struct net_device *dev) { struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv; printk("%s: transmit timed out.\n", dev->name); cep->stats.tx_errors++; #ifndef final_version { int i; cbd_t *bdp; printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n", cep->cur_tx, cep->tx_full ? " (full)" : "", cep->cur_rx); bdp = cep->tx_bd_base; printk(" Tx @base %p :\n", bdp); for (i = 0 ; i < TX_RING_SIZE; i++, bdp++) printk("%04x %04x %08x\n", bdp->cbd_sc, bdp->cbd_datlen, bdp->cbd_bufaddr); bdp = cep->rx_bd_base; printk(" Rx @base %p :\n", bdp); for (i = 0 ; i < RX_RING_SIZE; i++, bdp++) printk("%04x %04x %08x\n", bdp->cbd_sc, bdp->cbd_datlen, bdp->cbd_bufaddr); } #endif if (!cep->tx_full) netif_wake_queue(dev); } /* The interrupt handler. * This is called from the CPM handler, not the MPC core interrupt. */ static irqreturn_t scc_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs) { struct net_device *dev = dev_id; volatile struct scc_enet_private *cep; volatile cbd_t *bdp; ushort int_events; int must_restart; cep = (struct scc_enet_private *)dev->priv; /* Get the interrupt events that caused us to be here. */ int_events = cep->sccp->scc_scce; cep->sccp->scc_scce = int_events; must_restart = 0; /* Handle receive event in its own function. */ if (int_events & SCCE_ENET_RXF) scc_enet_rx(dev_id); /* Check for a transmit error. The manual is a little unclear * about this, so the debug code until I get it figured out. It * appears that if TXE is set, then TXB is not set. However, * if carrier sense is lost during frame transmission, the TXE * bit is set, "and continues the buffer transmission normally." * I don't know if "normally" implies TXB is set when the buffer * descriptor is closed.....trial and error :-). */ /* Transmit OK, or non-fatal error. Update the buffer descriptors. */ if (int_events & (SCCE_ENET_TXE | SCCE_ENET_TXB)) { spin_lock(&cep->lock); bdp = cep->dirty_tx; while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) { if ((bdp==cep->cur_tx) && (cep->tx_full == 0)) break; if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ cep->stats.tx_heartbeat_errors++; if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ cep->stats.tx_window_errors++; if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ cep->stats.tx_aborted_errors++; if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ cep->stats.tx_fifo_errors++; if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ cep->stats.tx_carrier_errors++; /* No heartbeat or Lost carrier are not really bad errors. * The others require a restart transmit command. */ if (bdp->cbd_sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { must_restart = 1; cep->stats.tx_errors++; } cep->stats.tx_packets++; /* Deferred means some collisions occurred during transmit, * but we eventually sent the packet OK. */ if (bdp->cbd_sc & BD_ENET_TX_DEF) cep->stats.collisions++; /* Free the sk buffer associated with this last transmit. */ dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]); cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK; /* Update pointer to next buffer descriptor to be transmitted. */ if (bdp->cbd_sc & BD_ENET_TX_WRAP) bdp = cep->tx_bd_base; else bdp++; /* I don't know if we can be held off from processing these * interrupts for more than one frame time. I really hope * not. In such a case, we would now want to check the * currently available BD (cur_tx) and determine if any * buffers between the dirty_tx and cur_tx have also been * sent. We would want to process anything in between that * does not have BD_ENET_TX_READY set. */ /* Since we have freed up a buffer, the ring is no longer * full. */ if (cep->tx_full) { cep->tx_full = 0; if (netif_queue_stopped(dev)) { netif_wake_queue(dev); } } cep->dirty_tx = (cbd_t *)bdp; } if (must_restart) { volatile cpm_cpm2_t *cp; /* Some transmit errors cause the transmitter to shut * down. We now issue a restart transmit. Since the * errors close the BD and update the pointers, the restart * _should_ pick up without having to reset any of our * pointers either. */ cp = cpmp; cp->cp_cpcr = mk_cr_cmd(CPM_ENET_PAGE, CPM_ENET_BLOCK, 0, CPM_CR_RESTART_TX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); } spin_unlock(&cep->lock); } /* Check for receive busy, i.e. packets coming but no place to * put them. This "can't happen" because the receive interrupt * is tossing previous frames. */ if (int_events & SCCE_ENET_BSY) { cep->stats.rx_dropped++; printk("SCC ENET: BSY can't happen.