/* * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved. * * Author: Yu Liu, yu.liu@freescale.com * Scott Wood, scottwood@freescale.com * Ashish Kalra, ashish.kalra@freescale.com * Varun Sethi, varun.sethi@freescale.com * Alexander Graf, agraf@suse.de * * Description: * This file is based on arch/powerpc/kvm/44x_tlb.c, * by Hollis Blanchard . * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "e500.h" #include "timing.h" #include "e500_mmu_host.h" #include "trace_booke.h" #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1) static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM]; static inline unsigned int tlb1_max_shadow_size(void) { /* reserve one entry for magic page */ return host_tlb_params[1].entries - tlbcam_index - 1; } static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode) { /* Mask off reserved bits. */ mas3 &= MAS3_ATTRIB_MASK; #ifndef CONFIG_KVM_BOOKE_HV if (!usermode) { /* Guest is in supervisor mode, * so we need to translate guest * supervisor permissions into user permissions. */ mas3 &= ~E500_TLB_USER_PERM_MASK; mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1; } mas3 |= E500_TLB_SUPER_PERM_MASK; #endif return mas3; } /* * writing shadow tlb entry to host TLB */ static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe, uint32_t mas0, uint32_t lpid) { unsigned long flags; local_irq_save(flags); mtspr(SPRN_MAS0, mas0); mtspr(SPRN_MAS1, stlbe->mas1); mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2); mtspr(SPRN_MAS3, (u32)stlbe->mas7_3); mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32)); #ifdef CONFIG_KVM_BOOKE_HV mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid)); #endif asm volatile("isync; tlbwe" : : : "memory"); #ifdef CONFIG_KVM_BOOKE_HV /* Must clear mas8 for other host tlbwe's */ mtspr(SPRN_MAS8, 0); isync(); #endif local_irq_restore(flags); trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1, stlbe->mas2, stlbe->mas7_3); } /* * Acquire a mas0 with victim hint, as if we just took a TLB miss. * * We don't care about the address we're searching for, other than that it's * in the right set and is not present in the TLB. Using a zero PID and a * userspace address means we don't have to set and then restore MAS5, or * calculate a proper MAS6 value. */ static u32 get_host_mas0(unsigned long eaddr) { unsigned long flags; u32 mas0; u32 mas4; local_irq_save(flags); mtspr(SPRN_MAS6, 0); mas4 = mfspr(SPRN_MAS4); mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK); asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET)); mas0 = mfspr(SPRN_MAS0); mtspr(SPRN_MAS4, mas4); local_irq_restore(flags); return mas0; } /* sesel is for tlb1 only */ static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe) { u32 mas0; if (tlbsel == 0) { mas0 = get_host_mas0(stlbe->mas2); __write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid); } else { __write_host_tlbe(stlbe, MAS0_TLBSEL(1) | MAS0_ESEL(to_htlb1_esel(sesel)), vcpu_e500->vcpu.kvm->arch.lpid); } } /* sesel is for tlb1 only */ static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500, struct kvm_book3e_206_tlb_entry *gtlbe, struct kvm_book3e_206_tlb_entry *stlbe, int stlbsel, int sesel) { int stid; preempt_disable(); stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe); stlbe->mas1 |= MAS1_TID(stid); write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe); preempt_enable(); } #ifdef CONFIG_KVM_E500V2 /* XXX should be a hook in the gva2hpa translation */ void kvmppc_map_magic(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); struct kvm_book3e_206_tlb_entry magic; ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK; unsigned int stid; pfn_t pfn; pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT; get_page(pfn_to_page(pfn)); preempt_disable(); stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0); magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) | MAS1_TSIZE(BOOK3E_PAGESZ_4K); magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M; magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) | MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR; magic.mas8 = 0; __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0); preempt_enable(); } #endif void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int esel) { struct kvm_book3e_206_tlb_entry *gtlbe = get_entry(vcpu_e500, tlbsel, esel); struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref; /* Don't bother with unmapped entries */ if (!