/* * Copyright (C) 2005-2012 Imagination Technologies Ltd. * * This file contains the architecture-dependant parts of system setup. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Priv protect as many registers as possible. */ #define DEFAULT_PRIV (TXPRIVEXT_COPRO_BITS | \ TXPRIVEXT_TXTRIGGER_BIT | \ TXPRIVEXT_TXGBLCREG_BIT | \ TXPRIVEXT_ILOCK_BIT | \ TXPRIVEXT_TXITACCYC_BIT | \ TXPRIVEXT_TXDIVTIME_BIT | \ TXPRIVEXT_TXAMAREGX_BIT | \ TXPRIVEXT_TXTIMERI_BIT | \ TXPRIVEXT_TXSTATUS_BIT | \ TXPRIVEXT_TXDISABLE_BIT) /* Meta2 specific bits. */ #ifdef CONFIG_METAG_META12 #define META2_PRIV 0 #else #define META2_PRIV (TXPRIVEXT_TXTIMER_BIT | \ TXPRIVEXT_TRACE_BIT) #endif /* Unaligned access checking bits. */ #ifdef CONFIG_METAG_UNALIGNED #define UNALIGNED_PRIV TXPRIVEXT_ALIGNREW_BIT #else #define UNALIGNED_PRIV 0 #endif #define PRIV_BITS (DEFAULT_PRIV | \ META2_PRIV | \ UNALIGNED_PRIV) /* * Protect access to: * 0x06000000-0x07ffffff Direct mapped region * 0x05000000-0x05ffffff MMU table region (Meta1) * 0x04400000-0x047fffff Cache flush region * 0x84000000-0x87ffffff Core cache memory region (Meta2) * * Allow access to: * 0x80000000-0x81ffffff Core code memory region (Meta2) */ #ifdef CONFIG_METAG_META12 #define PRIVSYSR_BITS TXPRIVSYSR_ALL_BITS #else #define PRIVSYSR_BITS (TXPRIVSYSR_ALL_BITS & ~TXPRIVSYSR_CORECODE_BIT) #endif /* Protect all 0x02xxxxxx and 0x048xxxxx. */ #define PIOREG_BITS 0xffffffff /* * Protect all 0x04000xx0 (system events) * except write combiner flush and write fence (system events 4 and 5). */ #define PSYREG_BITS 0xfffffffb extern char _heap_start[]; #ifdef CONFIG_DA_CONSOLE /* Our early channel based console driver */ extern struct console dash_console; #endif const struct machine_desc *machine_desc __initdata; /* * Map a Linux CPU number to a hardware thread ID * In SMP this will be setup with the correct mapping at startup; in UP this * will map to the HW thread on which we are running. */ u8 cpu_2_hwthread_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_HWTHREAD_ID }; EXPORT_SYMBOL_GPL(cpu_2_hwthread_id); /* * Map a hardware thread ID to a Linux CPU number * In SMP this will be fleshed out with the correct CPU ID for a particular * hardware thread. In UP this will be initialised with the boot CPU ID. */ u8 hwthread_id_2_cpu[4] __read_mostly = { [0 ... 3] = BAD_CPU_ID }; /* The relative offset of the MMU mapped memory (from ldlk or bootloader) * to the real physical memory. This is needed as we have to use the * physical addresses in the MMU tables (pte entries), and not the virtual * addresses. * This variable is used in the __pa() and __va() macros, and should * probably only be used via them. */ unsigned int meta_memoffset; EXPORT_SYMBOL(meta_memoffset); static char __initdata *original_cmd_line; DEFINE_PER_CPU(PTBI, pTBI); /* * Mapping are specified as "CPU_ID:HWTHREAD_ID", e.g. * * "hwthread_map=0:1,1:2,2:3,3:0" * * Linux CPU ID HWTHREAD_ID * --------------------------- * 0 1 * 1 2 * 2 3 * 3 0 */ static int __init parse_hwthread_map(char *p) { int cpu; while (*p) { cpu = (*p++) - '0'; if (cpu < 0 || cpu > 9) goto err_cpu; p++; /* skip semi-colon */ cpu_2_hwthread_id[cpu] = (*p++) - '0'; if (cpu_2_hwthread_id[cpu] >= 4) goto err_thread; hwthread_id_2_cpu[cpu_2_hwthread_id[cpu]] = cpu; if (*p == ',') p++; /* skip comma */ } return 0; err_cpu: pr_err("%s: hwthread_map cpu argument out of range\n", __func__); return -EINVAL; err_thread: pr_err("%s: hwthread_map thread argument out of range\n", __func__); return -EINVAL; } early_param("hwthread_map", parse_hwthread_map); void __init dump_machine_table(void) { struct machine_desc *p; const char **compat; pr_info("Available machine support:\n\tNAME\t\tCOMPATIBLE LIST\n"); for_each_machine_desc(p) { pr_info("\t%s\t[", p->name); for (compat = p->dt_compat; compat && *compat; ++compat) printk(" '%s'", *compat); printk(" ]\n"); } pr_info("\nPlease check your kernel config and/or bootloader.