\n"); } return IRQ_HANDLED; } /* During a receive, the cur_rx points to the current incoming buffer. * When we update through the ring, if the next incoming buffer has * not been given to the system, we just set the empty indicator, * effectively tossing the packet. */ static int scc_enet_rx(struct net_device *dev) { struct scc_enet_private *cep; volatile cbd_t *bdp; struct sk_buff *skb; ushort pkt_len; cep = (struct scc_enet_private *)dev->priv; /* First, grab all of the stats for the incoming packet. * These get messed up if we get called due to a busy condition. */ bdp = cep->cur_rx; for (;;) { if (bdp->cbd_sc & BD_ENET_RX_EMPTY) break; #ifndef final_version /* Since we have allocated space to hold a complete frame, both * the first and last indicators should be set. */ if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) != (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) printk("CPM ENET: rcv is not first+last\n"); #endif /* Frame too long or too short. */ if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) cep->stats.rx_length_errors++; if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ cep->stats.rx_frame_errors++; if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ cep->stats.rx_crc_errors++; if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ cep->stats.rx_crc_errors++; /* Report late collisions as a frame error. * On this error, the BD is closed, but we don't know what we * have in the buffer. So, just drop this frame on the floor. */ if (bdp->cbd_sc & BD_ENET_RX_CL) { cep->stats.rx_frame_errors++; } else { /* Process the incoming frame. */ cep->stats.rx_packets++; pkt_len = bdp->cbd_datlen; cep->stats.rx_bytes += pkt_len; /* This does 16 byte alignment, much more than we need. * The packet length includes FCS, but we don't want to * include that when passing upstream as it messes up * bridging applications. */ skb = dev_alloc_skb(pkt_len-4); if (skb == NULL) { printk("%s: Memory squeeze, dropping packet.\n", dev->name); cep->stats.rx_dropped++; } else { skb->dev = dev; skb_put(skb,pkt_len-4); /* Make room */ eth_copy_and_sum(skb, (unsigned char *)__va(bdp->cbd_bufaddr), pkt_len-4, 0); skb->protocol=eth_type_trans(skb,dev); netif_rx(skb); } } /* Clear the status flags for this buffer. */ bdp->cbd_sc &= ~BD_ENET_RX_STATS; /* Mark the buffer empty. */ bdp->cbd_sc |= BD_ENET_RX_EMPTY; /* Update BD pointer to next entry. */ if (bdp->cbd_sc & BD_ENET_RX_WRAP) bdp = cep->rx_bd_base; else bdp++; } cep->cur_rx = (cbd_t *)bdp; return 0; } static int scc_enet_close(struct net_device *dev) { /* Don't know what to do yet. */ netif_stop_queue(dev); return 0; } static struct net_device_stats *scc_enet_get_stats(struct net_device *dev) { struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv; return &cep->stats; } /* Set or clear the multicast filter for this adaptor. * Skeleton taken from sunlance driver. * The CPM Ethernet implementation allows Multicast as well as individual * MAC address filtering. Some of the drivers check to make sure it is * a group multicast address, and discard those that are not. I guess I * will do the same for now, but just remove the test if you want * individual filtering as well (do the upper net layers want or support * this kind of feature?). */ static void set_multicast_list(struct net_device *dev) { struct scc_enet_private *cep; struct dev_mc_list *dmi; u_char *mcptr, *tdptr; volatile scc_enet_t *ep; int i, j; cep = (struct scc_enet_private *)dev->priv; /* Get pointer to SCC area in parameter RAM. */ ep = (scc_enet_t *)dev->base_addr; if (dev->flags&IFF_PROMISC) { /* Log any net taps. */ printk("%s: Promiscuous mode enabled.