/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Time operations for IP22 machines. Original code may come from * Ralf Baechle or David S. Miller (sorry guys, i'm really not sure) * * Copyright (C) 2001 by Ladislav Michl * Copyright (C) 2003, 06 Ralf Baechle (ralf@linux-mips.org) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static unsigned long dosample(void) { u32 ct0, ct1; u8 msb; /* Start the counter. */ sgint->tcword = (SGINT_TCWORD_CNT2 | SGINT_TCWORD_CALL | SGINT_TCWORD_MRGEN); sgint->tcnt2 = SGINT_TCSAMP_COUNTER & 0xff; sgint->tcnt2 = SGINT_TCSAMP_COUNTER >> 8; /* Get initial counter invariant */ ct0 = read_c0_count(); /* Latch and spin until top byte of counter2 is zero */ do { writeb(SGINT_TCWORD_CNT2 | SGINT_TCWORD_CLAT, &sgint->tcword); (void) readb(&sgint->tcnt2); msb = readb(&sgint->tcnt2); ct1 = read_c0_count(); } while (msb); /* Stop the counter. */ writeb(SGINT_TCWORD_CNT2 | SGINT_TCWORD_CALL | SGINT_TCWORD_MSWST, &sgint->tcword); /* * Return the difference, this is how far the r4k counter increments * for every 1/HZ seconds. We round off the nearest 1 MHz of master * clock (= 1000000 / HZ / 2). */ return (ct1 - ct0) / (500000/HZ) * (500000/HZ); } /* * Here we need to calibrate the cycle counter to at least be close. */ __init void plat_time_init(void) { unsigned long r4k_ticks[3]; unsigned long r4k_tick; /* * Figure out the r4k offset, the algorithm is very simple and works in * _all_ cases as long as the 8254 counter register itself works ok (as * an interrupt driving timer it does not because of bug, this is why * we are using the onchip r4k counter/compare register to serve this * purpose, but for r4k_offset calculation it will work ok for us). * There are other very complicated ways of performing this calculation * but this one works just fine so I am not going to futz around. ;-) */ printk(KERN_INFO "Calibrating system timer... "); dosample(); /* Prime cache. */ dosample(); /* Prime cache. */ /* Zero is NOT an option. */ do { r4k_ticks[0] = dosample(); } while (!r4k_ticks[0]); do { r4k_ticks[1] = dosample(); } while (!r4k_ticks[1]); if (r4k_ticks[0] != r4k_ticks[1]) { printk("warning: timer counts differ, retrying... "); r4k_ticks[2] = dosample(); if (r4k_ticks[2] == r4k_ticks[0] || r4k_ticks[2] == r4k_ticks[1]) r4k_tick = r4k_ticks[2]; else { printk("disagreement, using average... "); r4k_tick = (r4k_ticks[0] + r4k_ticks[1] + r4k_ticks[2]) / 3; } } else r4k_tick = r4k_ticks[0]; printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick, (int) (r4k_tick / (500000 / HZ)), (int) (r4k_tick % (500000 / HZ))); mips_hpt_frequency = r4k_tick * HZ; if (ip22_is_fullhouse()) setup_pit_timer(); } /* Generic SGI handler for (spurious) 8254 interrupts */ void __irq_entry indy_8254timer_irq(void) { int irq = SGI_8254_0_IRQ; ULONG cnt; char c; irq_enter(); kstat_incr_irq_this_cpu(irq); printk(KERN_ALERT "Oops, got 8254 interrupt.\n"); ArcRead(0, &c, 1, &cnt); ArcEnterInteractiveMode(); irq_exit(); }