/* * RM200 specific code * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2006,2007 Thomas Bogendoerfer (tsbogend@alpha.franken.de) * * i8259 parts ripped out of arch/mips/kernel/i8259.c */ #include #include #include #include #include #include #include #include #include #include #define RM200_I8259A_IRQ_BASE 32 #define MEMPORT(_base,_irq) \ { \ .mapbase = _base, \ .irq = _irq, \ .uartclk = 1843200, \ .iotype = UPIO_MEM, \ .flags = UPF_BOOT_AUTOCONF|UPF_IOREMAP, \ } static struct plat_serial8250_port rm200_data[] = { MEMPORT(0x160003f8, RM200_I8259A_IRQ_BASE + 4), MEMPORT(0x160002f8, RM200_I8259A_IRQ_BASE + 3), { }, }; static struct platform_device rm200_serial8250_device = { .name = "serial8250", .id = PLAT8250_DEV_PLATFORM, .dev = { .platform_data = rm200_data, }, }; static struct resource rm200_ds1216_rsrc[] = { { .start = 0x1cd41ffc, .end = 0x1cd41fff, .flags = IORESOURCE_MEM } }; static struct platform_device rm200_ds1216_device = { .name = "rtc-ds1216", .num_resources = ARRAY_SIZE(rm200_ds1216_rsrc), .resource = rm200_ds1216_rsrc }; static struct resource snirm_82596_rm200_rsrc[] = { { .start = 0x18000000, .end = 0x180fffff, .flags = IORESOURCE_MEM }, { .start = 0x1b000000, .end = 0x1b000004, .flags = IORESOURCE_MEM }, { .start = 0x1ff00000, .end = 0x1ff00020, .flags = IORESOURCE_MEM }, { .start = 27, .end = 27, .flags = IORESOURCE_IRQ }, { .flags = 0x00 } }; static struct platform_device snirm_82596_rm200_pdev = { .name = "snirm_82596", .num_resources = ARRAY_SIZE(snirm_82596_rm200_rsrc), .resource = snirm_82596_rm200_rsrc }; static struct resource snirm_53c710_rm200_rsrc[] = { { .start = 0x19000000, .end = 0x190fffff, .flags = IORESOURCE_MEM }, { .start = 26, .end = 26, .flags = IORESOURCE_IRQ } }; static struct platform_device snirm_53c710_rm200_pdev = { .name = "snirm_53c710", .num_resources = ARRAY_SIZE(snirm_53c710_rm200_rsrc), .resource = snirm_53c710_rm200_rsrc }; static int __init snirm_setup_devinit(void) { if (sni_brd_type == SNI_BRD_RM200) { platform_device_register(&rm200_serial8250_device); platform_device_register(&rm200_ds1216_device); platform_device_register(&snirm_82596_rm200_pdev); platform_device_register(&snirm_53c710_rm200_pdev); sni_eisa_root_init(); } return 0; } device_initcall(snirm_setup_devinit); /* * RM200 has an ISA and an EISA bus. The iSA bus is only used * for onboard devices and also has twi i8259 PICs. Since these * PICs are no accessible via inb/outb the following code uses * readb/writeb to access them */ static DEFINE_RAW_SPINLOCK(sni_rm200_i8259A_lock); #define PIC_CMD 0x00 #define PIC_IMR 0x01 #define PIC_ISR PIC_CMD #define PIC_POLL PIC_ISR #define PIC_OCW3 PIC_ISR /* i8259A PIC related value */ #define PIC_CASCADE_IR 2 #define MASTER_ICW4_DEFAULT 0x01 #define SLAVE_ICW4_DEFAULT 0x01 /* * This contains the irq mask for both 8259A irq controllers, */ static unsigned int rm200_cached_irq_mask = 0xffff; static __iomem u8 *rm200_pic_master; static __iomem u8 *rm200_pic_slave; #define cached_master_mask (rm200_cached_irq_mask) #define cached_slave_mask (rm200_cached_irq_mask >> 8) static void sni_rm200_disable_8259A_irq(struct irq_data *d) { unsigned int mask, irq = d->irq - RM200_I8259A_IRQ_BASE; unsigned long flags; mask = 1 << irq; raw_spin_lock_irqsave(&sni_rm200_i8259A_lock, flags); rm200_cached_irq_mask |= mask; if (irq & 8) writeb(cached_slave_mask, rm200_pic_slave + PIC_IMR); else writeb(cached_master_mask, rm200_pic_master + PIC_IMR); raw_spin_unlock_irqrestore(&sni_rm200_i8259A_lock, flags); } static void sni_rm200_enable_8259A_irq(struct irq_data *d) { unsigned int mask, irq = d->irq - RM200_I8259A_IRQ_BASE; unsigned long flags; mask = ~(1 << irq); raw_spin_lock_irqsave(&sni_rm200_i8259A_lock, flags); rm200_cached_irq_mask &= mask; if (irq & 8) writeb(cached_slave_mask, rm200_pic_slave + PIC_IMR); else writeb(cached_master_mask, rm200_pic_master + PIC_IMR); raw_spin_unlock_irqrestore(&sni_rm200_i8259A_lock, flags); } static inline int sni_rm200_i8259A_irq_real(unsigned int irq) { int value; int irqmask = 1 << irq; if (irq < 8) { writeb(0x0B, rm200_pic_master + PIC_CMD); value = readb(rm200_pic_master + PIC_CMD) & irqmask; writeb(0x0A, rm200_pic_master + PIC_CMD); return value; } writeb(0x0B, rm200_pic_slave + PIC_CMD); /* ISR register */ value = readb(rm200_pic_slave + PIC_CMD) & (irqmask >> 8); writeb(0x0A, rm200_pic_slave + PIC_CMD); return value; } /* * Careful! The 8259A is a fragile beast, it pretty * much _has_ to be done exactly like this (mask it * first, _then_ send the EOI, and the order of EOI * to the two 8259s is important! */ void sni_rm200_mask_and_ack_8259A(struct irq_data *d) { unsigned int irqmask, irq = d->irq - RM200_I8259A_IRQ_BASE; unsigned long flags; irqmask = 1 << irq; raw_spin_lock_irqsave(&sni_rm200_i8259A_lock, flags); /* * Lightweight spurious IRQ detection. We do not want * to overdo spurious IRQ handling - it's usually a sign * of hardware problems, so we only do the checks we can * do without slowing down good hardware unnecessarily. * * Note that IRQ7 and IRQ15 (the two spurious IRQs * usually resulting from the 8259A-1|2 PICs) occur * even if the IRQ is masked in the 8259A. Thus we * can check spurious 8259A IRQs without doing the * quite slow i8259A_irq_real() call for every IRQ. * This does not cover 100% of spurious interrupts, * but should be enough to warn the user that there * is something bad going on ... */ if (rm200_cached_irq_mask & irqmask) goto spurious_8259A_irq; rm200_cached_irq_mask |= irqmask; handle_real_irq: if (irq & 8) { readb(rm200_pic_slave + PIC_IMR); writeb(cached_slave_mask, rm200_pic_slave + PIC_IMR); writeb(0x60+(irq & 7), rm200_pic_slave + PIC_CMD); writeb(0x60+PIC_CASCADE_IR, rm200_pic_master + PIC_CMD); } else { readb(rm200_pic_master + PIC_IMR); writeb(cached_master_mask, rm200_pic_master + PIC_IMR); writeb(0x60+irq, rm200_pic_master + PIC_CMD); } raw_spin_unlock_irqrestore(&sni_rm200_i8259A_lock, flags); return; spurious_8259A_irq: /* * this is the slow path - should happen rarely. */ if (sni_rm200_i8259A_irq_real(irq)) /* * oops, the IRQ _is_ in service according to the * 8259A - not spurious, go handle it. */ goto handle_real_irq; { static int spurious_irq_mask; /* * At this point we can be sure the IRQ is spurious, * lets ACK and report it. [once per IRQ] */ if (!(spurious_irq_mask & irqmask)) { printk(KERN_DEBUG "spurious RM200 8259A interrupt: IRQ%d.\n", irq); spurious_irq_mask |= irqmask; } atomic_inc(&irq_err_count); /* * Theoretically we do not have to handle this IRQ, * but in Linux this does not cause problems and is * simpler for us. */ goto handle_real_irq; } } static struct irq_chip sni_rm200_i8259A_chip = { .name = "RM200-XT-PIC", .irq_mask = sni_rm200_disable_8259A_irq, .irq_unmask = sni_rm200_enable_8259A_irq, .irq_mask_ack = sni_rm200_mask_and_ack_8259A, }; /* * Do the traditional i8259 interrupt polling thing. This is for the few * cases where no better interrupt acknowledge method is available and we * absolutely must touch the i8259. */ static inline int sni_rm200_i8259_irq(void) { int irq; raw_spin_lock(&sni_rm200_i8259A_lock); /* Perform an interrupt acknowledge cycle on controller 1. */ writeb(0x0C, rm200_pic_master + PIC_CMD); /* prepare for poll */ irq = readb(rm200_pic_master + PIC_CMD) & 7; if (irq == PIC_CASCADE_IR) { /* * Interrupt is cascaded so perform interrupt * acknowledge on controller 2. */ writeb(0x0C, rm200_pic_slave + PIC_CMD); /* prepare for poll */ irq = (readb(rm200_pic_slave + PIC_CMD) & 7) + 8; } if (unlikely(irq == 7)) { /* * This may be a spurious interrupt. * * Read the interrupt status register (ISR). If the most * significant bit is not set then there is no valid * interrupt. */ writeb(0x0B, rm200_pic_master + PIC_ISR); /* ISR register */ if (~readb(rm200_pic_master + PIC_ISR) & 