(ref->flags & E500_TLB_VALID)) { WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0), "%s: flags %x\n", __func__, ref->flags); WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]); } if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) { u64 tmp = vcpu_e500->g2h_tlb1_map[esel]; int hw_tlb_indx; unsigned long flags; local_irq_save(flags); while (tmp) { hw_tlb_indx = __ilog2_u64(tmp & -tmp); mtspr(SPRN_MAS0, MAS0_TLBSEL(1) | MAS0_ESEL(to_htlb1_esel(hw_tlb_indx))); mtspr(SPRN_MAS1, 0); asm volatile("tlbwe"); vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0; tmp &= tmp - 1; } mb(); vcpu_e500->g2h_tlb1_map[esel] = 0; ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID); local_irq_restore(flags); } if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) { /* * TLB1 entry is backed by 4k pages. This should happen * rarely and is not worth optimizing. Invalidate everything. */ kvmppc_e500_tlbil_all(vcpu_e500); ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID); } /* * If TLB entry is still valid then it's a TLB0 entry, and thus * backed by at most one host tlbe per shadow pid */ if (ref->flags & E500_TLB_VALID) kvmppc_e500_tlbil_one(vcpu_e500, gtlbe); /* Mark the TLB as not backed by the host anymore */ ref->flags = 0; } static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe) { return tlbe->mas7_3 & (MAS3_SW|MAS3_UW); } static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref, struct kvm_book3e_206_tlb_entry *gtlbe, pfn_t pfn, unsigned int wimg) { ref->pfn = pfn; ref->flags = E500_TLB_VALID; /* Use guest supplied MAS2_G and MAS2_E */ ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg; /* Mark the page accessed */ kvm_set_pfn_accessed(pfn); if (tlbe_is_writable(gtlbe)) kvm_set_pfn_dirty(pfn); } static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref) { if (ref->flags & E500_TLB_VALID) { /* FIXME: don't log bogus pfn for TLB1 */ trace_kvm_booke206_ref_release(ref->pfn, ref->flags); ref->flags = 0; } } static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500) { if (vcpu_e500->g2h_tlb1_map) memset(vcpu_e500->g2h_tlb1_map, 0, sizeof(u64) * vcpu_e500->gtlb_params[1].entries); if (vcpu_e500->h2g_tlb1_rmap) memset(vcpu_e500->h2g_tlb1_rmap, 0, sizeof(unsigned int) * host_tlb_params[1].entries); } static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500) { int tlbsel; int i; for (tlbsel = 0; tlbsel <= 1; tlbsel++) { for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) { struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][i].ref; kvmppc_e500_ref_release(ref); } } } void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); kvmppc_e500_tlbil_all(vcpu_e500); clear_tlb_privs(vcpu_e500); clear_tlb1_bitmap(vcpu_e500); } /* TID must be supplied by the caller */ static void kvmppc_e500_setup_stlbe( struct kvm_vcpu *vcpu, struct kvm_book3e_206_tlb_entry *gtlbe, int tsize, struct tlbe_ref *ref, u64 gvaddr, struct kvm_book3e_206_tlb_entry *stlbe) { pfn_t pfn = ref->pfn; u32 pr = vcpu->arch.shared->msr & MSR_PR; BUG_ON(!(ref->flags & E500_TLB_VALID)); /* Force IPROT=0 for all guest mappings. */ stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID; stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR); stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) | e500_shadow_mas3_attrib(gtlbe->mas7_3, pr); } static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500, u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe, struct tlbe_ref *ref) { struct kvm_memory_slot *slot; unsigned long pfn = 0; /* silence GCC warning */ unsigned long hva; int pfnmap = 0; int tsize = BOOK3E_PAGESZ_4K; int ret = 0; unsigned long mmu_seq; struct kvm *kvm = vcpu_e500->vcpu.kvm; unsigned long tsize_pages = 0; pte_t *ptep; unsigned int wimg = 0; pgd_t *pgdir; /* used to check for invalidations in progress */ mmu_seq = kvm->mmu_notifier_seq; smp_rmb(); /* * Translate guest physical to true physical, acquiring * a page reference if it is normal, non-reserved memory. * * gfn_to_memslot() must succeed because otherwise we wouldn't * have gotten this far. Eventually we should just pass the slot * pointer through from the first lookup. */ slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn); hva = gfn_to_hva_memslot(slot, gfn); if (tlbsel == 1) { struct vm_area_struct *vma; down_read(¤t->mm->mmap_sem); vma = find_vma(current->mm, hva); if (vma && hva >= vma->vm_start && (vma->vm_flags & VM_PFNMAP)) { /* * This VMA is a physically contiguous region (e.g. * /dev/mem) that bypasses normal Linux page * management. Find the overlap between the * vma and the memslot. */ unsigned long start, end; unsigned long slot_start, slot_end; pfnmap = 1; start = vma->vm_pgoff; end = start + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT); pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT); slot_start = pfn - (gfn - slot->base_gfn); slot_end = slot_start + slot->npages; if (start < slot_start) start = slot_start; if (end > slot_end) end = slot_end; tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; /* * e500 doesn't implement the lowest tsize bit, * or 1K pages. */ tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); /* * Now find the largest tsize (up to what the guest * requested) that will cover gfn, stay