\n", dev->name); cep->sccp->scc_psmr |= SCC_PSMR_PRO; } else { cep->sccp->scc_psmr &= ~SCC_PSMR_PRO; if (dev->flags & IFF_ALLMULTI) { /* Catch all multicast addresses, so set the * filter to all 1's. */ ep->sen_gaddr1 = 0xffff; ep->sen_gaddr2 = 0xffff; ep->sen_gaddr3 = 0xffff; ep->sen_gaddr4 = 0xffff; } else { /* Clear filter and add the addresses in the list. */ ep->sen_gaddr1 = 0; ep->sen_gaddr2 = 0; ep->sen_gaddr3 = 0; ep->sen_gaddr4 = 0; dmi = dev->mc_list; for (i=0; imc_count; i++) { /* Only support group multicast for now. */ if (!(dmi->dmi_addr[0] & 1)) continue; /* The address in dmi_addr is LSB first, * and taddr is MSB first. We have to * copy bytes MSB first from dmi_addr. */ mcptr = (u_char *)dmi->dmi_addr + 5; tdptr = (u_char *)&ep->sen_taddrh; for (j=0; j<6; j++) *tdptr++ = *mcptr--; /* Ask CPM to run CRC and set bit in * filter mask. */ cpmp->cp_cpcr = mk_cr_cmd(CPM_ENET_PAGE, CPM_ENET_BLOCK, 0, CPM_CR_SET_GADDR) | CPM_CR_FLG; /* this delay is necessary here -- Cort */ udelay(10); while (cpmp->cp_cpcr & CPM_CR_FLG); } } } } /* Initialize the CPM Ethernet on SCC. */ static int __init scc_enet_init(void) { struct net_device *dev; struct scc_enet_private *cep; int i, j, err; uint dp_offset; unsigned char *eap; unsigned long mem_addr; bd_t *bd; volatile cbd_t *bdp; volatile cpm_cpm2_t *cp; volatile scc_t *sccp; volatile scc_enet_t *ep; volatile cpm2_map_t *immap; volatile iop_cpm2_t *io; cp = cpmp; /* Get pointer to Communication Processor */ immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */ io = &immap->im_ioport; bd = (bd_t *)__res; /* Create an Ethernet device instance. */ dev = alloc_etherdev(sizeof(*cep)); if (!dev) return -ENOMEM; cep = dev->priv; spin_lock_init(&cep->lock); /* Get pointer to SCC area in parameter RAM. */ ep = (scc_enet_t *)(&immap->im_dprambase[PROFF_ENET]); /* And another to the SCC register area. */ sccp = (volatile scc_t *)(&immap->im_scc[SCC_ENET]); cep->sccp = (scc_t *)sccp; /* Keep the pointer handy */ /* Disable receive and transmit in case someone left it running. */ sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT); /* Configure port C and D pins for SCC Ethernet. This * won't work for all SCC possibilities....it will be * board/port specific. */ io->iop_pparc |= (PC_ENET_RENA | PC_ENET_CLSN | PC_ENET_TXCLK | PC_ENET_RXCLK); io->iop_pdirc &= ~(PC_ENET_RENA | PC_ENET_CLSN | PC_ENET_TXCLK | PC_ENET_RXCLK); io->iop_psorc &= ~(PC_ENET_RENA | PC_ENET_TXCLK | PC_ENET_RXCLK); io->iop_psorc |= PC_ENET_CLSN; io->iop_ppard |= (PD_ENET_RXD | PD_ENET_TXD | PD_ENET_TENA); io->iop_pdird |= (PD_ENET_TXD | PD_ENET_TENA); io->iop_pdird &= ~PD_ENET_RXD; io->iop_psord |= PD_ENET_TXD; io->iop_psord &= ~(PD_ENET_RXD | PD_ENET_TENA); /* Configure Serial Interface clock routing. * First, clear all SCC bits to zero, then set the ones we want. */ immap->im_cpmux.cmx_scr &= ~CMX_CLK_MASK; immap->im_cpmux.cmx_scr |= CMX_CLK_ROUTE; /* Allocate space for the buffer descriptors in the DP ram. * These are relative offsets in the DP ram address space. * Initialize base addresses for the buffer descriptors. */ dp_offset = cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8); ep->sen_genscc.scc_rbase = dp_offset; cep->rx_bd_base = (cbd_t *)cpm_dpram_addr(dp_offset); dp_offset = cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8); ep->sen_genscc.scc_tbase = dp_offset; cep->tx_bd_base = (cbd_t *)cpm_dpram_addr(dp_offset); cep->dirty_tx = cep->cur_tx = cep->tx_bd_base; cep->cur_rx = cep->rx_bd_base; ep->sen_genscc.scc_rfcr = CPMFCR_GBL | CPMFCR_EB; ep->sen_genscc.scc_tfcr = CPMFCR_GBL | CPMFCR_EB; /* Set maximum bytes per receive buffer. * This appears to be an Ethernet frame size, not the buffer * fragment size. It must be a multiple of four. */ ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE; /* Set CRC preset