~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP M68000 Hi-Performance Microprocessor Division M68060 Software Package Production Release P1.00 -- October 10, 1994 M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. THE SOFTWARE is provided on an "AS IS" basis and without warranty. To the maximum extent permitted by applicable law, MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE and any warranty against infringement with regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. To the maximum extent permitted by applicable law, IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE so long as this entire notice is retained without alteration in any modified and/or redistributed versions, and that such modified versions are clearly identified as such. No licenses are granted by implication, estoppel or otherwise under any patents or trademarks of Motorola, Inc. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ireal.s: # This file is appended to the top of the 060ISP package # and contains the entry points into the package. The user, in # effect, branches to one of the branch table entries located # after _060ISP_TABLE. # Also, subroutine stubs exist in this file (_isp_done for # example) that are referenced by the ISP package itself in order # to call a given routine. The stub routine actually performs the # callout. The ISP code does a "bsr" to the stub routine. This # extra layer of hierarchy adds a slight performance penalty but # it makes the ISP code easier to read and more mainatinable. # set _off_chk, 0x00 set _off_divbyzero, 0x04 set _off_trace, 0x08 set _off_access, 0x0c set _off_done, 0x10 set _off_cas, 0x14 set _off_cas2, 0x18 set _off_lock, 0x1c set _off_unlock, 0x20 set _off_imr, 0x40 set _off_dmr, 0x44 set _off_dmw, 0x48 set _off_irw, 0x4c set _off_irl, 0x50 set _off_drb, 0x54 set _off_drw, 0x58 set _off_drl, 0x5c set _off_dwb, 0x60 set _off_dww, 0x64 set _off_dwl, 0x68 _060ISP_TABLE: # Here's the table of ENTRY POINTS for those linking the package. bra.l _isp_unimp short 0x0000 bra.l _isp_cas short 0x0000 bra.l _isp_cas2 short 0x0000 bra.l _isp_cas_finish short 0x0000 bra.l _isp_cas2_finish short 0x0000 bra.l _isp_cas_inrange short 0x0000 bra.l _isp_cas_terminate short 0x0000 bra.l _isp_cas_restart short 0x0000 space 64 ############################################################# global _real_chk _real_chk: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_chk,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _real_divbyzero _real_divbyzero: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_divbyzero,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _real_trace _real_trace: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_trace,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _real_access _real_access: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_access,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _isp_done _isp_done: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_done,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 ####################################### global _real_cas _real_cas: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_cas,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _real_cas2 _real_cas2: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_cas2,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _real_lock_page _real_lock_page: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_lock,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _real_unlock_page _real_unlock_page: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_unlock,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 ####################################### global _imem_read _imem_read: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_imr,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _dmem_read _dmem_read: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_dmr,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _dmem_write _dmem_write: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_dmw,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _imem_read_word _imem_read_word: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_irw,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _imem_read_long _imem_read_long: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_irl,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _dmem_read_byte _dmem_read_byte: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_drb,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _dmem_read_word _dmem_read_word: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_drw,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _dmem_read_long _dmem_read_long: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_drl,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _dmem_write_byte _dmem_write_byte: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_dwb,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _dmem_write_word _dmem_write_word: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_dww,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _dmem_write_long _dmem_write_long: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_dwl,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 # # This file contains a set of define statements for constants # in oreder to promote readability within the core code itself. # set LOCAL_SIZE, 96 # stack frame size(bytes) set LV, -LOCAL_SIZE # stack offset set EXC_ISR, 0x4 # stack status register set EXC_IPC, 0x6 # stack pc set EXC_IVOFF, 0xa # stacked vector offset set EXC_AREGS, LV+64 # offset of all address regs set EXC_DREGS, LV+32 # offset of all data regs set EXC_A7, EXC_AREGS+(7*4) # offset of a7 set EXC_A6, EXC_AREGS+(6*4) # offset of a6 set EXC_A5, EXC_AREGS+(5*4) # offset of a5 set EXC_A4, EXC_AREGS+(4*4) # offset of a4 set EXC_A3, EXC_AREGS+(3*4) # offset of a3 set EXC_A2, EXC_AREGS+(2*4) # offset of a2 set EXC_A1, EXC_AREGS+(1*4) # offset of a1 set EXC_A0, EXC_AREGS+(0*4) # offset of a0 set EXC_D7, EXC_DREGS+(7*4) # offset of d7 set EXC_D6, EXC_DREGS+(6*4) # offset of d6 set EXC_D5, EXC_DREGS+(5*4) # offset of d5 set EXC_D4, EXC_DREGS+(4*4) # offset of d4 set EXC_D3, EXC_DREGS+(3*4) # offset of d3 set EXC_D2, EXC_DREGS+(2*4) # offset of d2 set EXC_D1, EXC_DREGS+(1*4) # offset of d1 set EXC_D0, EXC_DREGS+(0*4) # offset of d0 set EXC_TEMP, LV+16 # offset of temp stack space set EXC_SAVVAL, LV+12 # offset of old areg value set EXC_SAVREG, LV+11 # offset of old areg index set SPCOND_FLG, LV+10 # offset of spc condition flg set EXC_CC, LV+8 # offset of cc register set EXC_EXTWPTR, LV+4 # offset of