/* * arch/ppc/kernel/process.c * * Derived from "arch/i386/kernel/process.c" * Copyright (C) 1995 Linus Torvalds * * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and * Paul Mackerras (paulus@cs.anu.edu.au) * * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_PPC64 #include #include #endif extern unsigned long _get_SP(void); #ifndef CONFIG_SMP struct task_struct *last_task_used_math = NULL; struct task_struct *last_task_used_altivec = NULL; struct task_struct *last_task_used_spe = NULL; #endif /* * Make sure the floating-point register state in the * the thread_struct is up to date for task tsk. */ void flush_fp_to_thread(struct task_struct *tsk) { if (tsk->thread.regs) { /* * We need to disable preemption here because if we didn't, * another process could get scheduled after the regs->msr * test but before we have finished saving the FP registers * to the thread_struct. That process could take over the * FPU, and then when we get scheduled again we would store * bogus values for the remaining FP registers. */ preempt_disable(); if (tsk->thread.regs->msr & MSR_FP) { #ifdef CONFIG_SMP /* * This should only ever be called for current or * for a stopped child process. Since we save away * the FP register state on context switch on SMP, * there is something wrong if a stopped child appears * to still have its FP state in the CPU registers. */ BUG_ON(tsk != current); #endif giveup_fpu(current); } preempt_enable(); } } void enable_kernel_fp(void) { WARN_ON(preemptible()); #ifdef CONFIG_SMP if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) giveup_fpu(current); else giveup_fpu(NULL); /* just enables FP for kernel */ #else giveup_fpu(last_task_used_math); #endif /* CONFIG_SMP */ } EXPORT_SYMBOL(enable_kernel_fp); int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs) { if (!tsk->thread.regs) return 0; flush_fp_to_thread(current); memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs)); return 1; } #ifdef CONFIG_ALTIVEC void enable_kernel_altivec(void) { WARN_ON(preemptible()); #ifdef CONFIG_SMP if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) giveup_altivec(current); else giveup_altivec(NULL); /* just enable AltiVec for kernel - force */ #else giveup_altivec(last_task_used_altivec); #endif /* CONFIG_SMP */ } EXPORT_SYMBOL(enable_kernel_altivec); /* * Make sure the VMX/Altivec register state in the * the thread_struct is up to date for task tsk. */ void flush_altivec_to_thread(struct task_struct *tsk) { if (tsk->thread.regs) { preempt_disable(); if (tsk->thread.regs->msr & MSR_VEC) { #ifdef CONFIG_SMP BUG_ON(tsk != current); #endif giveup_altivec(current); } preempt_enable(); } } int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs) { flush_altivec_to_thread(current); memcpy(vrregs, ¤t->thread.vr[0], sizeof(*vrregs)); return 1; } #endif /* CONFIG_ALTIVEC */ #ifdef CONFIG_SPE void enable_kernel_spe(void) { WARN_ON(preemptible()); #ifdef CONFIG_SMP if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) giveup_spe(current); else giveup_spe(NULL); /* just enable SPE for kernel - force */ #else giveup_spe(last_task_used_spe); #endif /* __SMP __ */ } EXPORT_SYMBOL(enable_kernel_spe); void flush_spe_to_thread(struct task_struct *tsk) { if (tsk->thread.regs) { preempt_disable(); if (tsk->thread.regs->msr & MSR_SPE) { #ifdef CONFIG_SMP BUG_ON(tsk != current); #endif giveup_spe(current); } preempt_enable(); } } int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs) { flush_spe_to_thread(current); /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */ memcpy(evrregs, ¤t->thread.evr[0], sizeof(u32) * 35); return 1; } #endif /* CONFIG_SPE */ #ifndef CONFIG_SMP /* * If we are doing lazy switching of CPU state (FP, altivec or SPE), * and the current task has some state, discard it. */ void discard_lazy_cpu_state(void) { preempt_disable(); if (last_task_used_math == current) last_task_used_math = NULL; #ifdef CONFIG_ALTIVEC if (last_task_used_altivec == current) last_task_used_altivec = NULL; #endif /* CONFIG_ALTIVEC */ #ifdef CONFIG_SPE if (last_task_used_spe == current) last_task_used_spe = NULL; #endif preempt_enable(); } #endif /* CONFIG_SMP */ int set_dabr(unsigned long dabr) { if (ppc_md.set_dabr) return ppc_md.set_dabr(dabr); mtspr(SPRN_DABR, dabr); return 0; } #ifdef CONFIG_PPC64 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); static DEFINE_PER_CPU(unsigned long, current_dabr); #endif struct task_struct *__switch_to(struct task_struct *prev, struct task_struct *new) { struct thread_struct *new_thread, *old_thread; unsigned long flags; struct task_struct *last; #ifdef CONFIG_SMP /* avoid complexity of lazy save/restore of fpu * by just saving it every time we switch out if * this task used the fpu during the last quantum. * * If it tries to use the fpu again, it'll trap and * reload its fp regs. So we don't have to do a restore * every switch, just a save. * -- Cort */ if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) giveup_fpu(prev); #ifdef CONFIG_ALTIVEC /* * If the previous thread used altivec in the last quantum * (thus changing altivec regs) then save them. * We used to check the VRSAVE register but not all apps * set it, so we don't rely on it now (and in fact we need * to save & restore VSCR even if VRSAVE == 0). -- paulus * * On SMP we always save/restore altivec regs just to avoid the * complexity of changing processors. * -- Cort */ if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) giveup_altivec(prev); #endif /* CONFIG_ALTIVEC */ #ifdef CONFIG_SPE /* * If the previous thread used spe in the last quantum * (thus changing spe regs) then save them. * * On SMP we always save/restore spe regs just to avoid the * complexity of changing processors. */ if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) giveup_spe(prev); #endif /* CONFIG_SPE */ #else /* CONFIG_SMP */ #ifdef CONFIG_ALTIVEC /* Avoid the trap. On smp this this never happens since * we don't set last_task_used_altivec -- Cort */ if (new->thread.regs && last_task_used_altivec == new) new->thread.regs->msr |= MSR_VEC; #endif /* CONFIG_ALTIVEC */ #ifdef CONFIG_SPE /* Avoid the trap. On smp this this never happens since * we don't set last_task_used_spe */ if (new->thread.regs && last_task_used_spe == new) new->thread.regs->msr |= MSR_SPE; #endif /* CONFIG_SPE */ #endif /* CONFIG_SMP */ #ifdef CONFIG_PPC64 /* for now */ if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) { set_dabr(new->thread.dabr); __get_cpu_var(current_dabr) = new->thread.dabr; } flush_tlb_pending(); #endif new_thread = &new->thread; old_thread = ¤t->thread; #ifdef CONFIG_PPC64 /* * Collect processor utilization data per process */ if (firmware_has_feature(FW_FEATURE_SPLPAR)) { struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); long unsigned start_tb, current_tb; start_tb = old_thread->start_tb; cu->current_tb = current_tb = mfspr(SPRN_PURR); old_thread->accum_tb += (current_tb - start_tb); new_thread->start_tb = current_tb; } #endif local_irq_save(flags); last = _switch(old_thread, new_thread); local_irq_restore(flags); return last; } static int instructions_to_print = 16; #ifdef CONFIG_PPC64 #define BAD_PC(pc) ((REGION_ID(pc) != KERNEL_REGION_ID) && \ (REGION_ID(pc) != VMALLOC_REGION_ID)) #else #define BAD_PC(pc) ((pc) < KERNELBASE) #endif static void show_instructions(struct pt_regs *regs) { int i; unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * sizeof(int)); printk("Instruction dump:"); for (i = 0; i < instructions_to_print; i++) { int instr; if (!