/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org) * Copyright 1999 Hewlett Packard Co. * */ #include #include #include #include #include #include #include #include #include /* Various important other fields */ #define bit22set(x) (x & 0x00000200) #define bits23_25set(x) (x & 0x000001c0) #define isGraphicsFlushRead(x) ((x & 0xfc003fdf) == 0x04001a80) /* extended opcode is 0x6a */ #define BITSSET 0x1c0 /* for identifying LDCW */ int show_unhandled_signals = 1; /* * parisc_acctyp(unsigned int inst) -- * Given a PA-RISC memory access instruction, determine if the * the instruction would perform a memory read or memory write * operation. * * This function assumes that the given instruction is a memory access * instruction (i.e. you should really only call it if you know that * the instruction has generated some sort of a memory access fault). * * Returns: * VM_READ if read operation * VM_WRITE if write operation * VM_EXEC if execute operation */ static unsigned long parisc_acctyp(unsigned long code, unsigned int inst) { if (code == 6 || code == 16) return VM_EXEC; switch (inst & 0xf0000000) { case 0x40000000: /* load */ case 0x50000000: /* new load */ return VM_READ; case 0x60000000: /* store */ case 0x70000000: /* new store */ return VM_WRITE; case 0x20000000: /* coproc */ case 0x30000000: /* coproc2 */ if (bit22set(inst)) return VM_WRITE; case 0x0: /* indexed/memory management */ if (bit22set(inst)) { /* * Check for the 'Graphics Flush Read' instruction. * It resembles an FDC instruction, except for bits * 20 and 21. Any combination other than zero will * utilize the block mover functionality on some * older PA-RISC platforms. The case where a block * move is performed from VM to graphics IO space * should be treated as a READ. * * The significance of bits 20,21 in the FDC * instruction is: * * 00 Flush data cache (normal instruction behavior) * 01 Graphics flush write (IO space -> VM) * 10 Graphics flush read (VM -> IO space) * 11 Graphics flush read/write (VM <-> IO space) */ if (isGraphicsFlushRead(inst)) return VM_READ; return VM_WRITE; } else { /* * Check for LDCWX and LDCWS (semaphore instructions). * If bits 23 through 25 are all 1's it is one of * the above two instructions and is a write. * * Note: With the limited bits we are looking at, * this will also catch PROBEW and PROBEWI. However, * these should never get in here because they don't * generate exceptions of the type: * Data TLB miss fault/data page fault * Data memory protection trap */ if (bits23_25set(inst) == BITSSET) return VM_WRITE; } return VM_READ; /* Default */ } return VM_READ; /* Default */ } #undef bit22set #undef bits23_25set #undef isGraphicsFlushRead #undef BITSSET #if 0 /* This is the treewalk to find a vma which is the highest that has * a start < addr. We're using find_vma_prev instead right now, but * we might want to use this at some point in the future. Probably * not, but I want it committed to CVS so I don't lose it :-) */ while (tree != vm_avl_empty) { if (tree->vm_start > addr) { tree = tree->vm_avl_left; } else { prev = tree; if (prev->vm_next == NULL) break; if (prev->vm_next->vm_start > addr) break; tree = tree->vm_avl_right; } } #endif int fixup_exception(struct pt_regs *regs) { const struct exception_table_entry *fix; fix = search_exception_tables(regs->iaoq[0]); if (fix) { /* * Fix up get_user() and put_user(). * ASM_EXCEPTIONTABLE_ENTRY_EFAULT() sets the least-significant * bit in the relative address of the fixup routine to indicate * that %r8 should be loaded with -EFAULT to report a userspace * access error. */ if (fix->fixup & 1) { regs->gr[8] = -EFAULT; /* zero target register for get_user() */ if (parisc_acctyp(0, regs->iir) == VM_READ) { int treg = regs->iir & 0x1f; BUG_ON(treg == 0); regs->gr[treg] = 0; } } regs->iaoq[0] = (unsigned long)&fix->fixup + fix->fixup; regs->iaoq[0] &= ~3; /* * NOTE: In some cases the faulting instruction * may be in the delay slot of a branch. We * don't want to take the branch, so we don't * increment iaoq[1], instead we set it to be * iaoq[0]+4, and clear the B bit in the PSW */ regs->iaoq[1] = regs->iaoq[0] + 4; regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */ return 1; } return 0; } /* * parisc hardware trap list * * Documented in section 3 "Addressing and Access Control" of the * "PA-RISC 1.1 Architecture and Instruction Set Reference Manual" * https://parisc.wiki.kernel.org/index.php/File:Pa11_acd.pdf * * For implementation see handle_interruption() in traps.c */ static const char * const trap_description[] = { [1] "High-priority machine check (HPMC)", [2] "Power failure interrupt", [3] "Recovery counter trap", [5] "Low-priority machine check", [6] "Instruction TLB miss fault", [7] "Instruction access rights / protection trap", [8] "Illegal instruction trap", [9] "Break instruction trap", [10] "Privileged operation trap", [11] "Privileged register trap", [12] "Overflow trap", [13] "Conditional trap", [14] "FP Assist Exception trap", [15] "Data TLB miss fault", [16] "Non-access ITLB miss