and mask. */ ep->sen_cpres = 0xffffffff; ep->sen_cmask = 0xdebb20e3; ep->sen_crcec = 0; /* CRC Error counter */ ep->sen_alec = 0; /* alignment error counter */ ep->sen_disfc = 0; /* discard frame counter */ ep->sen_pads = 0x8888; /* Tx short frame pad character */ ep->sen_retlim = 15; /* Retry limit threshold */ ep->sen_maxflr = PKT_MAXBUF_SIZE; /* maximum frame length register */ ep->sen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */ ep->sen_maxd1 = PKT_MAXBLR_SIZE; /* maximum DMA1 length */ ep->sen_maxd2 = PKT_MAXBLR_SIZE; /* maximum DMA2 length */ /* Clear hash tables. */ ep->sen_gaddr1 = 0; ep->sen_gaddr2 = 0; ep->sen_gaddr3 = 0; ep->sen_gaddr4 = 0; ep->sen_iaddr1 = 0; ep->sen_iaddr2 = 0; ep->sen_iaddr3 = 0; ep->sen_iaddr4 = 0; /* Set Ethernet station address. * * This is supplied in the board information structure, so we * copy that into the controller. */ eap = (unsigned char *)&(ep->sen_paddrh); for (i=5; i>=0; i--) *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i]; ep->sen_pper = 0; /* 'cause the book says so */ ep->sen_taddrl = 0; /* temp address (LSB) */ ep->sen_taddrm = 0; ep->sen_taddrh = 0; /* temp address (MSB) */ /* Now allocate the host memory pages and initialize the * buffer descriptors. */ bdp = cep->tx_bd_base; for (i=0; icbd_sc = 0; bdp->cbd_bufaddr = 0; bdp++; } /* Set the last buffer to wrap. */ bdp--; bdp->cbd_sc |= BD_SC_WRAP; bdp = cep->rx_bd_base; for (i=0; icbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR; bdp->cbd_bufaddr = __pa(mem_addr); mem_addr += CPM_ENET_RX_FRSIZE; bdp++; } } /* Set the last buffer to wrap. */ bdp--; bdp->cbd_sc |= BD_SC_WRAP; /* Let's re-initialize the channel now. We have to do it later * than the manual describes because we have just now finished * the BD initialization. */ cpmp->cp_cpcr = mk_cr_cmd(CPM_ENET_PAGE, CPM_ENET_BLOCK, 0, CPM_CR_INIT_TRX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); cep->skb_cur = cep->skb_dirty = 0; sccp->scc_scce = 0xffff; /* Clear any pending events */ /* Enable interrupts for transmit error, complete frame * received, and any transmit buffer we have also set the * interrupt flag. */ sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB); /* Install our interrupt handler. */ request_irq(SIU_INT_ENET, scc_enet_interrupt, 0, "enet", dev); /* BUG: no check for failure */ /* Set GSMR_H to enable all normal operating modes. * Set GSMR_L to enable Ethernet to MC68160. */ sccp->scc_gsmrh = 0; sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET); /* Set sync/delimiters. */ sccp->scc_dsr = 0xd555; /* Set processing mode. Use Ethernet CRC, catch broadcast, and * start frame search 22 bit times after RENA. */ sccp->scc_psmr = (SCC_PSMR_ENCRC | SCC_PSMR_NIB22); /* It is now OK to enable the Ethernet transmitter. * Unfortunately, there are board implementation differences here. */ io->iop_pparc &= ~(PC_EST8260_ENET_LOOPBACK | PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD); io->iop_psorc &= ~(PC_EST8260_ENET_LOOPBACK | PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD); io->iop_pdirc |= (PC_EST8260_ENET_LOOPBACK | PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD); io->iop_pdatc &= ~(PC_EST8260_ENET_LOOPBACK | PC_EST8260_ENET_SQE); io->iop_pdatc |= PC_EST8260_ENET_NOTFD; dev->base_addr = (unsigned long)ep; /* The CPM Ethernet specific entries in the device structure. */ dev->open = scc_enet_open; dev->hard_start_xmit = scc_enet_start_xmit; dev->tx_timeout = scc_enet_timeout; dev->watchdog_timeo = TX_TIMEOUT; dev->stop = scc_enet_close; dev->get_stats = scc_enet_get_stats; dev->set_multicast_list = set_multicast_list; /* And last, enable the transmit and receive processing. */ sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT); err = register_netdev(dev); if (err) { free_netdev(dev); return err; } printk("%s: SCC ENET Version 0.1, ", dev->name); for (i=0; i<5; i++) printk("%02x:", dev->dev_addr[i]); printk("%02x\n", dev->dev_addr[5]); return 0; } module_init(scc_enet_init);