(i % 8)) printk("\n"); if (BAD_PC(pc) || __get_user(instr, (unsigned int *)pc)) { printk("XXXXXXXX "); } else { if (regs->nip == pc) printk("<%08x> ", instr); else printk("%08x ", instr); } pc += sizeof(int); } printk("\n"); } static struct regbit { unsigned long bit; const char *name; } msr_bits[] = { {MSR_EE, "EE"}, {MSR_PR, "PR"}, {MSR_FP, "FP"}, {MSR_ME, "ME"}, {MSR_IR, "IR"}, {MSR_DR, "DR"}, {0, NULL} }; static void printbits(unsigned long val, struct regbit *bits) { const char *sep = ""; printk("<"); for (; bits->bit; ++bits) if (val & bits->bit) { printk("%s%s", sep, bits->name); sep = ","; } printk(">"); } #ifdef CONFIG_PPC64 #define REG "%016lX" #define REGS_PER_LINE 4 #define LAST_VOLATILE 13 #else #define REG "%08lX" #define REGS_PER_LINE 8 #define LAST_VOLATILE 12 #endif void show_regs(struct pt_regs * regs) { int i, trap; printk("NIP: "REG" LR: "REG" CTR: "REG"\n", regs->nip, regs->link, regs->ctr); printk("REGS: %p TRAP: %04lx %s (%s)\n", regs, regs->trap, print_tainted(), system_utsname.release); printk("MSR: "REG" ", regs->msr); printbits(regs->msr, msr_bits); printk(" CR: %08lX XER: %08lX\n", regs->ccr, regs->xer); trap = TRAP(regs); if (trap == 0x300 || trap == 0x600) printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr); printk("TASK = %p[%d] '%s' THREAD: %p", current, current->pid, current->comm, current->thread_info); #ifdef CONFIG_SMP printk(" CPU: %d", smp_processor_id()); #endif /* CONFIG_SMP */ for (i = 0; i < 32; i++) { if ((i % REGS_PER_LINE) == 0) printk("\n" KERN_INFO "GPR%02d: ", i); printk(REG " ", regs->gpr[i]); if (i == LAST_VOLATILE && !FULL_REGS(regs)) break; } printk("\n"); #ifdef CONFIG_KALLSYMS /* * Lookup NIP late so we have the best change of getting the * above info out without failing */ printk("NIP ["REG"] ", regs->nip); print_symbol("%s\n", regs->nip); printk("LR ["REG"] ", regs->link); print_symbol("%s\n", regs->link); #endif show_stack(current, (unsigned long *) regs->gpr[1]); if (!user_mode(regs)) show_instructions(regs); } void exit_thread(void) { kprobe_flush_task(current); discard_lazy_cpu_state(); } void flush_thread(void) { #ifdef CONFIG_PPC64 struct thread_info *t = current_thread_info(); if (t->flags & _TIF_ABI_PENDING) t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT); #endif discard_lazy_cpu_state(); #ifdef CONFIG_PPC64 /* for now */ if (current->thread.dabr) { current->thread.dabr = 0; set_dabr(0); } #endif } void release_thread(struct task_struct *t) { } /* * This gets called before we allocate a new thread and copy * the current task into it. */ void prepare_to_copy(struct task_struct *tsk) { flush_fp_to_thread(current); flush_altivec_to_thread(current); flush_spe_to_thread(current); } /* * Copy a thread.. */ int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, unsigned long unused, struct task_struct *p, struct pt_regs *regs) { struct pt_regs *childregs, *kregs; extern void ret_from_fork(void); unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE; CHECK_FULL_REGS(regs); /* Copy registers */ sp -= sizeof(struct pt_regs); childregs = (struct pt_regs *) sp; *childregs = *regs; if ((childregs->msr & MSR_PR) == 0) { /* for kernel thread, set `current' and stackptr in new task */ childregs->gpr[1] = sp + sizeof(struct pt_regs); #ifdef CONFIG_PPC32 childregs->gpr[2] = (unsigned long) p; #else clear_ti_thread_flag(p->thread_info, TIF_32BIT); #endif p->thread.regs = NULL; /* no user register state */ } else { childregs->gpr[1] = usp; p->thread.regs = childregs; if (clone_flags & CLONE_SETTLS) { #ifdef CONFIG_PPC64 if (!test_thread_flag(TIF_32BIT)) childregs->gpr[13] = childregs->gpr[6]; else #endif childregs->gpr[2] = childregs->gpr[6]; } } childregs->gpr[3] = 0; /* Result from fork() */ sp -= STACK_FRAME_OVERHEAD; /* * The way this works is that at some point in the future * some task will call _switch to switch to the new task. * That will pop off the stack frame created below and start * the new task running at ret_from_fork. The new task will * do some house keeping and then return from the fork or clone * system call, using the stack frame created above. */ sp -= sizeof(struct pt_regs); kregs = (struct pt_regs *) sp; sp -= STACK_FRAME_OVERHEAD; p->thread.ksp = sp; #ifdef CONFIG_PPC64 if (cpu_has_feature(CPU_FTR_SLB)) { unsigned long sp_vsid = get_kernel_vsid(sp); unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; sp_vsid <<= SLB_VSID_SHIFT; sp_vsid |= SLB_VSID_KERNEL | llp; p->thread.ksp_vsid = sp_vsid; } /* * The PPC64 ABI makes use of a TOC to contain function * pointers. The function (ret_from_except) is actually a pointer * to the TOC entry. The first entry is a pointer to the actual * function. */ kregs->nip = *((unsigned long *)ret_from_fork); #else kregs->nip = (unsigned long)ret_from_fork; p->thread.last_syscall = -1; #endif return 0; } /* * Set up a thread for executing a new program */ void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) { #ifdef CONFIG_PPC64 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ #endif set_fs(USER_DS); /* * If we exec out of a kernel thread then thread.regs will not be * set. Do it now. */ if (!current->thread.regs) { unsigned long childregs = (unsigned long)current->thread_info + THREAD_SIZE; childregs -= sizeof(struct pt_regs); current->thread.regs = (struct pt_regs *)childregs; } memset(regs->gpr, 0, sizeof(regs->gpr)); regs->ctr = 0; regs->link = 0; regs->xer = 0; regs->ccr = 0; regs->gpr[1] = sp; #ifdef CONFIG_PPC32 regs->mq = 0; regs->nip = start; regs->msr = MSR_USER; #else if (!test_thread_flag(TIF_32BIT)) { unsigned long entry, toc; /* start is a relocated pointer to the function descriptor for * the elf _start routine. The first entry in the function * descriptor is the entry address of _start and the second * entry is the TOC value we need to use. */ __get_user(entry, (unsigned long __user *)start); __get_user(toc, (unsigned long __user *)start+1); /* Check whether the e_entry function descriptor entries * need to be relocated before we can use them. */ if (load_addr != 0) { entry += load_addr; toc += load_addr; } regs->nip = entry; regs->gpr[2] = toc; regs->msr = MSR_USER64; } else { regs->nip = start; regs->gpr[2] = 0; regs->msr = MSR_USER32; } #endif discard_lazy_cpu_state(); memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); current->thread.fpscr.val = 0; #ifdef CONFIG_ALTIVEC memset(current->thread.vr, 0, sizeof(current->thread.vr)); memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */ current->thread.vrsave = 0; current->thread.used_vr = 0; #endif /* CONFIG_ALTIVEC */ #ifdef CONFIG_SPE memset(current->thread.evr, 0, sizeof(current->thread.evr)); current->thread.acc = 0; current->thread.spefscr = 0; current->thread.used_spe = 0; #endif /* CONFIG_SPE */ } #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ | PR_FP_EXC_RES | PR_FP_EXC_INV) int set_fpexc_mode(struct task_struct *tsk, unsigned int val) { struct pt_regs *regs = tsk->thread.regs; /* This is a bit hairy. If we are an SPE enabled processor * (have embedded fp) we store the IEEE exception enable flags in * fpexc_mode. fpexc_mode is also used for setting FP exception * mode (asyn, precise, disabled) for 'Classic' FP. */ if (val & PR_FP_EXC_SW_ENABLE) { #ifdef CONFIG_SPE tsk->thread.fpexc_mode = val & (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); return 0; #else return -EINVAL; #endif } /* on a CONFIG_SPE this does not hurt us. The bits that * __pack_fe01 use do not overlap with bits used for * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits * on CONFIG_SPE implementations are reserved so writing to * them does not change anything */ if (val > PR_FP_EXC_PRECISE) return -EINVAL; tsk->thread.fpexc_mode = __pack_fe01(val); if (regs != NULL && (regs->msr & MSR_FP) != 0) regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) | tsk->thread.fpexc_mode; return 0; } int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) { unsigned int val; if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) #ifdef CONFIG_SPE val = tsk->thread.fpexc_mode; #else return -EINVAL; #endif else val = __unpack_fe01(tsk->thread.fpexc_mode); return put_user(val, (unsigned int __user *) adr); } #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff)) int sys_clone(unsigned long clone_flags, unsigned long usp, int __user *parent_tidp, void __user *child_threadptr, int __user *child_tidp, int p6, struct