/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * Copyright 2016 Paul Mackerras, IBM Corp. */ #include #include #include #include #include #include #include #include #include #include #include /* * Supported radix tree geometry. * Like p9, we support either 5 or 9 bits at the first (lowest) level, * for a page size of 64k or 4k. */ static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 }; int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, struct kvmppc_pte *gpte, bool data, bool iswrite) { struct kvm *kvm = vcpu->kvm; u32 pid; int ret, level, ps; __be64 prte, rpte; unsigned long ptbl; unsigned long root, pte, index; unsigned long rts, bits, offset; unsigned long gpa; unsigned long proc_tbl_size; /* Work out effective PID */ switch (eaddr >> 62) { case 0: pid = vcpu->arch.pid; break; case 3: pid = 0; break; default: return -EINVAL; } proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12); if (pid * 16 >= proc_tbl_size) return -EINVAL; /* Read partition table to find root of tree for effective PID */ ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16); ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte)); if (ret) return ret; root = be64_to_cpu(prte); rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) | ((root & RTS2_MASK) >> RTS2_SHIFT); bits = root & RPDS_MASK; root = root & RPDB_MASK; /* P9 DD1 interprets RTS (radix tree size) differently */ offset = rts + 31; if (cpu_has_feature(CPU_FTR_POWER9_DD1)) offset -= 3; /* current implementations only support 52-bit space */ if (offset != 52) return -EINVAL; for (level = 3; level >= 0; --level) { if (level && bits != p9_supported_radix_bits[level]) return -EINVAL; if (level == 0 && !(bits == 5 || bits == 9)) return -EINVAL; offset -= bits; index = (eaddr >> offset) & ((1UL << bits) - 1); /* check that low bits of page table base are zero */ if (root & ((1UL << (bits + 3)) - 1)) return -EINVAL; ret = kvm_read_guest(kvm, root + index * 8, &rpte, sizeof(rpte)); if (ret) return ret; pte = __be64_to_cpu(rpte); if (!(pte & _PAGE_PRESENT)) return -ENOENT; if (pte & _PAGE_PTE) break; bits = pte & 0x1f; root = pte & 0x0fffffffffffff00ul; } /* need a leaf at lowest level; 512GB pages not supported */ if (level < 0 || level == 3) return -EINVAL; /* offset is now log base 2 of the page size */ gpa = pte & 0x01fffffffffff000ul; if (gpa & ((1ul << offset) - 1)) return -EINVAL; gpa += eaddr & ((1ul << offset) - 1); for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps) if (offset == mmu_psize_defs[ps].shift) break; gpte->page_size = ps; gpte->eaddr = eaddr; gpte->raddr = gpa; /* Work out permissions */ gpte->may_read = !!(pte & _PAGE_READ); gpte->may_write = !!(pte & _PAGE_WRITE); gpte->may_execute = !!(pte & _PAGE_EXEC); if (kvmppc_get_msr(vcpu) & MSR_PR) { if (pte & _PAGE_PRIVILEGED) { gpte->may_read = 0; gpte->may_write = 0; gpte->may_execute = 0; } } else { if (!(pte & _PAGE_PRIVILEGED)) { /* Check AMR/IAMR to see if strict mode is in force */ if (vcpu->arch.amr & (1ul << 62)) gpte->may_read = 0; if (vcpu->arch.amr & (1ul << 63)) gpte->may_write = 0; if (vcpu->arch.iamr & (1ul << 62)) gpte->may_execute = 0; } } return 0; } static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, unsigned int pshift) { unsigned long psize = PAGE_SIZE; if (pshift) psize = 1UL << pshift; addr &= ~(psize - 1); radix__flush_tlb_lpid_page(kvm->arch.lpid, addr, psize); } static void kvmppc_radix_flush_pwc(struct kvm *kvm) { radix__flush_pwc_lpid(kvm->arch.lpid); } static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep, unsigned long clr, unsigned long set, unsigned long addr, unsigned int shift) { unsigned long old = 0; if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) && pte_present(*ptep)) { /* have to invalidate it first */ old = __radix_pte_update(ptep, _PAGE_PRESENT, 0); kvmppc_radix_tlbie_page(kvm, addr, shift); set |= _PAGE_PRESENT; old &= _PAGE_PRESENT; } return __radix_pte_update(ptep, clr, set) | old; } void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr, pte_t *ptep, pte_t pte) { radix__set_pte_at(kvm->mm, addr, ptep, pte, 0); } static struct kmem_cache *kvm_pte_cache; static struct kmem_cache *kvm_pmd_cache; static pte_t *kvmppc_pte_alloc(void) { return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL); } static