current PC set EXC_EXTWORD, LV+2 # offset of current ext opword set EXC_OPWORD, LV+0 # offset of current opword ########################### # SPecial CONDition FLaGs # ########################### set mia7_flg, 0x04 # (a7)+ flag set mda7_flg, 0x08 # -(a7) flag set ichk_flg, 0x10 # chk exception flag set idbyz_flg, 0x20 # divbyzero flag set restore_flg, 0x40 # restore -(an)+ flag set immed_flg, 0x80 # immediate data flag set mia7_bit, 0x2 # (a7)+ bit set mda7_bit, 0x3 # -(a7) bit set ichk_bit, 0x4 # chk exception bit set idbyz_bit, 0x5 # divbyzero bit set restore_bit, 0x6 # restore -(a7)+ bit set immed_bit, 0x7 # immediate data bit ######### # Misc. # ######### set BYTE, 1 # len(byte) == 1 byte set WORD, 2 # len(word) == 2 bytes set LONG, 4 # len(longword) == 4 bytes ######################################################################### # XDEF **************************************************************** # # _isp_unimp(): 060ISP entry point for Unimplemented Instruction # # # # This handler should be the first code executed upon taking the # # "Unimplemented Integer Instruction" exception in an operating # # system. # # # # XREF **************************************************************** # # _imem_read_{word,long}() - read instruction word/longword # # _mul64() - emulate 64-bit multiply # # _div64() - emulate 64-bit divide # # _moveperipheral() - emulate "movep" # # _compandset() - emulate misaligned "cas" # # _compandset2() - emulate "cas2" # # _chk2_cmp2() - emulate "cmp2" and "chk2" # # _isp_done() - "callout" for normal final exit # # _real_trace() - "callout" for Trace exception # # _real_chk() - "callout" for Chk exception # # _real_divbyzero() - "callout" for DZ exception # # _real_access() - "callout" for access error exception # # # # INPUT *************************************************************** # # - The system stack contains the Unimp Int Instr stack frame # # # # OUTPUT ************************************************************** # # If Trace exception: # # - The system stack changed to contain Trace exc stack frame # # If Chk exception: # # - The system stack changed to contain Chk exc stack frame # # If DZ exception: # # - The system stack changed to contain DZ exc stack frame # # If access error exception: # # - The system stack changed to contain access err exc stk frame # # Else: # # - Results saved as appropriate # # # # ALGORITHM *********************************************************** # # This handler fetches the first instruction longword from # # memory and decodes it to determine which of the unimplemented # # integer instructions caused this exception. This handler then calls # # one of _mul64(), _div64(), _moveperipheral(), _compandset(), # # _compandset2(), or _chk2_cmp2() as appropriate. # # Some of these instructions, by their nature, may produce other # # types of exceptions. "div" can produce a divide-by-zero exception, # # and "chk2" can cause a "Chk" exception. In both cases, the current # # exception stack frame must be converted to an exception stack frame # # of the correct exception type and an exit must be made through # # _real_divbyzero() or _real_chk() as appropriate. In addition, all # # instructions may be executing while Trace is enabled. If so, then # # a Trace exception stack frame must be created and an exit made # # through _real_trace(). # # Meanwhile, if any read or write to memory using the # # _mem_{read,write}() "callout"s returns a failing value, then an # # access error frame must be created and an exit made through # # _real_access(). # # If none of these occur, then a normal exit is made through # # _isp_done(). # # # # This handler, upon entry, saves almost all user-visible # # address and data registers to the stack. Although this may seem to # # cause excess memory traffic, it was found that due to having to # # access these register files for things like data retrieval and # # calculations, it was more efficient to have them on the stack where # # they could be accessed by indexing rather than to make subroutine # # calls to retrieve a register of a particular index. # # # ######################################################################### global _isp_unimp _isp_unimp: link.w %a6,&-LOCAL_SIZE # create room for stack frame movm.l &0x3fff,EXC_DREGS(%a6) # store d0-d7/a0-a5 mov.l (%a6),EXC_A6(%a6) # store a6 btst &0x5,EXC_ISR(%a6) # from s or u mode? bne.b uieh_s # supervisor mode uieh_u: mov.l %usp,%a0 # fetch user stack pointer mov.l %a0,EXC_A7(%a6) # store a7 bra.b uieh_cont uieh_s: lea 0xc(%a6),%a0 mov.l %a0,EXC_A7(%a6) # store corrected sp ############################################################################### uieh_cont: clr.b SPCOND_FLG(%a6) # clear "special case" flag mov.w EXC_ISR(%a6),EXC_CC(%a6) # store cc copy on stack mov.l EXC_IPC(%a6),EXC_EXTWPTR(%a6) # store extwptr on stack # # fetch the opword and first extension word pointed to by the stacked pc # and store them to the stack for now # mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_long # fetch opword & extword mov.l %d0,EXC_OPWORD(%a6) # store extword on stack ######################################################################### # muls.l 0100 1100 00 || 0*** 1100 0000 0*** # # mulu.l 0100 1100 00 || 0*** 0100 0000 0*** # # # # divs.l 0100 1100 01 || 0*** 1100 0000 0*** # # divu.l 0100 1100 01 || 0*** 0100 0000 0*** # # # # movep.w m2r 0000 ***1 00 001*** | | # # movep.l m2r 0000 ***1 01 001*** | | # # movep.w r2m 0000 ***1 10 001*** | | # # movep.l r2m 0000 ***1 11 001*** | | # # # # cas.w 0000 1100 11 || 0000 000* **00 0*** # # cas.l 0000 1110 11 || 0000 000* **00 0*** # # # # cas2.w 0000 1100 11 111100 **** 000* **00 0*** # # **** 000* **00 0*** # # cas2.l 0000 1110 11 111100 **** 000* **00 0*** # # **** 000* **00 0*** # # # # chk2.b 0000 0000 11 || **** 1000 0000 0000 # # chk2.w 0000 0010 11 || **** 1000 0000 0000 # # chk2.l 0000 0100 11 || **** 1000 0000 0000 # # # # cmp2.b 0000 0000 11 || **** 0000 0000 0000 # # cmp2.w 0000 0010 11 || **** 0000 0000 0000 # # cmp2.l 0000 0100 11 || **** 0000 0000 0000 # ######################################################################### # # using bit 14 of the operation word, separate into 2 groups: # (group1) mul64, div64 # (group2) movep, chk2, cmp2, cas2, cas # btst &0x1e,%d0 # group1 or group2 beq.b uieh_group2 # go handle group2 # # now, w/ group1, make mul64's decode the fastest since it will # most likely be used the most. # uieh_group1: btst &0x16,%d0 # test for div64 bne.b uieh_div64 # go handle div64 uieh_mul64: # mul64() may use ()+ addressing and may, therefore, alter a7 bsr.l _mul64 # _mul64() btst &0x5,EXC_ISR(%a6) # supervisor mode? beq.w uieh_done btst &mia7_bit,SPCOND_FLG(%a6) # was a7 changed? beq.w uieh_done # no btst &0x7,EXC_ISR(%a6) # is trace enabled? bne.w uieh_trace_a7 # yes bra.w uieh_a7 # no uieh_div64: # div64() may use ()+ addressing and may, therefore, alter a7. # div64() may take a divide by zero exception. bsr.l _div64 # _div64() # here, we sort out all of the special cases that may have happened. btst &mia7_bit,SPCOND_FLG(%a6) # was a7 changed? bne.b uieh_div64_a7 # yes uieh_div64_dbyz: btst &idbyz_bit,SPCOND_FLG(%a6) # did divide-by-zero occur? bne.w uieh_divbyzero # yes bra.w uieh_done # no uieh_div64_a7: btst &0x5,EXC_ISR(%a6) # supervisor mode? beq.b uieh_div64_dbyz # no # here, a7 has been incremented by 4 bytes in supervisor mode. we still # may have the following 3 cases: # (i) (a7)+ # (ii) (a7)+; trace # (iii) (a7)+; divide-by-zero # btst &idbyz_bit,SPCOND_FLG(%a6) # did divide-by-zero occur? bne.w uieh_divbyzero_a7 # yes tst.b EXC_ISR(%a6) # no; is trace enabled? bmi.w uieh_trace_a7 # yes bra.w uieh_a7 # no # # now, w/ group2, make movep's decode the fastest since it will # most likely be used the most. # uieh_group2: btst &0x18,%d0 # test for not movep beq.b uieh_not_movep bsr.l _moveperipheral # _movep() bra.w uieh_done uieh_not_movep: btst &0x1b,%d0 # test for chk2,cmp2 beq.b uieh_chk2cmp2 # go handle chk2,cmp2 swap %d0 # put opword in lo word cmpi.b %d0,&0xfc # test for cas2 beq.b uieh_cas2 # go handle cas2 uieh_cas: bsr.l _compandset # _cas() # the cases of "cas Dc,Du,(a7)+" and "cas Dc,Du,-(a7)" used from supervisor # mode are simply not considered valid and therefore are not handled. bra.w uieh_done uieh_cas2: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word # read extension word tst.l %d1 # ifetch error? bne.w isp_iacc # yes bsr.l _compandset2 # _cas2() bra.w uieh_done uieh_chk2cmp2: # chk2 may take a chk exception bsr.l _chk2_cmp2 # _chk2_cmp2() # here we check to see if a chk trap should be taken cmpi.b SPCOND_FLG(%a6),&ichk_flg bne.w uieh_done bra.b uieh_chk_trap ########################################################################### # # the required emulation has been completed. now, clean up the necessary stack # info and prepare for rte # uieh_done: mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes # if exception occurred in user mode, then we have to restore a7 in case it # changed. we don't have to update a7 for supervisor mose because that case # doesn't flow through here btst &0x5,EXC_ISR(%a6) # user or supervisor? bne.b uieh_finish # supervisor mov.l EXC_A7(%a6),%a0 # fetch user stack pointer mov.l %a0,%usp # restore it uieh_finish: movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 btst &0x7,EXC_ISR(%a6) # is trace mode on? bne.b uieh_trace # yes;go handle trace mode mov.l EXC_EXTWPTR(%a6),EXC_IPC(%a6) # new pc on stack frame mov.l EXC_A6(%a6),(%a6) # prepare new a6 for unlink unlk %a6 # unlink stack frame bra.l _isp_done # # The instruction that was just emulated was also being traced. The trace # trap for this instruction will be lost unless we jump to the trace handler. # So, here we create a Trace Exception format number two exception stack # frame from the Unimplemented Integer Intruction Exception stack frame # format number zero and jump to the user supplied hook "_real_trace()". # # UIEH FRAME TRACE FRAME # ***************** ***************** # * 0x0 * 0x0f4 * * Current * # ***************** * PC * # * Current * ***************** # * PC * * 0x2 * 0x024 * # ***************** ***************** # * SR * * Next * # ***************** * PC * # ->* Old * ***************** # from link -->* A6 * * SR * # ***************** ***************** # /* A7 * * New * <-- for final unlink # / * * * A6 * # link frame < ***************** ***************** # \ ~ ~ ~ ~ # \***************** ***************** # uieh_trace: mov.l EXC_A6(%a6),-0x4(%a6) mov.w EXC_ISR(%a6),0x0(%a6) mov.l EXC_IPC(%a6),0x8(%a6) mov.l EXC_EXTWPTR(%a6),0x2(%a6) mov.w &0x2024,0x6(%a6) sub.l &0x4,%a6 unlk %a6 bra.l _real_trace # # UIEH FRAME CHK FRAME # ***************** ***************** # * 0x0 * 0x0f4 * * Current * # ***************** * PC * # * Current * ***************** # * PC * * 0x2 * 0x018 * # ***************** ***************** # * SR * * Next * # ***************** * PC * # (4 words) ***************** # * SR * # ***************** # (6 words) # # the chk2 instruction should take a chk trap. so, here we must create a # chk stack frame from an unimplemented integer instruction exception frame # and jump to the user supplied entry point "_real_chk()". # uieh_chk_trap: mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 mov.w EXC_ISR(%a6),(%a6) # put new SR on stack mov.l EXC_IPC(%a6),0x8(%a6) # put "Current PC" on stack mov.l EXC_EXTWPTR(%a6),0x2(%a6) # put "Next PC" on stack mov.w &0x2018,0x6(%a6) # put Vector Offset on stack mov.l EXC_A6(%a6),%a6 # restore a6 add.l &LOCAL_SIZE,%sp # clear stack frame bra.l _real_chk # # UIEH FRAME DIVBYZERO FRAME # ***************** ***************** # * 0x0 * 0x0f4 * * Current * # ***************** * PC * # * Current * ***************** # * PC * * 0x2 * 0x014 * # ***************** ***************** # * SR * * Next * # ***************** * PC * # (4 words) ***************** # * SR * # ***************** # (6 words) # # the divide instruction should take an integer divide by zero trap. so, here # we must create a divbyzero stack frame from an unimplemented integer # instruction exception frame and jump to the user supplied entry point # "_real_divbyzero()". # uieh_divbyzero: mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 mov.w EXC_ISR(%a6),(%a6) # put new SR on stack mov.l EXC_IPC(%a6),0x8(%a6) # put "Current PC" on stack mov.l EXC_EXTWPTR(%a6),0x2(%a6) # put "Next PC" on stack mov.w &0x2014,0x6(%a6) # put Vector Offset on stack mov.l EXC_A6(%a6),%a6 # restore a6 add.l &LOCAL_SIZE,%sp # clear stack frame bra.l _real_divbyzero # # DIVBYZERO FRAME # ***************** # * Current * # UIEH FRAME * PC * # ***************** ***************** # * 0x0 * 0x0f4 * * 0x2 * 0x014 * # ***************** ***************** # * Current * * Next * # * PC * * PC * # ***************** ***************** # * SR * * SR * # ***************** ***************** # (4 words) (6 words) # # the divide instruction should take an integer divide by zero trap. so, here # we must create a divbyzero stack frame from an unimplemented integer # instruction exception frame and jump to the user supplied entry point # "_real_divbyzero()". # # However, we must also deal with the fact that (a7)+ was used from supervisor # mode, thereby shifting the stack frame up 4 