pt_regs *regs) { CHECK_FULL_REGS(regs); if (usp == 0) usp = regs->gpr[1]; /* stack pointer for child */ #ifdef CONFIG_PPC64 if (test_thread_flag(TIF_32BIT)) { parent_tidp = TRUNC_PTR(parent_tidp); child_tidp = TRUNC_PTR(child_tidp); } #endif return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp); } int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3, unsigned long p4, unsigned long p5, unsigned long p6, struct pt_regs *regs) { CHECK_FULL_REGS(regs); return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); } int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3, unsigned long p4, unsigned long p5, unsigned long p6, struct pt_regs *regs) { CHECK_FULL_REGS(regs); return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); } int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4, unsigned long a5, struct pt_regs *regs) { int error; char *filename; filename = getname((char __user *) a0); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; flush_fp_to_thread(current); flush_altivec_to_thread(current); flush_spe_to_thread(current); error = do_execve(filename, (char __user * __user *) a1, (char __user * __user *) a2, regs); if (error == 0) { task_lock(current); current->ptrace &= ~PT_DTRACE; task_unlock(current); } putname(filename); out: return error; } static int validate_sp(unsigned long sp, struct task_struct *p, unsigned long nbytes) { unsigned long stack_page = (unsigned long)p->thread_info; if (sp >= stack_page + sizeof(struct thread_struct) && sp <= stack_page + THREAD_SIZE - nbytes) return 1; #ifdef CONFIG_IRQSTACKS stack_page = (unsigned long) hardirq_ctx[task_cpu(p)]; if (sp >= stack_page + sizeof(struct thread_struct) && sp <= stack_page + THREAD_SIZE - nbytes) return 1; stack_page = (unsigned long) softirq_ctx[task_cpu(p)]; if (sp >= stack_page + sizeof(struct thread_struct) && sp <= stack_page + THREAD_SIZE - nbytes) return 1; #endif return 0; } #ifdef CONFIG_PPC64 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */ #define FRAME_LR_SAVE 2 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288) #define REGS_MARKER 0x7265677368657265ul #define FRAME_MARKER 12 #else #define MIN_STACK_FRAME 16 #define FRAME_LR_SAVE 1 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD) #define REGS_MARKER 0x72656773ul #define FRAME_MARKER 2 #endif unsigned long get_wchan(struct task_struct *p) { unsigned long ip, sp; int count = 0; if (!p || p == current || p->state == TASK_RUNNING) return 0; sp = p->thread.ksp; if (!validate_sp(sp, p, MIN_STACK_FRAME)) return 0; do { sp = *(unsigned long *)sp; if (!validate_sp(sp, p, MIN_STACK_FRAME)) return 0; if (count > 0) { ip = ((unsigned long *)sp)[FRAME_LR_SAVE]; if (!in_sched_functions(ip)) return ip; } } while (count++ < 16); return 0; } EXPORT_SYMBOL(get_wchan); static int kstack_depth_to_print = 64; void show_stack(struct task_struct *tsk, unsigned long *stack) { unsigned long sp, ip, lr, newsp; int count = 0; int firstframe = 1; sp = (unsigned long) stack; if (tsk == NULL) tsk = current; if (sp == 0) { if (tsk == current) asm("mr %0,1" : "=r" (sp)); else sp = tsk->thread.ksp; } lr = 0; printk("Call Trace:\n"); do { if (!validate_sp(sp, tsk, MIN_STACK_FRAME)) return; stack = (unsigned long *) sp; newsp = stack[0]; ip = stack[FRAME_LR_SAVE]; if (!firstframe || ip != lr) { printk("["REG"] ["REG"] ", sp, ip); print_symbol("%s", ip); if (firstframe) printk(" (unreliable)"); printk("\n"); } firstframe = 0; /* * See if this is an exception frame. * We look for the "regshere" marker in the current frame. */ if (validate_sp(sp, tsk, INT_FRAME_SIZE) && stack[FRAME_MARKER] == REGS_MARKER) { struct pt_regs *regs = (struct pt_regs *) (sp + STACK_FRAME_OVERHEAD); printk("--- Exception: %lx", regs->trap); print_symbol(" at %s\n", regs->nip); lr = regs->link; print_symbol(" LR = %s\n", lr); firstframe = 1; } sp = newsp; } while (count++ < kstack_depth_to_print); } void dump_stack(void) { show_stack(current, NULL); } EXPORT_SYMBOL(dump_stack);