within the * range, and for which gfn and pfn are mutually * aligned. */ for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) { unsigned long gfn_start, gfn_end; tsize_pages = 1 << (tsize - 2); gfn_start = gfn & ~(tsize_pages - 1); gfn_end = gfn_start + tsize_pages; if (gfn_start + pfn - gfn < start) continue; if (gfn_end + pfn - gfn > end) continue; if ((gfn & (tsize_pages - 1)) != (pfn & (tsize_pages - 1))) continue; gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); pfn &= ~(tsize_pages - 1); break; } } else if (vma && hva >= vma->vm_start && (vma->vm_flags & VM_HUGETLB)) { unsigned long psize = vma_kernel_pagesize(vma); tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; /* * Take the largest page size that satisfies both host * and guest mapping */ tsize = min(__ilog2(psize) - 10, tsize); /* * e500 doesn't implement the lowest tsize bit, * or 1K pages. */ tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); } up_read(¤t->mm->mmap_sem); } if (likely(!pfnmap)) { tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT); pfn = gfn_to_pfn_memslot(slot, gfn); if (is_error_noslot_pfn(pfn)) { if (printk_ratelimit()) pr_err("%s: real page not found for gfn %lx\n", __func__, (long)gfn); return -EINVAL; } /* Align guest and physical address to page map boundaries */ pfn &= ~(tsize_pages - 1); gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); } spin_lock(&kvm->mmu_lock); if (mmu_notifier_retry(kvm, mmu_seq)) { ret = -EAGAIN; goto out; } pgdir = vcpu_e500->vcpu.arch.pgdir; ptep = lookup_linux_ptep(pgdir, hva, &tsize_pages); if (pte_present(*ptep)) wimg = (*ptep >> PTE_WIMGE_SHIFT) & MAS2_WIMGE_MASK; else { if (printk_ratelimit()) pr_err("%s: pte not present: gfn %lx, pfn %lx\n", __func__, (long)gfn, pfn); ret = -EINVAL; goto out; } kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg); kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize, ref, gvaddr, stlbe); /* Clear i-cache for new pages */ kvmppc_mmu_flush_icache(pfn); out: spin_unlock(&kvm->mmu_lock); /* Drop refcount on page, so that mmu notifiers can clear it */ kvm_release_pfn_clean(pfn); return ret; } /* XXX only map the one-one case, for now use TLB0 */ static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel, struct kvm_book3e_206_tlb_entry *stlbe) { struct kvm_book3e_206_tlb_entry *gtlbe; struct tlbe_ref *ref; int stlbsel = 0; int sesel = 0; int r; gtlbe = get_entry(vcpu_e500, 0, esel); ref = &vcpu_e500->gtlb_priv[0][esel].ref; r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe), get_tlb_raddr(gtlbe) >> PAGE_SHIFT, gtlbe, 0, stlbe, ref); if (r) return r; write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel); return 0; } static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500, struct tlbe_ref *ref, int esel) { unsigned int sesel = vcpu_e500->host_tlb1_nv++; if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size())) vcpu_e500->host_tlb1_nv = 0; if (vcpu_e500->h2g_tlb1_rmap[sesel]) { unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1; vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel); } vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP; vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel; vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1; WARN_ON(!(ref->flags & E500_TLB_VALID)); return sesel; } /* Caller must ensure that the specified guest TLB entry is safe to insert into * the shadow TLB. */ /* For both one-one and one-to-many */ static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500, u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, struct kvm_book3e_206_tlb_entry *stlbe, int esel) { struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref; int sesel; int r; r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, ref); if (r) return r; /* Use TLB0 when we can only map a page with 4k */ if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) { vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0; write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0); return 0; } /* Otherwise map into TLB1 */ sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel); write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel); return 0; } void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr, unsigned int index) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); struct tlbe_priv *priv; struct kvm_book3e_206_tlb_entry *gtlbe, stlbe; int tlbsel = tlbsel_of(index); int esel = esel_of(index); gtlbe = get_entry(vcpu_e500, tlbsel, esel); switch (tlbsel) { case 0: priv = &vcpu_e500->gtlb_priv[tlbsel][esel]; /* Triggers after clear_tlb_privs or on initial mapping */ if (!