/* * Copyright (C) 2013 Imagination Technologies * Author: Paul Burton * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include void __iomem *mips_gcr_base; void __iomem *mips_cm_l2sync_base; int mips_cm_is64; static char *cm2_tr[8] = { "mem", "gcr", "gic", "mmio", "0x04", "cpc", "0x06", "0x07" }; /* CM3 Tag ECC transaction type */ static char *cm3_tr[16] = { [0x0] = "ReqNoData", [0x1] = "0x1", [0x2] = "ReqWData", [0x3] = "0x3", [0x4] = "IReqNoResp", [0x5] = "IReqWResp", [0x6] = "IReqNoRespDat", [0x7] = "IReqWRespDat", [0x8] = "RespNoData", [0x9] = "RespDataFol", [0xa] = "RespWData", [0xb] = "RespDataOnly", [0xc] = "IRespNoData", [0xd] = "IRespDataFol", [0xe] = "IRespWData", [0xf] = "IRespDataOnly" }; static char *cm2_cmd[32] = { [0x00] = "0x00", [0x01] = "Legacy Write", [0x02] = "Legacy Read", [0x03] = "0x03", [0x04] = "0x04", [0x05] = "0x05", [0x06] = "0x06", [0x07] = "0x07", [0x08] = "Coherent Read Own", [0x09] = "Coherent Read Share", [0x0a] = "Coherent Read Discard", [0x0b] = "Coherent Ready Share Always", [0x0c] = "Coherent Upgrade", [0x0d] = "Coherent Writeback", [0x0e] = "0x0e", [0x0f] = "0x0f", [0x10] = "Coherent Copyback", [0x11] = "Coherent Copyback Invalidate", [0x12] = "Coherent Invalidate", [0x13] = "Coherent Write Invalidate", [0x14] = "Coherent Completion Sync", [0x15] = "0x15", [0x16] = "0x16", [0x17] = "0x17", [0x18] = "0x18", [0x19] = "0x19", [0x1a] = "0x1a", [0x1b] = "0x1b", [0x1c] = "0x1c", [0x1d] = "0x1d", [0x1e] = "0x1e", [0x1f] = "0x1f" }; /* CM3 Tag ECC command type */ static char *cm3_cmd[16] = { [0x0] = "Legacy Read", [0x1] = "Legacy Write", [0x2] = "Coherent Read Own", [0x3] = "Coherent Read Share", [0x4] = "Coherent Read Discard", [0x5] = "Coherent Evicted", [0x6] = "Coherent Upgrade", [0x7] = "Coherent Upgrade for Store Conditional", [0x8] = "Coherent Writeback", [0x9] = "Coherent Write Invalidate", [0xa] = "0xa", [0xb] = "0xb", [0xc] = "0xc", [0xd] = "0xd", [0xe] = "0xe", [0xf] = "0xf" }; /* CM3 Tag ECC command group */ static char *cm3_cmd_group[8] = { [0x0] = "Normal", [0x1] = "Registers", [0x2] = "TLB", [0x3] = "0x3", [0x4] = "L1I", [0x5] = "L1D", [0x6] = "L3", [0x7] = "L2" }; static char *cm2_core[8] = { "Invalid/OK", "Invalid/Data", "Shared/OK", "Shared/Data", "Modified/OK", "Modified/Data", "Exclusive/OK", "Exclusive/Data" }; static char *cm2_causes[32] = { "None", "GC_WR_ERR", "GC_RD_ERR", "COH_WR_ERR", "COH_RD_ERR", "MMIO_WR_ERR", "MMIO_RD_ERR", "0x07", "0x08", "0x09", "0x0a", "0x0b", "0x0c", "0x0d", "0x0e", "0x0f", "0x10", "0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "INTVN_WR_ERR", "INTVN_RD_ERR", "0x19", "0x1a", "0x1b", "0x1c", "0x1d", "0x1e", "0x1f" }; static char *cm3_causes[32] = { "0x0", "MP_CORRECTABLE_ECC_ERR", "MP_REQUEST_DECODE_ERR", "MP_UNCORRECTABLE_ECC_ERR", "MP_PARITY_ERR", "MP_COHERENCE_ERR", "CMBIU_REQUEST_DECODE_ERR", "CMBIU_PARITY_ERR", "CMBIU_AXI_RESP_ERR", "0x9", "RBI_BUS_ERR", "0xb", "0xc", "0xd", "0xe", "0xf", "0x10", "0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "0x17", "0x18", "0x19", "0x1a", "0x1b", "0x1c", "0x1d", "0x1e", "0x1f" }; static DEFINE_PER_CPU_ALIGNED(spinlock_t, cm_core_lock); static DEFINE_PER_CPU_ALIGNED(unsigned long, cm_core_lock_flags); phys_addr_t __mips_cm_phys_base(void) { u32 config3 = read_c0_config3(); unsigned long cmgcr; /* Check the CMGCRBase register is implemented */ if (!