void kvmppc_pte_free(pte_t *ptep) { kmem_cache_free(kvm_pte_cache, ptep); } /* Like pmd_huge() and pmd_large(), but works regardless of config options */ static inline int pmd_is_leaf(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_PTE); } static pmd_t *kvmppc_pmd_alloc(void) { return kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL); } static void kvmppc_pmd_free(pmd_t *pmdp) { kmem_cache_free(kvm_pmd_cache, pmdp); } static void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa, unsigned int shift) { unsigned long page_size = 1ul << shift; unsigned long old; old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift); kvmppc_radix_tlbie_page(kvm, gpa, shift); if (old & _PAGE_DIRTY) { unsigned long gfn = gpa >> PAGE_SHIFT; struct kvm_memory_slot *memslot; memslot = gfn_to_memslot(kvm, gfn); if (memslot && memslot->dirty_bitmap) kvmppc_update_dirty_map(memslot, gfn, page_size); } } /* * kvmppc_free_p?d are used to free existing page tables, and recursively * descend and clear and free children. * Callers are responsible for flushing the PWC. * * When page tables are being unmapped/freed as part of page fault path * (full == false), ptes are not expected. There is code to unmap them * and emit a warning if encountered, but there may already be data * corruption due to the unexpected mappings. */ static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full) { if (full) { memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE); } else { pte_t *p = pte; unsigned long it; for (it = 0; it < PTRS_PER_PTE; ++it, ++p) { if (pte_val(*p) == 0) continue; WARN_ON_ONCE(1); kvmppc_unmap_pte(kvm, p, pte_pfn(*p) << PAGE_SHIFT, PAGE_SHIFT); } } kvmppc_pte_free(pte); } static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full) { unsigned long im; pmd_t *p = pmd; for (im = 0; im < PTRS_PER_PMD; ++im, ++p) { if (!pmd_present(*p)) continue; if (pmd_is_leaf(*p)) { if (full) { pmd_clear(p); } else { WARN_ON_ONCE(1); kvmppc_unmap_pte(kvm, (pte_t *)p, pte_pfn(*(pte_t *)p) << PAGE_SHIFT, PMD_SHIFT); } } else { pte_t *pte; pte = pte_offset_map(p, 0); kvmppc_unmap_free_pte(kvm, pte, full); pmd_clear(p); } } kvmppc_pmd_free(pmd); } static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud) { unsigned long iu; pud_t *p = pud; for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) { if (!pud_present(*p)) continue; if (pud_huge(*p)) { pud_clear(p); } else { pmd_t *pmd; pmd = pmd_offset(p, 0); kvmppc_unmap_free_pmd(kvm, pmd, true); pud_clear(p); } } pud_free(kvm->mm, pud); } void kvmppc_free_radix(struct kvm *kvm) { unsigned long ig; pgd_t *pgd; if (!kvm->arch.pgtable) return; pgd = kvm->arch.pgtable; for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) { pud_t *pud; if (!pgd_present(*pgd)) continue; pud = pud_offset(pgd, 0); kvmppc_unmap_free_pud(kvm, pud); pgd_clear(pgd); } pgd_free(kvm->mm, kvm->arch.pgtable); kvm->arch.pgtable = NULL; } static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd, unsigned long gpa) { pte_t *pte = pte_offset_kernel(pmd, 0); /* * Clearing the pmd entry then flushing the PWC ensures that the pte * page no longer be cached by the MMU, so can be freed without * flushing the PWC again. */ pmd_clear(pmd); kvmppc_radix_flush_pwc(kvm); kvmppc_unmap_free_pte(kvm, pte, false); } static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud, unsigned long gpa) { pmd_t *pmd = pmd_offset(pud, 0); /* * Clearing the pud entry then flushing the PWC ensures that the pmd * page and any children pte pages will no longer be cached by the MMU, * so can be freed without flushing the PWC again. */ pud_clear(pud); kvmppc_radix_flush_pwc(kvm); kvmppc_unmap_free_pmd(kvm, pmd, false); } /* * There are a number of bits which may differ between different faults to * the same partition scope entry. RC bits, in the course of cleaning and * aging. And the write bit can change, either the access could have been * upgraded, or a read fault could happen concurrently with a write fault * that sets those bits first. */ #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)) static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa, unsigned int level, unsigned long mmu_seq) { pgd_t *pgd; pud_t *pud, *new_pud = NULL; pmd_t *pmd, *new_pmd = NULL; pte_t *ptep, *new_ptep = NULL; int ret; /* Traverse the guest's 2nd-level tree, allocate new levels needed */ pgd = kvm->arch.pgtable + pgd_index(gpa); pud = NULL; if (pgd_present(*pgd)) pud = pud_offset(pgd, gpa); else new_pud = pud_alloc_one(kvm->mm, gpa); pmd = NULL; if (pud && pud_present(*pud) && !pud_huge(*pud)) pmd = pmd_offset(pud, gpa); else if (level <= 1) new_pmd = kvmppc_pmd_alloc(); if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd))) new_ptep = kvmppc_pte_alloc(); /* Check if we might have been invalidated; let the guest retry if so */ spin_lock(&kvm->mmu_lock); ret = -EAGAIN; if (mmu_notifier_retry(kvm, mmu_seq)) goto out_unlock; /* Now traverse again under the lock and change the tree */ ret = -ENOMEM; if (pgd_none(*pgd)) { if (!new_pud) goto out_unlock; pgd_populate(kvm->mm, pgd, new_pud); new_pud = NULL; } pud = pud_offset(pgd, gpa); if (pud_huge(*pud)) { unsigned long hgpa = gpa & PUD_MASK; /* Check if we raced and someone else has set the same thing */ if (level == 2) { if (pud_raw(*pud) == pte_raw(pte)) { ret = 0; goto out_unlock; } /* Valid 1GB page here already, add our extra bits */ WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) & PTE_BITS_MUST_MATCH); kvmppc_radix_update_pte(kvm, (pte_t *)pud, 0, pte_val(pte), hgpa, PUD_SHIFT); ret = 0; goto out_unlock; } /* * If we raced with another CPU which has just put * a 1GB pte in after we saw a pmd page, try again. */ if (!new_pmd) { ret = -EAGAIN; goto out_unlock; } /* Valid 1GB page here already, remove it */ kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT); } if (level == 2) { if (!pud_none(*pud)) { /* * There's a page table page here, but we wanted to * install a large page, so remove and free the page * table page. */ kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa); } kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte); ret = 0; goto out_unlock; } if (pud_none(*pud)) { if (!new_pmd) goto out_unlock; pud_populate(kvm->mm, pud, new_pmd); new_pmd = NULL; } pmd = pmd_offset(pud, gpa); if (pmd_is_leaf(*pmd)) { unsigned long lgpa = gpa & PMD_MASK; /* Check if we raced and someone else has set the same thing */ if (level == 1) { if (pmd_raw(*pmd) == pte_raw(pte)) { ret = 0; goto out_unlock; } /* Valid 2MB page here already, add our extra bits */ WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) & PTE_BITS_MUST_MATCH); kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd), 0, pte_val(pte), lgpa, PMD_SHIFT); ret = 0; goto out_unlock; } /* * If we raced with another CPU which has just put * a 2MB pte in after we saw a pte page, try again. */ if (!new_ptep) { ret = -EAGAIN; goto out_unlock; } /* Valid 2MB page here already, remove it */ kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT); } if (level == 1) { if (!pmd_none(*pmd)) { /* * There's a page table page here, but we wanted to * install a large page, so remove and free the page * table page. */ kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa); } kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte); ret = 0; goto out_unlock; } if (pmd_none(*pmd)) { if (!new_ptep) goto out_unlock; pmd_populate(kvm->mm, pmd, new_ptep); new_ptep = NULL; } ptep = pte_offset_kernel(pmd, gpa); if (pte_present(*ptep)) { /* Check if someone else set the same thing */ if (pte_raw(*ptep) == pte_raw(pte)) { ret = 0; goto out_unlock; } /* Valid page here already, add our extra bits */ WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) & PTE_BITS_MUST_MATCH); kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0); ret = 0; goto out_unlock; } kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte); ret = 0; out_unlock: spin_unlock(&kvm->mmu_lock); if (new_pud) pud_free(kvm->mm, new_pud); if (new_pmd) kvmppc_pmd_free(new_pmd); if (new_ptep) kvmppc_pte_free(new_ptep); return ret; } int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, unsigned long ea, unsigned long dsisr) { struct kvm *kvm = vcpu->kvm; unsigned long mmu_seq, pte_size; unsigned long gpa, gfn, hva, pfn; struct kvm_memory_slot *memslot; struct page *page = NULL; long ret; bool writing; bool upgrade_write = false; bool *upgrade_p = &upgrade_write; pte_t pte, *ptep; unsigned long pgflags; unsigned int shift, level; /* Check for unusual errors */ if (dsisr & DSISR_UNSUPP_MMU) { pr_err("KVM: Got unsupported MMU fault\n"); return -EFAULT; } if (dsisr & DSISR_BADACCESS) { /* Reflect to the guest as DSI */ pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr); kvmppc_core_queue_data_storage(vcpu, ea, dsisr); return RESUME_GUEST; } /* Translate the logical address and get the page */ gpa = vcpu->arch.fault_gpa & ~0xfffUL; gpa &= ~0xF000000000000000ul; gfn = gpa >> PAGE_SHIFT; if (!