bytes. # uieh_divbyzero_a7: mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 mov.l EXC_IPC(%a6),0xc(%a6) # put "Current PC" on stack mov.w &0x2014,0xa(%a6) # put Vector Offset on stack mov.l EXC_EXTWPTR(%a6),0x6(%a6) # put "Next PC" on stack mov.l EXC_A6(%a6),%a6 # restore a6 add.l &4+LOCAL_SIZE,%sp # clear stack frame bra.l _real_divbyzero # # TRACE FRAME # ***************** # * Current * # UIEH FRAME * PC * # ***************** ***************** # * 0x0 * 0x0f4 * * 0x2 * 0x024 * # ***************** ***************** # * Current * * Next * # * PC * * PC * # ***************** ***************** # * SR * * SR * # ***************** ***************** # (4 words) (6 words) # # # The instruction that was just emulated was also being traced. The trace # trap for this instruction will be lost unless we jump to the trace handler. # So, here we create a Trace Exception format number two exception stack # frame from the Unimplemented Integer Intruction Exception stack frame # format number zero and jump to the user supplied hook "_real_trace()". # # However, we must also deal with the fact that (a7)+ was used from supervisor # mode, thereby shifting the stack frame up 4 bytes. # uieh_trace_a7: mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 mov.l EXC_IPC(%a6),0xc(%a6) # put "Current PC" on stack mov.w &0x2024,0xa(%a6) # put Vector Offset on stack mov.l EXC_EXTWPTR(%a6),0x6(%a6) # put "Next PC" on stack mov.l EXC_A6(%a6),%a6 # restore a6 add.l &4+LOCAL_SIZE,%sp # clear stack frame bra.l _real_trace # # UIEH FRAME # ***************** # * 0x0 * 0x0f4 * # UIEH FRAME ***************** # ***************** * Next * # * 0x0 * 0x0f4 * * PC * # ***************** ***************** # * Current * * SR * # * PC * ***************** # ***************** (4 words) # * SR * # ***************** # (4 words) uieh_a7: mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 mov.w &0x00f4,0xe(%a6) # put Vector Offset on stack mov.l EXC_EXTWPTR(%a6),0xa(%a6) # put "Next PC" on stack mov.w EXC_ISR(%a6),0x8(%a6) # put SR on stack mov.l EXC_A6(%a6),%a6 # restore a6 add.l &8+LOCAL_SIZE,%sp # clear stack frame bra.l _isp_done ########## # this is the exit point if a data read or write fails. # a0 = failing address # d0 = fslw isp_dacc: mov.l %a0,(%a6) # save address mov.l %d0,-0x4(%a6) # save partial fslw lea -64(%a6),%sp movm.l (%sp)+,&0x7fff # restore d0-d7/a0-a6 mov.l 0xc(%sp),-(%sp) # move voff,hi(pc) mov.l 0x4(%sp),0x10(%sp) # store fslw mov.l 0xc(%sp),0x4(%sp) # store sr,lo(pc) mov.l 0x8(%sp),0xc(%sp) # store address mov.l (%sp)+,0x4(%sp) # store voff,hi(pc) mov.w &0x4008,0x6(%sp) # store new voff bra.b isp_acc_exit # this is the exit point if an instruction word read fails. # FSLW: # misaligned = true # read = true # size = word # instruction = true # software emulation error = true isp_iacc: movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 unlk %a6 # unlink frame sub.w &0x8,%sp # make room for acc frame mov.l 0x8(%sp),(%sp) # store sr,lo(pc) mov.w 0xc(%sp),0x4(%sp) # store hi(pc) mov.w &0x4008,0x6(%sp) # store new voff mov.l 0x2(%sp),0x8(%sp) # store address (=pc) mov.l &0x09428001,0xc(%sp) # store fslw isp_acc_exit: btst &0x5,(%sp) # user or supervisor? beq.b isp_acc_exit2 # user bset &0x2,0xd(%sp) # set supervisor TM bit isp_acc_exit2: bra.l _real_access # if the addressing mode was (an)+ or -(an), the address register must # be restored to its pre-exception value before entering _real_access. isp_restore: cmpi.b SPCOND_FLG(%a6),&restore_flg # do we need a restore? bne.b isp_restore_done # no clr.l %d0 mov.b EXC_SAVREG(%a6),%d0 # regno to restore mov.l EXC_SAVVAL(%a6),(EXC_AREGS,%a6,%d0.l*4) # restore value isp_restore_done: rts ######################################################################### # XDEF **************************************************************** # # _calc_ea(): routine to calculate effective address # # # # XREF **************************************************************** # # _imem_read_word() - read instruction word # # _imem_read_long() - read instruction longword # # _dmem_read_long() - read data longword (for memory indirect) # # isp_iacc() - handle instruction access error exception # # isp_dacc() - handle data access error exception # # # # INPUT *************************************************************** # # d0 = number of bytes related to effective address (w,l) # # # # OUTPUT ************************************************************** # # If exiting through isp_dacc... # # a0 = failing address # # d0 = FSLW # # elsif exiting though isp_iacc... # # none # # else # # a0 = effective address # # # # ALGORITHM *********************************************************** # # The effective address type is decoded from the opword residing # # on the stack. A jump table is used to vector to a routine for the # # appropriate mode. Since none of the emulated integer instructions # # uses byte-sized operands, only handle word and long operations. # # # # Dn,An - shouldn't enter here # # (An) - fetch An value from stack # # -(An) - fetch An value from stack; return decr value; # # place decr value on stack; store old value in case of # # future access error; if -(a7), set mda7_flg in # # SPCOND_FLG # # (An)+ - fetch An value from stack; return value; # # place incr value on stack; store old value in case of # # future access error; if (a7)+, set mia7_flg in # # SPCOND_FLG # # (d16,An) - fetch An value from stack; read d16 using # # _imem_read_word(); fetch may fail -> branch to # # isp_iacc() # # (xxx).w,(xxx).l - use _imem_read_{word,long}() to fetch # # address; fetch may fail # # # - return address of immediate value; set immed_flg # # in SPCOND_FLG # # (d16,PC) - fetch stacked PC value; read d16 using # # _imem_read_word(); fetch may fail -> branch to # # isp_iacc() # # everything else - read needed displacements as appropriate w/ # # _imem_read_{word,long}(); read may fail; if memory # # indirect, read indirect address using # # _dmem_read_long() which may also fail # # # ######################################################################### global _calc_ea _calc_ea: mov.l %d0,%a0 # move # bytes to a0 # MODE and REG are taken from the EXC_OPWORD. mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word mov.w %d0,%d1 # make a copy andi.w &0x3f,%d0 # extract mode field andi.l &0x7,%d1 # extract reg field # jump to the corresponding function for each {MODE,REG} pair. mov.w (tbl_ea_mode.b,%pc,%d0.w*2), %d0 # fetch jmp distance jmp (tbl_ea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode swbeg &64 tbl_ea_mode: short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short addr_ind_a0 - tbl_ea_mode short addr_ind_a1 - tbl_ea_mode short addr_ind_a2 - tbl_ea_mode short addr_ind_a3 - tbl_ea_mode short addr_ind_a4 - tbl_ea_mode short addr_ind_a5 - tbl_ea_mode short addr_ind_a6 - tbl_ea_mode short addr_ind_a7 - tbl_ea_mode short addr_ind_p_a0 - tbl_ea_mode short addr_ind_p_a1 - tbl_ea_mode short addr_ind_p_a2 - tbl_ea_mode short addr_ind_p_a3 - tbl_ea_mode short addr_ind_p_a4 - tbl_ea_mode short addr_ind_p_a5 - tbl_ea_mode short addr_ind_p_a6 - tbl_ea_mode short addr_ind_p_a7 - tbl_ea_mode short addr_ind_m_a0 - tbl_ea_mode short addr_ind_m_a1 - tbl_ea_mode short addr_ind_m_a2 - tbl_ea_mode short addr_ind_m_a3 - tbl_ea_mode short addr_ind_m_a4 - tbl_ea_mode short addr_ind_m_a5 - tbl_ea_mode short addr_ind_m_a6 - tbl_ea_mode short addr_ind_m_a7 - tbl_ea_mode short addr_ind_disp_a0 - tbl_ea_mode short addr_ind_disp_a1 - tbl_ea_mode short addr_ind_disp_a2 - tbl_ea_mode short addr_ind_disp_a3 - tbl_ea_mode short addr_ind_disp_a4 - tbl_ea_mode short addr_ind_disp_a5 - tbl_ea_mode short addr_ind_disp_a6 - tbl_ea_mode short addr_ind_disp_a7 - tbl_ea_mode short _addr_ind_ext - tbl_ea_mode short _addr_ind_ext - tbl_ea_mode short _addr_ind_ext - tbl_ea_mode short _addr_ind_ext - tbl_ea_mode short _addr_ind_ext - tbl_ea_mode short _addr_ind_ext - tbl_ea_mode short _addr_ind_ext - tbl_ea_mode short _addr_ind_ext - tbl_ea_mode short abs_short - tbl_ea_mode short abs_long - tbl_ea_mode short pc_ind - tbl_ea_mode short pc_ind_ext - tbl_ea_mode short immediate - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode ################################### # Address register indirect: (An) # ################################### addr_ind_a0: mov.l EXC_A0(%a6),%a0 # Get current a0 rts addr_ind_a1: mov.l EXC_A1(%a6),%a0 # Get current a1 rts addr_ind_a2: mov.l EXC_A2(%a6),%a0 # Get current a2 rts addr_ind_a3: mov.l EXC_A3(%a6),%a0 # Get current a3 rts addr_ind_a4: mov.l EXC_A4(%a6),%a0 # Get current a4 rts addr_ind_a5: mov.l EXC_A5(%a6),%a0 # Get current a5 rts addr_ind_a6: mov.l EXC_A6(%a6),%a0 # Get current a6 rts addr_ind_a7: mov.l EXC_A7(%a6),%a0 # Get current a7 rts ##################################################### # Address register indirect w/ postincrement: (An)+ # ##################################################### addr_ind_p_a0: mov.l %a0,%d0 # copy no. bytes mov.l EXC_A0(%a6),%a0 # load current value add.l %a0,%d0 # increment mov.l %d0,EXC_A0(%a6) # save incremented value mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error mov.b &0x0,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_p_a1: mov.l %a0,%d0 # copy no. bytes mov.l EXC_A1(%a6),%a0 # load current value add.l %a0,%d0 # increment mov.l %d0,EXC_A1(%a6) # save incremented value mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error mov.b &0x1,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_p_a2: mov.l %a0,%d0 # copy no. bytes mov.l EXC_A2(%a6),%a0 # load current value add.l %a0,%d0 # increment mov.l %d0,EXC_A2(%a6) # save incremented value mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error mov.b &0x2,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_p_a3: mov.l %a0,%d0 # copy no. bytes mov.l EXC_A3(%a6),%a0 # load current value add.l %a0,%d0 # increment mov.l %d0,EXC_A3(%a6) # save incremented value mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error mov.b &0x3,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_p_a4: mov.l %a0,%d0 # copy no. bytes mov.l EXC_A4(%a6),%a0 # load current value add.l %a0,%d0 # increment mov.l %d0,EXC_A4(%a6) # save incremented value mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error mov.b &0x4,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_p_a5: mov.l %a0,%d0 # copy no. bytes mov.l EXC_A5(%a6),%a0 # load current value add.l %a0,%d0 # increment mov.l %d0,EXC_A5(%a6) # save incremented value mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error mov.b &0x5,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_p_a6: mov.l %a0,%d0 # copy no. bytes mov.l EXC_A6(%a6),%a0 # load current value add.l %a0,%d0 # increment mov.l %d0,EXC_A6(%a6) # save incremented value mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error mov.b &0x6,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_p_a7: mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag mov.l %a0,%d0 # copy no. bytes mov.l EXC_A7(%a6),%a0 # load current value add.l %a0,%d0 # increment mov.l %d0,EXC_A7(%a6) # save incremented value rts #################################################### # Address register indirect w/ predecrement: -(An) # #################################################### addr_ind_m_a0: mov.l EXC_A0(%a6),%d0 # Get current a0 mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error sub.l %a0,%d0 # Decrement mov.l %d0,EXC_A0(%a6) # Save decr value mov.l %d0,%a0 mov.b &0x0,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_m_a1: mov.l EXC_A1(%a6),%d0 # Get current a1 mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error sub.l %a0,%d0 # Decrement mov.l %d0,EXC_A1(%a6) # Save decr value mov.l %d0,%a0 mov.b &0x1,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_m_a2: mov.l EXC_A2(%a6),%d0 # Get current a2 mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error sub.l %a0,%d0 # Decrement mov.l %d0,EXC_A2(%a6) # Save decr value mov.l %d0,%a0 mov.b &0x2,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_m_a3: mov.l EXC_A3(%a6),%d0 # Get current a3 mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error sub.l %a0,%d0 # Decrement mov.l %d0,EXC_A3(%a6) # Save decr value mov.l %d0,%a0 mov.b &0x3,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_m_a4: mov.l EXC_A4(%a6),%d0 # Get current a4 mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error sub.l %a0,%d0 # Decrement mov.l %d0,EXC_A4(%a6) # Save decr value mov.l %d0,%a0 mov.b &0x4,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_m_a5: mov.l EXC_A5(%a6),%d0 # Get current a5 mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error sub.l %a0,%d0 # Decrement mov.l %d0,EXC_A5(%a6) # Save decr value mov.l %d0,%a0 mov.b &0x5,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_m_a6: mov.l EXC_A6(%a6),%d0 # Get current a6 mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error sub.l %a0,%d0 # Decrement mov.l %d0,EXC_A6(%a6) # Save decr value mov.l %d0,%a0 mov.b &0x6,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_m_a7: mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag mov.l EXC_A7(%a6),%d0 # Get current a7 sub.l %a0,%d0 # Decrement mov.l %d0,EXC_A7(%a6) # Save decr value mov.l %d0,%a0 rts ######################################################## # Address register indirect w/ displacement: (d16, An) # ######################################################## addr_ind_disp_a0: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_A0(%a6),%a0 # a0 + d16 rts addr_ind_disp_a1: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_A1(%a6),%a0 # a1 + d16 rts addr_ind_disp_a2: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_A2(%a6),%a0 # a2 + d16 rts addr_ind_disp_a3: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_A3(%a6),%a0 # a3 + d16 rts addr_ind_disp_a4: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_A4(%a6),%a0 # a4 + d16 rts addr_ind_disp_a5: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_A5(%a6),%a0 # a5 + d16 rts addr_ind_disp_a6: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_A6(%a6),%a0 # a6 + d16 rts addr_ind_disp_a7: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_A7(%a6),%a0 # a7 + d16 rts ######################################################################## # Address register indirect w/ index(8-bit displacement): (dn, An, Xn) # # " " " w/ " (base displacement): (bd, An, Xn) # # Memory indirect postindexed: ([bd, An], Xn, od) # # Memory indirect preindexed: ([bd, An, Xn], od) # ######################################################################## _addr_ind_ext: mov.l %d1,-(%sp) mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word # fetch extword in d0 tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.l (%sp)+,%d1 mov.l (EXC_AREGS,%a6,%d1.w*4),%a0 # put base in a0 btst &0x8,%d0 beq.b addr_ind_index_8bit # for ext word or not? movm.l &0x3c00,-(%sp) # save d2-d5 mov.l %d0,%d5 # put extword in d5 mov.l %a0,%d3 # put base in d3 bra.l calc_mem_ind # calc memory indirect addr_ind_index_8bit: mov.l %d2,-(%sp) # save old d2 mov.l %d0,%d1 rol.w &0x4,%d1 andi.w &0xf,%d1 # extract index regno mov.l (EXC_DREGS,%a6,%d1.w*4),%d1 # fetch index reg value btst &0xb,%d0 # is it word or long? bne.b aii8_long ext.l %d1 # sign extend word index aii8_long: mov.l %d0,%d2 rol.w &0x7,%d2 andi.l &0x3,%d2 # extract scale value lsl.l %d2,%d1 # shift index by scale extb.l %d0 # sign extend displacement add.l %d1,%d0 # index + disp add.l %d0,%a0 # An + (index + disp) mov.l (%sp)+,%d2 # restore old d2 rts ###################### # Immediate: # # ######################################################################### # word, long: of the data is the current extension word # # pointer value. new extension word pointer is simply the old # # plus the number of bytes in the data type(2 or 4). # ######################################################################### immediate: mov.b &immed_flg,SPCOND_FLG(%a6) # set immediate flag mov.l EXC_EXTWPTR(%a6),%a0 # fetch extension word ptr rts ########################### # Absolute short: (XXX).W # ########################### abs_short: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word # fetch short address tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # return in a0 rts ########################## # Absolute long: (XXX).L # ########################## abs_long: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_long # fetch long address tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.l %d0,%a0 # return in a0 rts ####################################################### # Program counter indirect w/ displacement: (d16, PC) # ####################################################### pc_ind: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word # fetch word displacement tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_EXTWPTR(%a6),%a0 # pc + d16 # _imem_read_word() increased the extwptr by 2. need to adjust here. subq.l &0x2,%a0 # adjust rts ########################################################## # PC indirect w/ index(8-bit displacement): (d8, PC, An) # # " " w/ " (base displacement): (bd, PC, An) # # PC memory indirect postindexed: ([bd, PC], Xn, od) # # PC memory indirect preindexed: ([bd, PC, Xn], od) # ########################################################## pc_ind_ext: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word # fetch ext word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0 subq.l &0x2,%a0 # adjust base btst &0x8,%d0 # is disp only 8 bits? beq.b pc_ind_index_8bit # yes # the indexed addressing mode uses a base displacement of size # word or long movm.l &0x3c00,-(%sp) # save d2-d5 mov.l %d0,%d5 # put extword in d5 mov.l %a0,%d3 # put base in d3 bra.l calc_mem_ind # calc memory indirect pc_ind_index_8bit: mov.l %d2,-(%sp) # create a temp register mov.l %d0,%d1 # make extword copy rol.w &0x4,%d1 # rotate reg num into place andi.w &0xf,%d1 # extract register number mov.l (EXC_DREGS,%a6,%d1.w*4),%d1 # fetch index reg value btst &0xb,%d0 # is index word or long? bne.b pii8_long # long ext.l %d1 # sign extend word index pii8_long: mov.l %d0,%d2 # make extword copy rol.w &0x7,%d2 # rotate scale value into place andi.l &0x3,%d2 # extract scale value lsl.l %d2,%d1 # shift index by scale extb.l %d0 # sign extend displacement add.l %d1,%d0 # index + disp add.l %d0,%a0 # An + (index + disp) mov.l (%sp)+,%d2 # restore temp register rts # a5 = exc_extwptr (global to uaeh) # a4 = exc_opword (global to uaeh) # a3 = exc_dregs (global to uaeh) # d2 = index (internal " " ) # d3 = base (internal " " ) # d4 = od (internal " " ) # d5 = extword (internal " " ) calc_mem_ind: btst &0x6,%d5 # is the index suppressed? beq.b calc_index clr.l %d2 # yes, so index = 0 bra.b base_supp_ck calc_index: bfextu %d5{&16:&4},%d2 mov.l (EXC_DREGS,%a6,%d2.w*4),%d2 btst &0xb,%d5 # is index word or long? bne.b no_ext ext.l %d2 no_ext: bfextu %d5{&21:&2},%d0 lsl.l %d0,%d2 base_supp_ck: btst &0x7,%d5 # is the bd suppressed? beq.b no_base_sup clr.l %d3 no_base_sup: bfextu %d5{&26:&2},%d0 # get bd size # beq.l _error # if (size == 0) it's reserved cmpi.b %d0,&2 blt.b no_bd beq.b get_word_bd mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_long tst.l %d1 # ifetch error? bne.l isp_iacc # yes bra.b chk_ind get_word_bd: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes ext.l %d0 # sign extend bd chk_ind: add.l %d0,%d3 # base += bd no_bd: bfextu %d5{&30:&2},%d0 # is od suppressed? beq.w aii_bd cmpi.b %d0,&0x2 blt.b null_od beq.b word_od mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_long tst.l %d1 # ifetch error? bne.l isp_iacc # yes bra.b add_them word_od: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes ext.l %d0 # sign extend od bra.b add_them null_od: clr.l %d0 add_them: mov.l %d0,%d4 btst &0x2,%d5 # pre or post indexing? beq.b pre_indexed mov.l %d3,%a0 bsr.l _dmem_read_long tst.l %d1 # dfetch error? bne.b calc_ea_err # yes add.l %d2,%d0 # += index add.l %d4,%d0 # += od bra.b done_ea pre_indexed: add.l %d2,%d3 # preindexing mov.l %d3,%a0 bsr.l _dmem_read_long tst.l %d1 # ifetch error? bne.b calc_ea_err # yes add.l %d4,%d0 # ea += od bra.b done_ea aii_bd: add.l %d2,%d3 # ea = (base + bd) + index mov.l %d3,%d0 done_ea: mov.l %d0,%a0 movm.l (%sp)+,&0x003c # restore d2-d5 rts # if dmem_read_long() returns a fail message in d1, the package # must create an access error frame. here, we pass a skeleton fslw # and the failing address to the routine that creates the new frame. # FSLW: # read = true # size = longword # TM = data # software emulation error = true calc_ea_err: mov.l %d3,%a0 # pass failing address mov.l &0x01010001,%d0 # pass fslw bra.l isp_dacc ######################################################################### # XDEF **************************************************************** # # _moveperipheral(): routine to emulate movep instruction # # # # XREF **************************************************************** # # _dmem_read_byte() - read byte from memory # # _dmem_write_byte() - write byte to memory # # isp_dacc() - handle data access error exception # # # # INPUT *************************************************************** # # none # # # # OUTPUT ************************************************************** # # If exiting through isp_dacc... # # a0 = failing address # # d0 = FSLW # # else # # none # # # # ALGORITHM *********************************************************** # # Decode the movep instruction words stored at EXC_OPWORD and # # either read or write the required bytes from/to memory. Use the # # _dmem_{read,write}_byte() routines. If one of the memory routines # # returns a failing value, we must pass the failing address and a FSLW # # to the _isp_dacc() routine. # # Since this instruction is used to access peripherals, make sure # # to only access the required bytes. # # # ######################################################################### ########################### # movep.(w,l) Dx,(d,Ay) # # movep.(w,l) (d,Ay),Dx # ########################### global _moveperipheral _moveperipheral: mov.w EXC_OPWORD(%a6),%d1 # fetch the opcode word mov.b %d1,%d0 and.w &0x7,%d0 # extract Ay from opcode word mov.l (EXC_AREGS,%a6,%d0.w*4),%a0 # fetch ay add.w EXC_EXTWORD(%a6),%a0 # add: an + sgn_ext(disp) btst &0x7,%d1 # (reg 2 mem) or (mem 2 reg) beq.w mem2reg # reg2mem: fetch dx, then write it to memory reg2mem: mov.w %d1,%d0 rol.w &0x7,%d0 and.w &0x7,%d0 # extract Dx from opcode word mov.l (EXC_DREGS,%a6,%d0.w*4), %d0 # fetch dx btst &0x6,%d1 # word or long operation? beq.b r2mwtrans # a0 = dst addr # d0 = Dx r2mltrans: mov.l %d0,%d2 # store data mov.l %a0,%a2 # store addr rol.l &0x8,%d2 mov.l %d2,%d0 bsr.l _dmem_write_byte # os : write hi tst.l %d1 # dfetch error? bne.w movp_write_err # yes add.w &0x2,%a2 # incr addr mov.l %a2,%a0 rol.l &0x8,%d2 mov.l %d2,%d0 bsr.l _dmem_write_byte # os : write lo tst.l %d1 # dfetch error? bne.w movp_write_err # yes add.w &0x2,%a2 # incr addr mov.l %a2,%a0 rol.l &0x8,%d2 mov.l %d2,%d0 bsr.l _dmem_write_byte # os : write lo tst.l %d1 # dfetch error? bne.w movp_write_err # yes add.w &0x2,%a2 # incr addr mov.l %a2,%a0 rol.l &0x8,%d2 mov.l %d2,%d0 bsr.l _dmem_write_byte # os : write lo tst.l %d1 # dfetch error? bne.w movp_write_err # yes rts # a0 = dst addr # d0 = Dx r2mwtrans: mov.l %d0,%d2 # store data mov.l %a0,%a2 # store addr lsr.w &0x8,%d0 bsr.l _dmem_write_byte # os : write hi tst.l %d1 # dfetch error? bne.w movp_write_err # yes add.w &0x2,%a2 mov.l %a2,%a0 mov.l %d2,%d0 bsr.l _dmem_write_byte # os : write lo tst.l %d1 # dfetch error? bne.w movp_write_err # yes rts # mem2reg: read bytes from memory. # determines the dest register, and then writes the bytes into it. mem2reg: btst &0x6,%d1 # word or long operation? beq.b m2rwtrans # a0 = dst addr m2rltrans: mov.l %a0,%a2 # store addr bsr.l _dmem_read_byte # read first byte tst.l %d1 # dfetch error? bne.w movp_read_err # yes mov.l %d0,%d2 add.w &0x2,%a2 # incr addr by 2 bytes mov.l %a2,%a0 bsr.l _dmem_read_byte # read second byte tst.l %d1 # dfetch error? bne.w movp_read_err # yes lsl.w &0x8,%d2 mov.b %d0,%d2 # append bytes add.w &0x2,%a2 # incr addr by 2 bytes mov.l %a2,%a0 bsr.l _dmem_read_byte # read second byte tst.l %d1 # dfetch error? bne.w movp_read_err # yes lsl.l &0x8,%d2 mov.b %d0,%d2 # append bytes add.w &0x2,%a2 # incr addr by 2 bytes mov.l %a2,%a0 bsr.l _dmem_read_byte # read second byte tst.l %d1 # dfetch error? bne.w movp_read_err # yes lsl.l &0x8,%d2 mov.b %d0,%d2 # append bytes mov.b EXC_OPWORD(%a6),%d1 lsr.b &0x1,%d1 and.w &0x7,%d1 # extract Dx from opcode word mov.l %d2,(EXC_DREGS,%a6,%d1.w*4) # store dx rts # a0 = dst addr m2rwtrans: mov.l %a0,%a2 # store addr bsr.l _dmem_read_byte # read first byte tst.l %d1 # dfetch error? bne.w movp_read_err # yes mov.l %d0,%d2 add.w &0x2,%a2 # incr addr by 2 bytes mov.l %a2,%a0 bsr.l _dmem_read_byte # read second byte tst.l %d1 # dfetch error? bne.w movp_read_err # yes lsl.w &0x8,%d2 mov.b %d0,%d2 # append bytes mov.b EXC_OPWORD(%a6),%d1 lsr.b &0x1,%d1 and.w &0x7,%d1 # extract Dx from opcode word mov.w %d2,(EXC_DREGS+2,%a6,%d1.w*4) # store dx rts # if dmem_{read,write}_byte() returns a fail message in d1, the package # must create an access error frame. here, we pass a skeleton fslw # and the failing address to the routine that creates the new frame. # FSLW: # write = true # size = byte # TM = data # software emulation error = true movp_write_err: mov.l %a2,%a0 # pass failing address mov.l &0x00a10001,%d0 # pass fslw bra.l isp_dacc # FSLW: # read = true # size = byte # TM = data # software emulation error = true movp_read_err: mov.l %a2,%a0 # pass failing address mov.l &0x01210001,%d0 # pass fslw bra.l isp_dacc ######################################################################### # XDEF **************************************************************** # # _chk2_cmp2(): routine to emulate chk2/cmp2 instructions # # # # XREF **************************************************************** # # _calc_ea(): calculate effective address # # _dmem_read_long(): read operands # # _dmem_read_word(): read operands # # isp_dacc(): handle data access error exception # # # # INPUT *************************************************************** # # none # # # # OUTPUT ************************************************************** # # If exiting through isp_dacc... # # a0 = failing address # # d0 = FSLW # # else # # none # # # # ALGORITHM *********************************************************** # # First, calculate the effective address, then fetch the byte, # # word, or longword sized operands. Then, in the interest of # # simplicity, all operands are converted to