/* * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved. * * Author: Yu Liu, * * Description: * This file is derived from arch/powerpc/kvm/44x.c, * by Hollis Blanchard . * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include "../mm/mmu_decl.h" #include "booke.h" #include "e500.h" struct id { unsigned long val; struct id **pentry; }; #define NUM_TIDS 256 /* * This table provide mappings from: * (guestAS,guestTID,guestPR) --> ID of physical cpu * guestAS [0..1] * guestTID [0..255] * guestPR [0..1] * ID [1..255] * Each vcpu keeps one vcpu_id_table. */ struct vcpu_id_table { struct id id[2][NUM_TIDS][2]; }; /* * This table provide reversed mappings of vcpu_id_table: * ID --> address of vcpu_id_table item. * Each physical core has one pcpu_id_table. */ struct pcpu_id_table { struct id *entry[NUM_TIDS]; }; static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids); /* This variable keeps last used shadow ID on local core. * The valid range of shadow ID is [1..255] */ static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid); /* * Allocate a free shadow id and setup a valid sid mapping in given entry. * A mapping is only valid when vcpu_id_table and pcpu_id_table are match. * * The caller must have preemption disabled, and keep it that way until * it has finished with the returned shadow id (either written into the * TLB or arch.shadow_pid, or discarded). */ static inline int local_sid_setup_one(struct id *entry) { unsigned long sid; int ret = -1; sid = __this_cpu_inc_return(pcpu_last_used_sid); if (sid < NUM_TIDS) { __this_cpu_write(pcpu_sids.entry[sid], entry); entry->val = sid; entry->pentry = this_cpu_ptr(&pcpu_sids.entry[sid]); ret = sid; } /* * If sid == NUM_TIDS, we've run out of sids. We return -1, and * the caller will invalidate everything and start over. * * sid > NUM_TIDS indicates a race, which we disable preemption to * avoid. */ WARN_ON(sid > NUM_TIDS); return ret; } /* * Check if given entry contain a valid shadow id mapping. * An ID mapping is considered valid only if * both vcpu and pcpu know this mapping. * * The caller must have preemption disabled, and keep it that way until * it has finished with the returned shadow id (either written into the * TLB or arch.shadow_pid, or discarded). */ static inline int local_sid_lookup(struct id *entry) { if (entry && entry->val != 0 && __this_cpu_read(pcpu_sids.entry[entry->val]) == entry && entry->pentry == this_cpu_ptr(&pcpu_sids.entry[entry->val])) return entry->val; return -1; } /* Invalidate all id mappings on local core -- call with preempt disabled */ static inline void local_sid_destroy_all(void) { __this_cpu_write(pcpu_last_used_sid, 0); memset(this_cpu_ptr(&pcpu_sids), 0, sizeof(pcpu_sids)); } static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500) { vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL); return vcpu_e500->idt; } static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500) { kfree(vcpu_e500->idt); vcpu_e500->idt = NULL; } /* Map guest pid to shadow. * We use PID to keep shadow of current guest non-zero PID, * and use PID1 to keep shadow of guest zero PID. * So that guest tlbe with TID=0 can be accessed at any time */ static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500) { preempt_disable(); vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500, get_cur_as(&vcpu_e500->vcpu), get_cur_pid(&vcpu_e500->vcpu), get_cur_pr(&vcpu_e500->vcpu), 1); vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500, get_cur_as(&vcpu_e500->vcpu), 0, get_cur_pr(&vcpu_e500->vcpu), 1); preempt_enable(); } /* Invalidate all mappings on vcpu */ static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500) { memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table)); /* Update shadow pid when mappings are changed */ kvmppc_e500_recalc_shadow_pid(vcpu_e500); } /* Invalidate one ID mapping on vcpu */ static inline void kvmppc_e500_id_table_reset_one( struct kvmppc_vcpu_e500 *vcpu_e500, int as, int pid, int pr) { struct vcpu_id_table *idt = vcpu_e500->idt; BUG_ON(as >= 2); BUG_ON(pid >= NUM_TIDS); BUG_ON(pr >= 2); idt->id[as][pid][pr].val = 0; idt->id[as][pid][pr].pentry = NULL; /* Update shadow pid when mappings are changed */ kvmppc_e500_recalc_shadow_pid(vcpu_e500); } /* * Map guest (vcpu,AS,ID,PR) to physical core shadow id. * This function first lookup if a valid mapping exists, * if not, then creates a new one. * * The caller must have preemption disabled, and keep it that way until * it has finished