fault", [17] "Non-access DTLB miss fault", [18] "Data memory protection/unaligned access trap", [19] "Data memory break trap", [20] "TLB dirty bit trap", [21] "Page reference trap", [22] "Assist emulation trap", [25] "Taken branch trap", [26] "Data memory access rights trap", [27] "Data memory protection ID trap", [28] "Unaligned data reference trap", }; const char *trap_name(unsigned long code) { const char *t = NULL; if (code < ARRAY_SIZE(trap_description)) t = trap_description[code]; return t ? t : "Unknown trap"; } /* * Print out info about fatal segfaults, if the show_unhandled_signals * sysctl is set: */ static inline void show_signal_msg(struct pt_regs *regs, unsigned long code, unsigned long address, struct task_struct *tsk, struct vm_area_struct *vma) { if (!unhandled_signal(tsk, SIGSEGV)) return; if (!printk_ratelimit()) return; pr_warn("\n"); pr_warn("do_page_fault() command='%s' type=%lu address=0x%08lx", tsk->comm, code, address); print_vma_addr(KERN_CONT " in ", regs->iaoq[0]); pr_cont("\ntrap #%lu: %s%c", code, trap_name(code), vma ? ',':'\n'); if (vma) pr_cont(" vm_start = 0x%08lx, vm_end = 0x%08lx\n", vma->vm_start, vma->vm_end); show_regs(regs); } void do_page_fault(struct pt_regs *regs, unsigned long code, unsigned long address) { struct vm_area_struct *vma, *prev_vma; struct task_struct *tsk; struct mm_struct *mm; unsigned long acc_type; int fault = 0; unsigned int flags; if (faulthandler_disabled()) goto no_context; tsk = current; mm = tsk->mm; if (!mm) goto no_context; flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; if (user_mode(regs)) flags |= FAULT_FLAG_USER; acc_type = parisc_acctyp(code, regs->iir); if (acc_type & VM_WRITE) flags |= FAULT_FLAG_WRITE; retry: down_read(&mm->mmap_sem); vma = find_vma_prev(mm, address, &prev_vma); if (!vma || address < vma->vm_start) goto check_expansion; /* * Ok, we have a good vm_area for this memory access. We still need to * check the access permissions. */ good_area: if ((vma->vm_flags & acc_type) != acc_type) goto bad_area; /* * If for any reason at all we couldn't handle the fault, make * sure we exit gracefully rather than endlessly redo the * fault. */ fault = handle_mm_fault(vma, address, flags); if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) return; if (unlikely(fault & VM_FAULT_ERROR)) { /* * We hit a shared mapping outside of the file, or some * other thing happened to us that made us unable to * handle the page fault gracefully. */ if (fault & VM_FAULT_OOM) goto out_of_memory; else if (fault & VM_FAULT_SIGSEGV) goto bad_area; else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| VM_FAULT_HWPOISON_LARGE)) goto bad_area; BUG(); } if (flags & FAULT_FLAG_ALLOW_RETRY) { if (fault & VM_FAULT_MAJOR) current->maj_flt++; else current->min_flt++; if (fault & VM_FAULT_RETRY) { flags &= ~FAULT_FLAG_ALLOW_RETRY; /* * No need to up_read(&mm->mmap_sem) as we would * have already released it in __lock_page_or_retry * in mm/filemap.c. */ goto retry; } } up_read(&mm->mmap_sem); return; check_expansion: vma = prev_vma; if (vma && (expand_stack(vma, address) == 0)) goto good_area; /* * Something tried to access memory that isn't in our memory map.. */ bad_area: up_read(&mm->mmap_sem); if (user_mode(regs)) { int signo, si_code; switch (code) { case 15: /* Data TLB miss fault/Data page fault */ /* send SIGSEGV when outside of vma */ if (!vma || address < vma->vm_start || address >= vma->vm_end) { signo = SIGSEGV; si_code = SEGV_MAPERR; break; } /* send SIGSEGV for wrong permissions */ if ((vma->vm_flags & acc_type) != acc_type) { signo = SIGSEGV; si_code = SEGV_ACCERR; break; } /* probably address is outside of mapped file */ /* fall through */ case 17: /* NA data TLB miss / page fault */ case 18: /* Unaligned access - PCXS only */ signo = SIGBUS; si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR; break; case 16: /* Non-access instruction TLB miss fault */ case 26: /* PCXL: Data memory access rights trap */ default: signo = SIGSEGV; si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR; break; } #ifdef CONFIG_MEMORY_FAILURE if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { unsigned int lsb = 0; printk(KERN_ERR "MCE: Killing %s:%d due to hardware memory corruption fault at %08lx\n", tsk->comm, tsk->pid, address); /* * Either small page or large page may be poisoned. * In other words, VM_FAULT_HWPOISON_LARGE and * VM_FAULT_HWPOISON are mutually exclusive. */ if (fault & VM_FAULT_HWPOISON_LARGE) lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); else if (fault & VM_FAULT_HWPOISON) lsb = PAGE_SHIFT; force_sig_mceerr(BUS_MCEERR_AR, (void __user *) address, lsb, current); return; } #endif show_signal_msg(regs, code, address, tsk, vma); force_sig_fault(signo, si_code, (void __user *) address, current); return; } no_context: if (!user_mode(regs) && fixup_exception(regs)) { return; } parisc_terminate("Bad Address (null pointer deref?)", regs, code, address); out_of_memory: up_read(&mm->mmap_sem); if (!user_mode(regs)) goto no_context; pagefault_out_of_memory(); }