0x80) irq = -1; } raw_spin_unlock(&sni_rm200_i8259A_lock); return likely(irq >= 0) ? irq + RM200_I8259A_IRQ_BASE : irq; } void sni_rm200_init_8259A(void) { unsigned long flags; raw_spin_lock_irqsave(&sni_rm200_i8259A_lock, flags); writeb(0xff, rm200_pic_master + PIC_IMR); writeb(0xff, rm200_pic_slave + PIC_IMR); writeb(0x11, rm200_pic_master + PIC_CMD); writeb(0, rm200_pic_master + PIC_IMR); writeb(1U << PIC_CASCADE_IR, rm200_pic_master + PIC_IMR); writeb(MASTER_ICW4_DEFAULT, rm200_pic_master + PIC_IMR); writeb(0x11, rm200_pic_slave + PIC_CMD); writeb(8, rm200_pic_slave + PIC_IMR); writeb(PIC_CASCADE_IR, rm200_pic_slave + PIC_IMR); writeb(SLAVE_ICW4_DEFAULT, rm200_pic_slave + PIC_IMR); udelay(100); /* wait for 8259A to initialize */ writeb(cached_master_mask, rm200_pic_master + PIC_IMR); writeb(cached_slave_mask, rm200_pic_slave + PIC_IMR); raw_spin_unlock_irqrestore(&sni_rm200_i8259A_lock, flags); } /* * IRQ2 is cascade interrupt to second interrupt controller */ static struct irqaction sni_rm200_irq2 = { .handler = no_action, .name = "cascade", .flags = IRQF_NO_THREAD, }; static struct resource sni_rm200_pic1_resource = { .name = "onboard ISA pic1", .start = 0x16000020, .end = 0x16000023, .flags = IORESOURCE_BUSY }; static struct resource sni_rm200_pic2_resource = { .name = "onboard ISA pic2", .start = 0x160000a0, .end = 0x160000a3, .flags = IORESOURCE_BUSY }; /* ISA irq handler */ static irqreturn_t sni_rm200_i8259A_irq_handler(int dummy, void *p) { int irq; irq = sni_rm200_i8259_irq(); if (unlikely(irq < 0)) return IRQ_NONE; do_IRQ(irq); return IRQ_HANDLED; } struct irqaction sni_rm200_i8259A_irq = { .handler = sni_rm200_i8259A_irq_handler, .name = "onboard ISA", .flags = IRQF_SHARED }; void __init sni_rm200_i8259_irqs(void) { int i; rm200_pic_master = ioremap_nocache(0x16000020, 4); if (!rm200_pic_master) return; rm200_pic_slave = ioremap_nocache(0x160000a0, 4); if (!rm200_pic_slave) { iounmap(rm200_pic_master); return; } insert_resource(&iomem_resource, &sni_rm200_pic1_resource); insert_resource(&iomem_resource, &sni_rm200_pic2_resource); sni_rm200_init_8259A(); for (i = RM200_I8259A_IRQ_BASE; i < RM200_I8259A_IRQ_BASE + 16; i++) irq_set_chip_and_handler(i, &sni_rm200_i8259A_chip, handle_level_irq); setup_irq(RM200_I8259A_IRQ_BASE + PIC_CASCADE_IR, &sni_rm200_irq2); } #define SNI_RM200_INT_STAT_REG CKSEG1ADDR(0xbc000000) #define SNI_RM200_INT_ENA_REG CKSEG1ADDR(0xbc080000) #define SNI_RM200_INT_START 24 #define SNI_RM200_INT_END 28 static void enable_rm200_irq(struct irq_data *d) { unsigned int mask = 1 << (d->irq - SNI_RM200_INT_START); *(volatile u8 *)SNI_RM200_INT_ENA_REG &= ~mask; } void disable_rm200_irq(struct irq_data *d) { unsigned int mask = 1 << (d->irq - SNI_RM200_INT_START); *(volatile u8 *)SNI_RM200_INT_ENA_REG |= mask; } static struct irq_chip rm200_irq_type = { .name = "RM200", .irq_mask = disable_rm200_irq, .irq_unmask = enable_rm200_irq, }; static void sni_rm200_hwint(void) { u32 pending = read_c0_cause() & read_c0_status(); u8 mask; u8 stat; int irq; if (pending & C_IRQ5) do_IRQ(MIPS_CPU_IRQ_BASE + 7); else if (pending & C_IRQ0) { clear_c0_status(IE_IRQ0); mask = *(volatile u8 *)SNI_RM200_INT_ENA_REG ^ 0x1f; stat = *(volatile u8 *)SNI_RM200_INT_STAT_REG ^ 0x14; irq = ffs(stat & mask & 0x1f); if (likely(irq > 0)) do_IRQ(irq + SNI_RM200_INT_START - 1); set_c0_status(IE_IRQ0); } } void __init sni_rm200_irq_init(void) { int i; * (volatile u8 *)SNI_RM200_INT_ENA_REG = 0x1f; sni_rm200_i8259_irqs(); mips_cpu_irq_init(); /* Actually we've got more interrupts to handle ... */ for (i = SNI_RM200_INT_START; i <= SNI_RM200_INT_END; i++) irq_set_chip_and_handler(i, &rm200_irq_type, handle_level_irq); sni_hwint = sni_rm200_hwint; change_c0_status(ST0_IM, IE_IRQ0); setup_irq(SNI_RM200_INT_START + 0, &sni_rm200_i8259A_irq); setup_irq(SNI_RM200_INT_START + 1, &sni_isa_irq); } void __init sni_rm200_init(void) { }