\n"); hard_processor_halt(HALT_PANIC); } #ifdef CONFIG_METAG_HALT_ON_PANIC static int metag_panic_event(struct notifier_block *this, unsigned long event, void *ptr) { hard_processor_halt(HALT_PANIC); return NOTIFY_DONE; } static struct notifier_block metag_panic_block = { metag_panic_event, NULL, 0 }; #endif void __init setup_arch(char **cmdline_p) { unsigned long start_pfn; unsigned long text_start = (unsigned long)(&_stext); unsigned long cpu = smp_processor_id(); unsigned long heap_start, heap_end; unsigned long start_pte; PTBI _pTBI; PTBISEG p_heap; int heap_id, i; metag_cache_probe(); metag_da_probe(); #ifdef CONFIG_DA_CONSOLE if (metag_da_enabled()) { /* An early channel based console driver */ register_console(&dash_console); add_preferred_console("ttyDA", 1, NULL); } #endif /* try interpreting the argument as a device tree */ machine_desc = setup_machine_fdt(original_cmd_line); /* if it doesn't look like a device tree it must be a command line */ if (!machine_desc) { #ifdef CONFIG_METAG_BUILTIN_DTB /* try the embedded device tree */ machine_desc = setup_machine_fdt(__dtb_start); if (!machine_desc) panic("Invalid embedded device tree."); #else /* use the default machine description */ machine_desc = default_machine_desc(); #endif #ifndef CONFIG_CMDLINE_FORCE /* append the bootloader cmdline to any builtin fdt cmdline */ if (boot_command_line[0] && original_cmd_line[0]) strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); strlcat(boot_command_line, original_cmd_line, COMMAND_LINE_SIZE); #endif } setup_meta_clocks(machine_desc->clocks); *cmdline_p = boot_command_line; parse_early_param(); /* * Make sure we don't alias in dcache or icache */ check_for_cache_aliasing(cpu); #ifdef CONFIG_METAG_HALT_ON_PANIC atomic_notifier_chain_register(&panic_notifier_list, &metag_panic_block); #endif #ifdef CONFIG_DUMMY_CONSOLE conswitchp = &dummy_con; #endif if (!(__core_reg_get(TXSTATUS) & TXSTATUS_PSTAT_BIT)) panic("Privilege must be enabled for this thread."); _pTBI = __TBI(TBID_ISTAT_BIT); per_cpu(pTBI, cpu) = _pTBI; if (!per_cpu(pTBI, cpu)) panic("No TBI found!"); /* * Initialize all interrupt vectors to our copy of __TBIUnExpXXX, * rather than the version from the bootloader. This makes call * stacks easier to understand and may allow us to unmap the * bootloader at some point. */ for (i = 0; i <= TBID_SIGNUM_MAX; i++) _pTBI->fnSigs[i] = __TBIUnExpXXX; /* A Meta requirement is that the kernel is loaded (virtually) * at the PAGE_OFFSET. */ if (PAGE_OFFSET != text_start) panic("Kernel not loaded at PAGE_OFFSET (%#x) but at %#lx.", PAGE_OFFSET, text_start); start_pte = mmu_read_second_level_page(text_start); /* * Kernel pages should have the PRIV bit set by the bootloader. */ if (!