(config3 & MIPS_CONF3_CMGCR)) return 0; /* Read the address from CMGCRBase */ cmgcr = read_c0_cmgcrbase(); return (cmgcr & MIPS_CMGCRF_BASE) << (36 - 32); } phys_addr_t mips_cm_phys_base(void) __attribute__((weak, alias("__mips_cm_phys_base"))); phys_addr_t __mips_cm_l2sync_phys_base(void) { u32 base_reg; /* * If the L2-only sync region is already enabled then leave it at it's * current location. */ base_reg = read_gcr_l2_only_sync_base(); if (base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN) return base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE; /* Default to following the CM */ return mips_cm_phys_base() + MIPS_CM_GCR_SIZE; } phys_addr_t mips_cm_l2sync_phys_base(void) __attribute__((weak, alias("__mips_cm_l2sync_phys_base"))); static void mips_cm_probe_l2sync(void) { unsigned major_rev; phys_addr_t addr; /* L2-only sync was introduced with CM major revision 6 */ major_rev = (read_gcr_rev() & CM_GCR_REV_MAJOR) >> __ffs(CM_GCR_REV_MAJOR); if (major_rev < 6) return; /* Find a location for the L2 sync region */ addr = mips_cm_l2sync_phys_base(); BUG_ON((addr & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE) != addr); if (!addr) return; /* Set the region base address & enable it */ write_gcr_l2_only_sync_base(addr | CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN); /* Map the region */ mips_cm_l2sync_base = ioremap_nocache(addr, MIPS_CM_L2SYNC_SIZE); } int mips_cm_probe(void) { phys_addr_t addr; u32 base_reg; unsigned cpu; /* * No need to probe again if we have already been * here before. */ if (mips_gcr_base) return 0; addr = mips_cm_phys_base(); BUG_ON((addr & CM_GCR_BASE_GCRBASE) != addr); if (!addr) return -ENODEV; mips_gcr_base = ioremap_nocache(addr, MIPS_CM_GCR_SIZE); if (!mips_gcr_base) return -ENXIO; /* sanity check that we're looking at a CM */ base_reg = read_gcr_base(); if ((base_reg & CM_GCR_BASE_GCRBASE) != addr) { pr_err("GCRs appear to have been moved (expected them at 0x%08lx)!\n", (unsigned long)addr); mips_gcr_base = NULL; return -ENODEV; } /* set default target to memory */ change_gcr_base(CM_GCR_BASE_CMDEFTGT, CM_GCR_BASE_CMDEFTGT_MEM); /* disable CM regions */ write_gcr_reg0_base(CM_GCR_REGn_BASE_BASEADDR); write_gcr_reg0_mask(CM_GCR_REGn_MASK_ADDRMASK); write_gcr_reg1_base(CM_GCR_REGn_BASE_BASEADDR); write_gcr_reg1_mask(CM_GCR_REGn_MASK_ADDRMASK); write_gcr_reg2_base(CM_GCR_REGn_BASE_BASEADDR); write_gcr_reg2_mask(CM_GCR_REGn_MASK_ADDRMASK); write_gcr_reg3_base(CM_GCR_REGn_BASE_BASEADDR); write_gcr_reg3_mask(CM_GCR_REGn_MASK_ADDRMASK); /* probe for an L2-only sync region */ mips_cm_probe_l2sync(); /* determine register width for this CM */ mips_cm_is64 = IS_ENABLED(CONFIG_64BIT) && (mips_cm_revision() >= CM_REV_CM3); for_each_possible_cpu(cpu) spin_lock_init(&per_cpu(cm_core_lock, cpu)); return 0; } void mips_cm_lock_other(unsigned int cluster, unsigned int core, unsigned int vp, unsigned int block) { unsigned int curr_core, cm_rev; u32 val; cm_rev = mips_cm_revision(); preempt_disable(); if (cm_rev >= CM_REV_CM3) { val = core << __ffs(CM3_GCR_Cx_OTHER_CORE); val |= vp << __ffs(CM3_GCR_Cx_OTHER_VP); if (cm_rev >= CM_REV_CM3_5) { val |= CM_GCR_Cx_OTHER_CLUSTER_EN; val |= cluster << __ffs(CM_GCR_Cx_OTHER_CLUSTER); val |= block << __ffs(CM_GCR_Cx_OTHER_BLOCK); } else { WARN_ON(cluster != 0); WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL); } /* * We need to disable interrupts in SMP systems in order to * ensure that we don't interrupt the caller with code which * may modify the redirect register. We do so here in a * slightly obscure way by using a spin lock, since this has * the neat property of also catching any nested uses of * mips_cm_lock_other() leading to a deadlock or a nice warning * with lockdep enabled. */ spin_lock_irqsave(this_cpu_ptr(&cm_core_lock), *this_cpu_ptr(&cm_core_lock_flags)); } else { WARN_ON(cluster != 0); WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL); /* * We only have a GCR_CL_OTHER per core in systems with * CM 2.5 & older, so have to ensure other VP(E)s don't * race with us. */ curr_core = cpu_core(¤t_cpu_data); spin_lock_irqsave(&per_cpu(cm_core_lock, curr_core), per_cpu(cm_core_lock_flags, curr_core)); val = core << __ffs(CM_GCR_Cx_OTHER_CORENUM); } write_gcr_cl_other(val); /* * Ensure the core-other region reflects the appropriate core & * VP before any accesses to it occur. */ mb(); } void mips_cm_unlock_other(void) { unsigned int curr_core; if (mips_cm_revision() < CM_REV_CM3) { curr_core = cpu_core(¤t_cpu_data); spin_unlock_irqrestore(&per_cpu(cm_core_lock, curr_core), per_cpu(cm_core_lock_flags, curr_core)); } else { spin_unlock_irqrestore(this_cpu_ptr(&cm_core_lock), *this_cpu_ptr(&cm_core_lock_flags)); } preempt_enable(); } void mips_cm_error_report(void) { u64 cm_error, cm_addr, cm_other; unsigned long revision; int ocause, cause; char buf[256]; if (!mips_cm_present()) return; revision = mips_cm_revision(); cm_error = read_gcr_error_cause(); cm_addr = read_gcr_error_addr(); cm_other = read_gcr_error_mult(); if (revision < CM_REV_CM3) { /* CM2 */ cause = cm_error >> __ffs(CM_GCR_ERROR_CAUSE_ERRTYPE); ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND); if (!cause) return; if (cause < 16) { unsigned long cca_bits = (cm_error >> 15) & 7; unsigned long tr_bits = (cm_error >> 12) & 7; unsigned long cmd_bits = (cm_error >> 7) & 0x1f; unsigned long stag_bits = (cm_error >> 3) & 15; unsigned long sport_bits = (cm_error >> 0) & 7; snprintf(buf, sizeof(buf), "CCA=%lu TR=%s MCmd=%s STag=%lu " "SPort=%lu\n", cca_bits, cm2_tr[tr_bits], cm2_cmd[cmd_bits], stag_bits, sport_bits); } else { /* glob state & sresp together */ unsigned long c3_bits = (cm_error >> 18) & 7; unsigned