with the returned shadow id (either written into the * TLB or arch.shadow_pid, or discarded). */ unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500, unsigned int as, unsigned int gid, unsigned int pr, int avoid_recursion) { struct vcpu_id_table *idt = vcpu_e500->idt; int sid; BUG_ON(as >= 2); BUG_ON(gid >= NUM_TIDS); BUG_ON(pr >= 2); sid = local_sid_lookup(&idt->id[as][gid][pr]); while (sid <= 0) { /* No mapping yet */ sid = local_sid_setup_one(&idt->id[as][gid][pr]); if (sid <= 0) { _tlbil_all(); local_sid_destroy_all(); } /* Update shadow pid when mappings are changed */ if (!avoid_recursion) kvmppc_e500_recalc_shadow_pid(vcpu_e500); } return sid; } unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu, struct kvm_book3e_206_tlb_entry *gtlbe) { return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe), get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0); } void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); if (vcpu->arch.pid != pid) { vcpu_e500->pid[0] = vcpu->arch.pid = pid; kvmppc_e500_recalc_shadow_pid(vcpu_e500); } } /* gtlbe must not be mapped by more than one host tlbe */ void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500, struct kvm_book3e_206_tlb_entry *gtlbe) { struct vcpu_id_table *idt = vcpu_e500->idt; unsigned int pr, tid, ts, pid; u32 val, eaddr; unsigned long flags; ts = get_tlb_ts(gtlbe); tid = get_tlb_tid(gtlbe); preempt_disable(); /* One guest ID may be mapped to two shadow IDs */ for (pr = 0; pr < 2; pr++) { /* * The shadow PID can have a valid mapping on at most one * host CPU. In the common case, it will be valid on this * CPU, in which case we do a local invalidation of the * specific address. * * If the shadow PID is not valid on the current host CPU, * we invalidate the entire shadow PID. */ pid = local_sid_lookup(&idt->id[ts][tid][pr]); if (pid <= 0) { kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr); continue; } /* * The guest is invalidating a 4K entry which is in a PID * that has a valid shadow mapping on this host CPU. We * search host TLB to invalidate it's shadow TLB entry, * similar to __tlbil_va except that we need to look in AS1. */ val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS; eaddr = get_tlb_eaddr(gtlbe); local_irq_save(flags); mtspr(SPRN_MAS6, val); asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr)); val = mfspr(SPRN_MAS1); if (val & MAS1_VALID) { mtspr(SPRN_MAS1, val & ~MAS1_VALID); asm volatile("tlbwe"); } local_irq_restore(flags); } preempt_enable(); } void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500) { kvmppc_e500_id_table_reset_all(vcpu_e500); } void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr) { /* Recalc shadow pid since MSR changes */ kvmppc_e500_recalc_shadow_pid(to_e500(vcpu)); } static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu) { kvmppc_booke_vcpu_load(vcpu, cpu); /* Shadow PID may be expired on local core */ kvmppc_e500_recalc_shadow_pid(to_e500(vcpu)); } static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu) { #ifdef CONFIG_SPE if (vcpu->arch.shadow_msr & MSR_SPE) kvmppc_vcpu_disable_spe(vcpu); #endif kvmppc_booke_vcpu_put(vcpu); } int kvmppc_core_check_processor_compat(void) { int r; if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0) r = 0; else r = -ENOTSUPP; return r; } static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500) { struct kvm_book3e_206_tlb_entry *tlbe; /* Insert large initial mapping for guest. */ tlbe = get_entry(vcpu_e500, 1, 0); tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M); tlbe->mas2 = 0; tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK; /* 4K map for serial output. Used by kernel wrapper. */ tlbe = get_entry(vcpu_e500, 1, 1); tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K); tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G; tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK; } int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); kvmppc_e500_tlb_setup(vcpu_e500); /* Registers init */ vcpu->arch.pvr = mfspr(SPRN_PVR); vcpu_e500->svr = mfspr(SPRN_SVR); vcpu->arch.cpu_type = KVM_CPU_E500V2; return 0; } static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE | KVM_SREGS_E_PM; sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL; sregs->u.e.impl.fsl.features = 0; sregs->u.e.impl.fsl.svr = vcpu_e500->svr; sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0; sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar; sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL]; sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA]; sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND]; sregs->u.e.ivor_high[3] = vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR]; kvmppc_get_sregs_ivor(vcpu, sregs); kvmppc_get_sregs_e500_tlb(vcpu, sregs); return 0; } static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int ret; if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { vcpu_e500->svr = sregs->u.e.impl.fsl.svr; vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0; vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar; } ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs); if (ret < 0) return ret; if (!