(start_pte & _PAGE_KERNEL)) panic("kernel pte does not have PRIV set"); /* * See __pa and __va in include/asm/page.h. * This value is negative when running in local space but the * calculations work anyway. */ meta_memoffset = text_start - (start_pte & PAGE_MASK); /* Now lets look at the heap space */ heap_id = (__TBIThreadId() & TBID_THREAD_BITS) + TBID_SEG(0, TBID_SEGSCOPE_LOCAL, TBID_SEGTYPE_HEAP); p_heap = __TBIFindSeg(NULL, heap_id); if (!p_heap) panic("Could not find heap from TBI!"); /* The heap begins at the first full page after the kernel data. */ heap_start = (unsigned long) &_heap_start; /* The heap ends at the end of the heap segment specified with * ldlk. */ if (is_global_space(text_start)) { pr_debug("WARNING: running in global space!\n"); heap_end = (unsigned long)p_heap->pGAddr + p_heap->Bytes; } else { heap_end = (unsigned long)p_heap->pLAddr + p_heap->Bytes; } ROOT_DEV = Root_RAM0; /* init_mm is the mm struct used for the first task. It is then * cloned for all other tasks spawned from that task. * * Note - we are using the virtual addresses here. */ init_mm.start_code = (unsigned long)(&_stext); init_mm.end_code = (unsigned long)(&_etext); init_mm.end_data = (unsigned long)(&_edata); init_mm.brk = (unsigned long)heap_start; min_low_pfn = PFN_UP(__pa(text_start)); max_low_pfn = PFN_DOWN(__pa(heap_end)); pfn_base = min_low_pfn; /* Round max_pfn up to a 4Mb boundary. The free_bootmem_node() * call later makes sure to keep the rounded up pages marked reserved. */ max_pfn = max_low_pfn + ((1 << MAX_ORDER) - 1); max_pfn &= ~((1 << MAX_ORDER) - 1); start_pfn = PFN_UP(__pa(heap_start)); if (min_low_pfn & ((1 << MAX_ORDER) - 1)) { /* Theoretically, we could expand the space that the * bootmem allocator covers - much as we do for the * 'high' address, and then tell the bootmem system * that the lowest chunk is 'not available'. Right * now it is just much easier to constrain the * user to always MAX_ORDER align their kernel space. */ panic("Kernel must be %d byte aligned, currently at %#lx.", 1 << (MAX_ORDER + PAGE_SHIFT), min_low_pfn << PAGE_SHIFT); } #ifdef CONFIG_HIGHMEM highstart_pfn = highend_pfn = max_pfn; high_memory = (void *) __va(PFN_PHYS(highstart_pfn)); #else high_memory = (void *)__va(PFN_PHYS(max_pfn)); #endif paging_init(heap_end); setup_priv(); /* Setup the boot cpu's mapping. The rest will be setup below. */ cpu_2_hwthread_id[smp_processor_id()] = hard_processor_id(); hwthread_id_2_cpu[hard_processor_id()] = smp_processor_id(); unflatten_and_copy_device_tree(); #ifdef CONFIG_SMP smp_init_cpus(); #endif if (machine_desc->init_early) machine_desc->init_early(); } static int __init customize_machine(void) { /* customizes platform devices, or adds new ones */ if (machine_desc->init_machine) machine_desc->init_machine(); else of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL); return 0; } arch_initcall(customize_machine); static int __init init_machine_late(void) { if (machine_desc->init_late) machine_desc->init_late(); return 0; } late_initcall(init_machine_late); #ifdef CONFIG_PROC_FS /* * Get CPU information for use by the procfs. */ static const char *get_cpu_capabilities(unsigned int txenable) { #ifdef CONFIG_METAG_META21 /* See CORE_ID in META HTP.GP TRM - Architecture Overview 2.1.238 */ int coreid = metag_in32(METAC_CORE_ID); unsigned int dsp_type = (coreid >> 3) & 7; unsigned int fpu_type = (coreid >> 7) & 3; switch (dsp_type | fpu_type << 3) { case (0x00): return "EDSP"; case (0x01): return "DSP"; case (0x08): return "EDSP+LFPU"; case (0x09): return "DSP+LFPU"; case (0x10): return "EDSP+FPU"; case (0x11): return "DSP+FPU"; } return "UNKNOWN"; #else if (!