/* * i8253.c 8253/PIT functions * */ #include <linux/clockchips.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/jiffies.h> #include <linux/module.h> #include <linux/smp.h> #include <linux/spinlock.h> #include <asm/delay.h> #include <asm/i8253.h> #include <asm/io.h> #include <asm/time.h> DEFINE_SPINLOCK(i8253_lock); EXPORT_SYMBOL(i8253_lock); /* * Initialize the PIT timer. * * This is also called after resume to bring the PIT into operation again. */ static void init_pit_timer(enum clock_event_mode mode, struct clock_event_device *evt) { spin_lock(&i8253_lock); switch(mode) { case CLOCK_EVT_MODE_PERIODIC: /* binary, mode 2, LSB/MSB, ch 0 */ outb_p(0x34, PIT_MODE); outb_p(LATCH & 0xff , PIT_CH0); /* LSB */ outb(LATCH >> 8 , PIT_CH0); /* MSB */ break; case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_UNUSED: if (evt->mode == CLOCK_EVT_MODE_PERIODIC || evt->mode == CLOCK_EVT_MODE_ONESHOT) { outb_p(0x30, PIT_MODE); outb_p(0, PIT_CH0); outb_p(0, PIT_CH0); } break; case CLOCK_EVT_MODE_ONESHOT: /* One shot setup */ outb_p(0x38, PIT_MODE); break; case CLOCK_EVT_MODE_RESUME: /* Nothing to do here */ break; } spin_unlock(&i8253_lock); } /* * Program the next event in oneshot mode * * Delta is given in PIT ticks */ static int pit_next_event(unsigned long delta, struct clock_event_device *evt) { spin_lock(&i8253_lock); outb_p(delta & 0xff , PIT_CH0); /* LSB */ outb(delta >> 8 , PIT_CH0); /* MSB */ spin_unlock(&i8253_lock); return 0; } /* * On UP the PIT can serve all of the possible timer functions. On SMP systems * it can be solely used for the global tick. * * The profiling and update capabilites are switched off once the local apic is * registered. This mechanism replaces the previous #ifdef LOCAL_APIC - * !using_apic_timer decisions in do_timer_interrupt_hook() */ static struct clock_event_device pit_clockevent = { .name = "pit", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_mode = init_pit_timer, .set_next_event = pit_next_event, .irq = 0, }; static irqreturn_t timer_interrupt(int irq, void *dev_id) { pit_clockevent.event_handler(&pit_clockevent); return IRQ_HANDLED; } static struct irqaction irq0 = { .handler = timer_interrupt, .flags = IRQF_DISABLED | IRQF_NOBALANCING | IRQF_TIMER, .name = "timer" }; /* * Initialize the conversion factor and the min/max deltas of the clock event * structure and register the clock event source with the framework. */ void __init setup_pit_timer(void) { struct clock_event_device *cd = &pit_clockevent; unsigned int cpu = smp_processor_id(); /* * Start pit with the boot cpu mask and make it global after the * IO_APIC has been initialized. */ cd->cpumask = cpumask_of(cpu); clockevent_set_clock(cd, CLOCK_TICK_RATE); cd->max_delta_ns = clockevent_delta2ns(0x7FFF, cd); cd->min_delta_ns = clockevent_delta2ns(0xF, cd); clockevents_register_device(cd); setup_irq(0, &irq0); } /* * Since the PIT overflows every tick, its not very useful * to just read by itself. So use jiffies to emulate a free * running counter: */ static cycle_t pit_read(struct clocksource *cs) { unsigned long flags; int count; u32 jifs; static int old_count; static u32 old_jifs; spin_lock_irqsave(&i8253_lock, flags); /* * Although our caller may have the read side of xtime_lock, * this is now a seqlock, and we are cheating in this routine * by having side effects on state that we cannot undo if * there is a collision on the seqlock and our caller has to * retry. (Namely, old_jifs and old_count.) So we must treat * jiffies as volatile despite the lock. We read jiffies * before latching the timer count to guarantee that although * the jiffies value might be older than the count (that is, * the counter may underflow between the last point where * jiffies was incremented and the point where we latch the * count), it cannot be newer. */ jifs = jiffies; outb_p(0x00, PIT_MODE); /* latch the count ASAP */ count = inb_p(PIT_CH0); /* read the latched count */ count |= inb_p(PIT_CH0) << 8; /* VIA686a test code... reset the latch if count > max + 1 */ if (count > LATCH) { outb_p(0x34, PIT_MODE); outb_p(LATCH & 0xff, PIT_CH0); outb(LATCH >> 8, PIT_CH0); count = LATCH - 1; } /* * It's possible for count to appear to go the wrong way for a * couple of reasons: * * 1. The timer counter underflows, but we haven't handled the * resulting interrupt and incremented jiffies yet. * 2. Hardware problem with the timer, not giving us continuous time, * the counter does small "jumps" upwards on some Pentium systems, * (see c't 95/10 page 335 for Neptun bug.) * * Previous attempts to handle these cases intelligently were * buggy, so we just do the simple thing now. */ if (count > old_count && jifs == old_jifs) { count = old_count; } old_count = count; old_jifs = jifs; spin_unlock_irqrestore(&i8253_lock, flags); count = (LATCH - 1) - count; return (cycle_t)(jifs * LATCH) + count; } static struct clocksource clocksource_pit = { .name = "pit", .rating = 110, .read = pit_read, .mask = CLOCKSOURCE_MASK(32), .mult = 0, .shift = 20, }; static int __init init_pit_clocksource(void) { if (num_possible_cpus() > 1) /* PIT does not scale! */ return 0; clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20); return clocksource_register(&clocksource_pit); } arch_initcall(init_pit_clocksource);