(dsisr & DSISR_PRTABLE_FAULT)) gpa |= ea & 0xfff; memslot = gfn_to_memslot(kvm, gfn); /* No memslot means it's an emulated MMIO region */ if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS | DSISR_SET_RC)) { /* * Bad address in guest page table tree, or other * unusual error - reflect it to the guest as DSI. */ kvmppc_core_queue_data_storage(vcpu, ea, dsisr); return RESUME_GUEST; } return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, dsisr & DSISR_ISSTORE); } writing = (dsisr & DSISR_ISSTORE) != 0; if (memslot->flags & KVM_MEM_READONLY) { if (writing) { /* give the guest a DSI */ dsisr = DSISR_ISSTORE | DSISR_PROTFAULT; kvmppc_core_queue_data_storage(vcpu, ea, dsisr); return RESUME_GUEST; } upgrade_p = NULL; } if (dsisr & DSISR_SET_RC) { /* * Need to set an R or C bit in the 2nd-level tables; * since we are just helping out the hardware here, * it is sufficient to do what the hardware does. */ pgflags = _PAGE_ACCESSED; if (writing) pgflags |= _PAGE_DIRTY; /* * We are walking the secondary page table here. We can do this * without disabling irq. */ spin_lock(&kvm->mmu_lock); ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) { kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift); dsisr &= ~DSISR_SET_RC; } spin_unlock(&kvm->mmu_lock); if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | DSISR_PROTFAULT | DSISR_SET_RC))) return RESUME_GUEST; } /* used to check for invalidations in progress */ mmu_seq = kvm->mmu_notifier_seq; smp_rmb(); /* * Do a fast check first, since __gfn_to_pfn_memslot doesn't * do it with !atomic && !async, which is how we call it. * We always ask for write permission since the common case * is that the page is writable. */ hva = gfn_to_hva_memslot(memslot, gfn); if (upgrade_p && __get_user_pages_fast(hva, 1, 1, &page) == 1) { pfn = page_to_pfn(page); upgrade_write = true; } else { /* Call KVM generic code to do the slow-path check */ pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, writing, upgrade_p); if (is_error_noslot_pfn(pfn)) return -EFAULT; page = NULL; if (pfn_valid(pfn)) { page = pfn_to_page(pfn); if (PageReserved(page)) page = NULL; } } /* See if we can insert a 1GB or 2MB large PTE here */ level = 0; if (page && PageCompound(page)) { pte_size = PAGE_SIZE << compound_order(compound_head(page)); if (pte_size >= PUD_SIZE && (gpa & (PUD_SIZE - PAGE_SIZE)) == (hva & (PUD_SIZE - PAGE_SIZE))) { level = 2; pfn &= ~((PUD_SIZE >> PAGE_SHIFT) - 1); } else if (pte_size >= PMD_SIZE && (gpa & (PMD_SIZE - PAGE_SIZE)) == (hva & (PMD_SIZE - PAGE_SIZE))) { level = 1; pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1); } } /* * Compute the PTE value that we need to insert. */ if (page) { pgflags = _PAGE_READ | _PAGE_EXEC | _PAGE_PRESENT | _PAGE_PTE | _PAGE_ACCESSED; if (writing || upgrade_write) pgflags |= _PAGE_WRITE | _PAGE_DIRTY; pte = pfn_pte(pfn, __pgprot(pgflags)); } else { /* * Read the PTE from the process' radix tree and use that * so we get the attribute bits. */ local_irq_disable(); ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift); pte = *ptep; local_irq_enable(); if (shift == PUD_SHIFT && (gpa & (PUD_SIZE - PAGE_SIZE)) == (hva & (PUD_SIZE - PAGE_SIZE))) { level = 2; } else if (shift == PMD_SHIFT && (gpa & (PMD_SIZE - PAGE_SIZE)) == (hva & (PMD_SIZE - PAGE_SIZE))) { level = 1; } else if (shift && shift != PAGE_SHIFT) { /* Adjust PFN */ unsigned long mask = (1ul << shift) - PAGE_SIZE; pte = __pte(pte_val(pte) | (hva & mask)); } pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED); if (writing || upgrade_write) { if (pte_val(pte) & _PAGE_WRITE) pte = __pte(pte_val(pte) | _PAGE_DIRTY); } else { pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY)); } } /* Allocate space in the tree and write the PTE */ ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq); if (page) { if (!ret && (pte_val(pte) & _PAGE_WRITE)) set_page_dirty_lock(page); put_page(page); } if (ret == 0 || ret == -EAGAIN) ret = RESUME_GUEST; return ret; } /* Called with kvm->lock held */ int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long gfn) { pte_t *ptep; unsigned long gpa = gfn << PAGE_SHIFT; unsigned int shift; unsigned long old; ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); if (ptep && pte_present(*ptep)) { old = kvmppc_radix_update_pte(kvm, ptep, ~0UL, 0, gpa, shift); kvmppc_radix_tlbie_page(kvm, gpa, shift); if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) { unsigned long npages = 1; if (shift) npages = 1ul << (shift - PAGE_SHIFT); kvmppc_update_dirty_map(memslot, gfn, npages); } } return 0; } /* Called with kvm->lock held */ int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long gfn) { pte_t *ptep; unsigned long gpa = gfn << PAGE_SHIFT; unsigned int shift; int ref = 0; ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); if (ptep && pte_present(*ptep) && pte_young(*ptep)) { kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0, gpa, shift); /* XXX need to flush tlb here? */ ref = 1; } return ref; } /* Called with kvm->lock held */ int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long gfn) { pte_t *ptep; unsigned long gpa = gfn << PAGE_SHIFT; unsigned int shift; int ref = 0; ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); if (ptep && pte_present(*ptep) && pte_young(*ptep)) ref = 1; return ref; } /* Returns the number of PAGE_SIZE pages that are dirty */ static int kvm_radix_test_clear_dirty(struct kvm *kvm, struct kvm_memory_slot *memslot, int pagenum) { unsigned long gfn = memslot->base_gfn + pagenum; unsigned long gpa = gfn << PAGE_SHIFT; pte_t *ptep; unsigned int shift; int ret = 0; ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) { ret = 1; if (shift) ret = 1 << (shift - PAGE_SHIFT); kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0, gpa, shift); kvmppc_radix_tlbie_page(kvm, gpa, shift); } return ret; } long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long *map) { unsigned long i, j; int npages; for (i = 0; i < memslot->npages; i = j) { npages = kvm_radix_test_clear_dirty(kvm, memslot, i); /* * Note that if npages > 0 then i must be a multiple of npages, * since huge pages are only used to back the guest at guest * real addresses that are a multiple of their size. * Since we have at most one PTE covering any given guest * real address, if npages > 1 we can skip to i + npages. */ j = i + 1; if (npages) { set_dirty_bits(map, i, npages); j = i + npages; } } return 0; } static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info, int psize, int *indexp) { if (!mmu_psize_defs[psize].shift) return; info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift | (mmu_psize_defs[psize].ap << 29); ++(*indexp); } int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info) { int i; if (!radix_enabled()) return -EINVAL; memset(info, 0, sizeof(*info)); /* 4k page size */ info->geometries[0].page_shift = 12; info->geometries[0].level_bits[0] = 9; for (i = 1; i < 4; ++i) info->geometries[0].level_bits[i] = p9_supported_radix_bits[i]; /* 64k page size */ info->geometries[1].page_shift = 16; for (i = 0; i < 4; ++i) info->geometries[1].level_bits[i] = p9_supported_radix_bits[i]; i = 0; add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i); add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i); add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i); add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i); return 0; } int kvmppc_init_vm_radix(struct kvm *kvm) { kvm->arch.pgtable = pgd_alloc(kvm->mm); if (!kvm->arch.pgtable) return -ENOMEM; return 0; } static void pte_ctor(void *addr) { memset(addr, 0, RADIX_PTE_TABLE_SIZE); } static void pmd_ctor(void *addr) { memset(addr, 0, RADIX_PMD_TABLE_SIZE); } int kvmppc_radix_init(void) { unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE; kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor); if (!kvm_pte_cache) return -ENOMEM; size = sizeof(void *) << RADIX_PMD_INDEX_SIZE; kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor); if (!kvm_pmd_cache) { kmem_cache_destroy(kvm_pte_cache); return -ENOMEM; } return 0; } void kvmppc_radix_exit(void) { kmem_cache_destroy(kvm_pte_cache); kmem_cache_destroy(kvm_pmd_cache); }