(txenable & TXENABLE_CLASS_BITS)) return "DSP"; else return ""; #endif } static int show_cpuinfo(struct seq_file *m, void *v) { const char *cpu; unsigned int txenable, thread_id, major, minor; unsigned long clockfreq = get_coreclock(); #ifdef CONFIG_SMP int i; unsigned long lpj; #endif cpu = "META"; txenable = __core_reg_get(TXENABLE); major = (txenable & TXENABLE_MAJOR_REV_BITS) >> TXENABLE_MAJOR_REV_S; minor = (txenable & TXENABLE_MINOR_REV_BITS) >> TXENABLE_MINOR_REV_S; thread_id = (txenable >> 8) & 0x3; #ifdef CONFIG_SMP for_each_online_cpu(i) { lpj = per_cpu(cpu_data, i).loops_per_jiffy; txenable = core_reg_read(TXUCT_ID, TXENABLE_REGNUM, cpu_2_hwthread_id[i]); seq_printf(m, "CPU:\t\t%s %d.%d (thread %d)\n" "Clocking:\t%lu.%1luMHz\n" "BogoMips:\t%lu.%02lu\n" "Calibration:\t%lu loops\n" "Capabilities:\t%s\n\n", cpu, major, minor, i, clockfreq / 1000000, (clockfreq / 100000) % 10, lpj / (500000 / HZ), (lpj / (5000 / HZ)) % 100, lpj, get_cpu_capabilities(txenable)); } #else seq_printf(m, "CPU:\t\t%s %d.%d (thread %d)\n" "Clocking:\t%lu.%1luMHz\n" "BogoMips:\t%lu.%02lu\n" "Calibration:\t%lu loops\n" "Capabilities:\t%s\n", cpu, major, minor, thread_id, clockfreq / 1000000, (clockfreq / 100000) % 10, loops_per_jiffy / (500000 / HZ), (loops_per_jiffy / (5000 / HZ)) % 100, loops_per_jiffy, get_cpu_capabilities(txenable)); #endif /* CONFIG_SMP */ #ifdef CONFIG_METAG_L2C if (meta_l2c_is_present()) { seq_printf(m, "L2 cache:\t%s\n" "L2 cache size:\t%d KB\n", meta_l2c_is_enabled() ? "enabled" : "disabled", meta_l2c_size() >> 10); } #endif return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { return (void *)(*pos == 0); } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { return NULL; } static void c_stop(struct seq_file *m, void *v) { } const struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo, }; #endif /* CONFIG_PROC_FS */ void __init metag_start_kernel(char *args) { /* Zero the timer register so timestamps are from the point at * which the kernel started running. */ __core_reg_set(TXTIMER, 0); /* Clear the bss. */ memset(__bss_start, 0, (unsigned long)__bss_stop - (unsigned long)__bss_start); /* Remember where these are for use in setup_arch */ original_cmd_line = args; current_thread_info()->cpu = hard_processor_id(); start_kernel(); } /** * setup_priv() - Set up privilege protection registers. * * Set up privilege protection registers such as TXPRIVEXT to prevent userland * from touching our precious registers and sensitive memory areas. */ void setup_priv(void) { unsigned int offset = hard_processor_id() << TXPRIVREG_STRIDE_S; __core_reg_set(TXPRIVEXT, PRIV_BITS); metag_out32(PRIVSYSR_BITS, T0PRIVSYSR + offset); metag_out32(PIOREG_BITS, T0PIOREG + offset); metag_out32(PSYREG_BITS, T0PSYREG + offset); } PTBI pTBI_get(unsigned int cpu) { return per_cpu(pTBI, cpu); } EXPORT_SYMBOL(pTBI_get); #if defined(CONFIG_METAG_DSP) && defined(CONFIG_METAG_FPU) static char capabilities[] = "dsp fpu"; #elif defined(CONFIG_METAG_DSP) static char capabilities[] = "dsp"; #elif defined(CONFIG_METAG_FPU) static char capabilities[] = "fpu"; #else static char capabilities[] = ""; #endif static struct ctl_table caps_kern_table[] = { { .procname = "capabilities", .data = capabilities, .maxlen = sizeof(capabilities), .mode = 0444, .proc_handler = proc_dostring, }, {} }; static struct ctl_table caps_root_table[] = { { .procname = "kernel", .mode = 0555, .child = caps_kern_table, }, {} }; static int __init capabilities_register_sysctl(void) { struct ctl_table_header *caps_table_header; caps_table_header = register_sysctl_table(caps_root_table); if (!caps_table_header) { pr_err("Unable to register CAPABILITIES sysctl\n"); return -ENOMEM; } return 0; } core_initcall(capabilities_register_sysctl);