long c2_bits = (cm_error >> 15) & 7; unsigned long c1_bits = (cm_error >> 12) & 7; unsigned long c0_bits = (cm_error >> 9) & 7; unsigned long sc_bit = (cm_error >> 8) & 1; unsigned long cmd_bits = (cm_error >> 3) & 0x1f; unsigned long sport_bits = (cm_error >> 0) & 7; snprintf(buf, sizeof(buf), "C3=%s C2=%s C1=%s C0=%s SC=%s " "MCmd=%s SPort=%lu\n", cm2_core[c3_bits], cm2_core[c2_bits], cm2_core[c1_bits], cm2_core[c0_bits], sc_bit ? "True" : "False", cm2_cmd[cmd_bits], sport_bits); } pr_err("CM_ERROR=%08llx %s <%s>\n", cm_error, cm2_causes[cause], buf); pr_err("CM_ADDR =%08llx\n", cm_addr); pr_err("CM_OTHER=%08llx %s\n", cm_other, cm2_causes[ocause]); } else { /* CM3 */ ulong core_id_bits, vp_id_bits, cmd_bits, cmd_group_bits; ulong cm3_cca_bits, mcp_bits, cm3_tr_bits, sched_bit; cause = cm_error >> __ffs64(CM3_GCR_ERROR_CAUSE_ERRTYPE); ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND); if (!cause) return; /* Used by cause == {1,2,3} */ core_id_bits = (cm_error >> 22) & 0xf; vp_id_bits = (cm_error >> 18) & 0xf; cmd_bits = (cm_error >> 14) & 0xf; cmd_group_bits = (cm_error >> 11) & 0xf; cm3_cca_bits = (cm_error >> 8) & 7; mcp_bits = (cm_error >> 5) & 0xf; cm3_tr_bits = (cm_error >> 1) & 0xf; sched_bit = cm_error & 0x1; if (cause == 1 || cause == 3) { /* Tag ECC */ unsigned long tag_ecc = (cm_error >> 57) & 0x1; unsigned long tag_way_bits = (cm_error >> 29) & 0xffff; unsigned long dword_bits = (cm_error >> 49) & 0xff; unsigned long data_way_bits = (cm_error >> 45) & 0xf; unsigned long data_sets_bits = (cm_error >> 29) & 0xfff; unsigned long bank_bit = (cm_error >> 28) & 0x1; snprintf(buf, sizeof(buf), "%s ECC Error: Way=%lu (DWORD=%lu, Sets=%lu)" "Bank=%lu CoreID=%lu VPID=%lu Command=%s" "Command Group=%s CCA=%lu MCP=%d" "Transaction type=%s Scheduler=%lu\n", tag_ecc ? "TAG" : "DATA", tag_ecc ? (unsigned long)ffs(tag_way_bits) - 1 : data_way_bits, bank_bit, dword_bits, data_sets_bits, core_id_bits, vp_id_bits, cm3_cmd[cmd_bits], cm3_cmd_group[cmd_group_bits], cm3_cca_bits, 1 << mcp_bits, cm3_tr[cm3_tr_bits], sched_bit); } else if (cause == 2) { unsigned long data_error_type = (cm_error >> 41) & 0xfff; unsigned long data_decode_cmd = (cm_error >> 37) & 0xf; unsigned long data_decode_group = (cm_error >> 34) & 0x7; unsigned long data_decode_destination_id = (cm_error >> 28) & 0x3f; snprintf(buf, sizeof(buf), "Decode Request Error: Type=%lu, Command=%lu" "Command Group=%lu Destination ID=%lu" "CoreID=%lu VPID=%lu Command=%s" "Command Group=%s CCA=%lu MCP=%d" "Transaction type=%s Scheduler=%lu\n", data_error_type, data_decode_cmd, data_decode_group, data_decode_destination_id, core_id_bits, vp_id_bits, cm3_cmd[cmd_bits], cm3_cmd_group[cmd_group_bits], cm3_cca_bits, 1 << mcp_bits, cm3_tr[cm3_tr_bits], sched_bit); } else { buf[0] = 0; } pr_err("CM_ERROR=%llx %s <%s>\n", cm_error, cm3_causes[cause], buf); pr_err("CM_ADDR =%llx\n", cm_addr); pr_err("CM_OTHER=%llx %s\n", cm_other, cm3_causes[ocause]); } /* reprime cause register */ write_gcr_error_cause(0); }