(sregs->u.e.features & KVM_SREGS_E_IVOR)) return 0; if (sregs->u.e.features & KVM_SREGS_E_SPE) { vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] = sregs->u.e.ivor_high[0]; vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] = sregs->u.e.ivor_high[1]; vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] = sregs->u.e.ivor_high[2]; } if (sregs->u.e.features & KVM_SREGS_E_PM) { vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] = sregs->u.e.ivor_high[3]; } return kvmppc_set_sregs_ivor(vcpu, sregs); } static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) { int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val); return r; } static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) { int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val); return r; } static struct kvm_vcpu *kvmppc_core_vcpu_create_e500(struct kvm *kvm, unsigned int id) { struct kvmppc_vcpu_e500 *vcpu_e500; struct kvm_vcpu *vcpu; int err; vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); if (!vcpu_e500) { err = -ENOMEM; goto out; } vcpu = &vcpu_e500->vcpu; err = kvm_vcpu_init(vcpu, kvm, id); if (err) goto free_vcpu; if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL) goto uninit_vcpu; err = kvmppc_e500_tlb_init(vcpu_e500); if (err) goto uninit_id; vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO); if (!vcpu->arch.shared) goto uninit_tlb; return vcpu; uninit_tlb: kvmppc_e500_tlb_uninit(vcpu_e500); uninit_id: kvmppc_e500_id_table_free(vcpu_e500); uninit_vcpu: kvm_vcpu_uninit(vcpu); free_vcpu: kmem_cache_free(kvm_vcpu_cache, vcpu_e500); out: return ERR_PTR(err); } static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); free_page((unsigned long)vcpu->arch.shared); kvmppc_e500_tlb_uninit(vcpu_e500); kvmppc_e500_id_table_free(vcpu_e500); kvm_vcpu_uninit(vcpu); kmem_cache_free(kvm_vcpu_cache, vcpu_e500); } static int kvmppc_core_init_vm_e500(struct kvm *kvm) { return 0; } static void kvmppc_core_destroy_vm_e500(struct kvm *kvm) { } static struct kvmppc_ops kvm_ops_e500 = { .get_sregs = kvmppc_core_get_sregs_e500, .set_sregs = kvmppc_core_set_sregs_e500, .get_one_reg = kvmppc_get_one_reg_e500, .set_one_reg = kvmppc_set_one_reg_e500, .vcpu_load = kvmppc_core_vcpu_load_e500, .vcpu_put = kvmppc_core_vcpu_put_e500, .vcpu_create = kvmppc_core_vcpu_create_e500, .vcpu_free = kvmppc_core_vcpu_free_e500, .mmu_destroy = kvmppc_mmu_destroy_e500, .init_vm = kvmppc_core_init_vm_e500, .destroy_vm = kvmppc_core_destroy_vm_e500, .emulate_op = kvmppc_core_emulate_op_e500, .emulate_mtspr = kvmppc_core_emulate_mtspr_e500, .emulate_mfspr = kvmppc_core_emulate_mfspr_e500, }; static int __init kvmppc_e500_init(void) { int r, i; unsigned long ivor[3]; /* Process remaining handlers above the generic first 16 */ unsigned long *handler = &kvmppc_booke_handler_addr[16]; unsigned long handler_len; unsigned long max_ivor = 0; r = kvmppc_core_check_processor_compat(); if (r) goto err_out; r = kvmppc_booke_init(); if (r) goto err_out; /* copy extra E500 exception handlers */ ivor[0] = mfspr(SPRN_IVOR32); ivor[1] = mfspr(SPRN_IVOR33); ivor[2] = mfspr(SPRN_IVOR34); for (i = 0; i < 3; i++) { if (ivor[i] > ivor[max_ivor]) max_ivor = i; handler_len = handler[i + 1] - handler[i]; memcpy((void *)kvmppc_booke_handlers + ivor[i], (void *)handler[i], handler_len); } handler_len = handler[max_ivor + 1] - handler[max_ivor]; flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers + ivor[max_ivor] + handler_len); r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE); if (r) goto err_out; kvm_ops_e500.owner = THIS_MODULE; kvmppc_pr_ops = &kvm_ops_e500; err_out: return r; } static void __exit kvmppc_e500_exit(void) { kvmppc_pr_ops = NULL; kvmppc_booke_exit(); } module_init(kvmppc_e500_init); module_exit(kvmppc_e500_exit); MODULE_ALIAS_MISCDEV(KVM_MINOR); MODULE_ALIAS("devname:kvm");