(priv->ref.flags & E500_TLB_VALID)) { kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe); } else { kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K, &priv->ref, eaddr, &stlbe); write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0); } break; case 1: { gfn_t gfn = gpaddr >> PAGE_SHIFT; kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe, esel); break; } default: BUG(); break; } } #ifdef CONFIG_KVM_BOOKE_HV int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type, u32 *instr) { gva_t geaddr; hpa_t addr; hfn_t pfn; hva_t eaddr; u32 mas1, mas2, mas3; u64 mas7_mas3; struct page *page; unsigned int addr_space, psize_shift; bool pr; unsigned long flags; /* Search TLB for guest pc to get the real address */ geaddr = kvmppc_get_pc(vcpu); addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG; local_irq_save(flags); mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space); mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu)); asm volatile("tlbsx 0, %[geaddr]\n" : : [geaddr] "r" (geaddr)); mtspr(SPRN_MAS5, 0); mtspr(SPRN_MAS8, 0); mas1 = mfspr(SPRN_MAS1); mas2 = mfspr(SPRN_MAS2); mas3 = mfspr(SPRN_MAS3); #ifdef CONFIG_64BIT mas7_mas3 = mfspr(SPRN_MAS7_MAS3); #else mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3; #endif local_irq_restore(flags); /* * If the TLB entry for guest pc was evicted, return to the guest. * There are high chances to find a valid TLB entry next time. */ if (!(mas1 & MAS1_VALID)) return EMULATE_AGAIN; /* * Another thread may rewrite the TLB entry in parallel, don't * execute from the address if the execute permission is not set */ pr = vcpu->arch.shared->msr & MSR_PR; if (unlikely((pr && !(mas3 & MAS3_UX)) || (!pr && !(mas3 & MAS3_SX)))) { pr_err_ratelimited( "%s: Instruction emulation from guest address %08lx without execute permission\n", __func__, geaddr); return EMULATE_AGAIN; } /* * The real address will be mapped by a cacheable, memory coherent, * write-back page. Check for mismatches when LRAT is used. */ if (has_feature(vcpu, VCPU_FTR_MMU_V2) && unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) { pr_err_ratelimited( "%s: Instruction emulation from guest address %08lx mismatches storage attributes\n", __func__, geaddr); return EMULATE_AGAIN; } /* Get pfn */ psize_shift = MAS1_GET_TSIZE(mas1) + 10; addr = (mas7_mas3 & (~0ULL << psize_shift)) | (geaddr & ((1ULL << psize_shift) - 1ULL)); pfn = addr >> PAGE_SHIFT; /* Guard against emulation from devices area */ if (unlikely(!page_is_ram(pfn))) { pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n", __func__, addr); return EMULATE_AGAIN; } /* Map a page and get guest's instruction */ page = pfn_to_page(pfn); eaddr = (unsigned long)kmap_atomic(page); *instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK)); kunmap_atomic((u32 *)eaddr); return EMULATE_DONE; } #else int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type, u32 *instr) { return EMULATE_AGAIN; } #endif /************* MMU Notifiers *************/ int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) { trace_kvm_unmap_hva(hva); /* * Flush all shadow tlb entries everywhere. This is slow, but * we are 100% sure that we catch the to be unmapped page */ kvm_flush_remote_tlbs(kvm); return 0; } int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) { /* kvm_unmap_hva flushes everything anyways */ kvm_unmap_hva(kvm, start); return 0; } int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) { /* XXX could be more clever ;) */ return 0; } int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) { /* XXX could be more clever ;) */ return 0; } void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) { /* The page will get remapped properly on its next fault */ kvm_unmap_hva(kvm, hva); } /*****************************************/ int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500) { host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY; host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY; /* * This should never happen on real e500 hardware, but is * architecturally possible -- e.g. in some weird nested * virtualization case. */ if (host_tlb_params[0].entries == 0 || host_tlb_params[1].entries == 0) { pr_err("%s: need to know host tlb size\n", __func__); return -ENODEV; } host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >> TLBnCFG_ASSOC_SHIFT; host_tlb_params[1].ways = host_tlb_params[1].entries; if (!is_power_of_2(host_tlb_params[0].entries) || !is_power_of_2(host_tlb_params[0].ways) || host_tlb_params[0].entries < host_tlb_params[0].ways || host_tlb_params[0].ways == 0) { pr_err("%s: bad tlb0 host config: %u entries %u ways\n", __func__, host_tlb_params[0].entries, host_tlb_params[0].ways); return -ENODEV; } host_tlb_params[0].sets = host_tlb_params[0].entries / host_tlb_params[0].ways; host_tlb_params[1].sets = 1; vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) * host_tlb_params[1].entries, GFP_KERNEL); if (!vcpu_e500->h2g_tlb1_rmap) return -EINVAL; return 0; } void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500) { kfree(vcpu_e500->h2g_tlb1_rmap); }