longword size whether the # # operation is byte, word, or long. The bounds are sign extended # # accordingly. If Rn is a data regsiter, Rn is also sign extended. If # # Rn is an address register, it need not be sign extended since the # # full register is always used. # # The comparisons are made and the condition codes calculated. # # If the instruction is chk2 and the Rn value is out-of-bounds, set # # the ichk_flg in SPCOND_FLG. # # If the memory fetch returns a failing value, pass the failing # # address and FSLW to the isp_dacc() routine. # # # ######################################################################### global _chk2_cmp2 _chk2_cmp2: # passing size parameter doesn't matter since chk2 & cmp2 can't do # either predecrement, postincrement, or immediate. bsr.l _calc_ea # calculate mov.b EXC_EXTWORD(%a6), %d0 # fetch hi extension word rol.b &0x4, %d0 # rotate reg bits into lo and.w &0xf, %d0 # extract reg bits mov.l (EXC_DREGS,%a6,%d0.w*4), %d2 # get regval cmpi.b EXC_OPWORD(%a6), &0x2 # what size is operation? blt.b chk2_cmp2_byte # size == byte beq.b chk2_cmp2_word # size == word # the bounds are longword size. call routine to read the lower # bound into d0 and the higher bound into d1. chk2_cmp2_long: mov.l %a0,%a2 # save copy of bsr.l _dmem_read_long # fetch long lower bound tst.l %d1 # dfetch error? bne.w chk2_cmp2_err_l # yes mov.l %d0,%d3 # save long lower bound addq.l &0x4,%a2 mov.l %a2,%a0 # pass of long upper bound bsr.l _dmem_read_long # fetch long upper bound tst.l %d1 # dfetch error? bne.w chk2_cmp2_err_l # yes mov.l %d0,%d1 # long upper bound in d1 mov.l %d3,%d0 # long lower bound in d0 bra.w chk2_cmp2_compare # go do the compare emulation # the bounds are word size. fetch them in one subroutine call by # reading a longword. sign extend both. if it's a data operation, # sign extend Rn to long, also. chk2_cmp2_word: mov.l %a0,%a2 bsr.l _dmem_read_long # fetch 2 word bounds tst.l %d1 # dfetch error? bne.w chk2_cmp2_err_l # yes mov.w %d0, %d1 # place hi in %d1 swap %d0 # place lo in %d0 ext.l %d0 # sign extend lo bnd ext.l %d1 # sign extend hi bnd btst &0x7, EXC_EXTWORD(%a6) # address compare? bne.w chk2_cmp2_compare # yes; don't sign extend # operation is a data register compare. # sign extend word to long so we can do simple longword compares. ext.l %d2 # sign extend data word bra.w chk2_cmp2_compare # go emulate compare # the bounds are byte size. fetch them in one subroutine call by # reading a word. sign extend both. if it's a data operation, # sign extend Rn to long, also. chk2_cmp2_byte: mov.l %a0,%a2 bsr.l _dmem_read_word # fetch 2 byte bounds tst.l %d1 # dfetch error? bne.w chk2_cmp2_err_w # yes mov.b %d0, %d1 # place hi in %d1 lsr.w &0x8, %d0 # place lo in %d0 extb.l %d0 # sign extend lo bnd extb.l %d1 # sign extend hi bnd btst &0x7, EXC_EXTWORD(%a6) # address compare? bne.b chk2_cmp2_compare # yes; don't sign extend # operation is a data register compare. # sign extend byte to long so we can do simple longword compares. extb.l %d2 # sign extend data byte # # To set the ccodes correctly: # (1) save 'Z' bit from (Rn - lo) # (2) save 'Z' and 'N' bits from ((hi - lo) - (Rn - hi)) # (3) keep 'X', 'N', and 'V' from before instruction # (4) combine ccodes # chk2_cmp2_compare: sub.l %d0, %d2 # (Rn - lo) mov.w %cc, %d3 # fetch resulting ccodes andi.b &0x4, %d3 # keep 'Z' bit sub.l %d0, %d1 # (hi - lo) cmp.l %d1,%d2 # ((hi - lo) - (Rn - hi)) mov.w %cc, %d4 # fetch resulting ccodes or.b %d4, %d3 # combine w/ earlier ccodes andi.b &0x5, %d3 # keep 'Z' and 'N' mov.w EXC_CC(%a6), %d4 # fetch old ccodes andi.b &0x1a, %d4 # keep 'X','N','V' bits or.b %d3, %d4 # insert new ccodes mov.w %d4, EXC_CC(%a6) # save new ccodes btst &0x3, EXC_EXTWORD(%a6) # separate chk2,cmp2 bne.b chk2_finish # it's a chk2 rts # this code handles the only difference between chk2 and cmp2. chk2 would # have trapped out if the value was out of bounds. we check this by seeing # if the 'N' bit was set by the operation. chk2_finish: btst &0x0, %d4 # is 'N' bit set? bne.b chk2_trap # yes;chk2 should trap rts chk2_trap: mov.b &ichk_flg,SPCOND_FLG(%a6) # set "special case" flag rts # if dmem_read_{long,word}() returns a fail message in d1, the package # must create an access error frame. here, we pass a skeleton fslw # and the failing address to the routine that creates the new frame. # FSLW: # read = true # size = longword # TM = data # software emulation error = true chk2_cmp2_err_l: mov.l %a2,%a0 # pass failing address mov.l &0x01010001,%d0 # pass fslw bra.l isp_dacc # FSLW: # read = true # size = word # TM = data # software emulation error = true chk2_cmp2_err_w: mov.l %a2,%a0 # pass failing address mov.l &0x01410001,%d0 # pass fslw bra.l isp_dacc ######################################################################### # XDEF **************************************************************** # # _div64(): routine to emulate div{u,s}.l ,Dr:Dq # # 64/32->32r:32q # # # # XREF **************************************************************** # # _calc_ea() - calculate effective address # # isp_iacc() - handle instruction access error exception # # isp_dacc() - handle data access error exception # # isp_restore() - restore An on access error w/ -() or ()+ # # # # INPUT *************************************************************** # # none # # # # OUTPUT ************************************************************** # # If exiting through isp_dacc... # # a0 = failing address # # d0 = FSLW # # else # # none # # # # ALGORITHM *********************************************************** # # First, decode the operand location. If it's in Dn, fetch from # # the stack. If it's in memory, use _calc_ea() to calculate the # # effective address. Use _dmem_read_long() to fetch at that address. # # Unless the operand is immediate data. Then use _imem_read_long(). # # Send failures to isp_dacc() or isp_iacc() as appropriate. # # If the operands are signed, make them unsigned and save the # # sign info for later. Separate out special cases like divide-by-zero # # or 32-bit divides if possible. Else, use a special math algorithm # # to calculate the result. # # Restore sign info if signed instruction. Set the condition # # codes. Set idbyz_flg in SPCOND_FLG if divisor was zero. Store the # # quotient and remainder in the appropriate data registers on the stack.# # # ######################################################################### set NDIVISOR, EXC_TEMP+0x0 set NDIVIDEND, EXC_TEMP+0x1 set NDRSAVE, EXC_TEMP+0x2 set NDQSAVE, EXC_TEMP+0x4 set DDSECOND, EXC_TEMP+0x6 set DDQUOTIENT, EXC_TEMP+0x8 set DDNORMAL, EXC_TEMP+0xc global _div64 ############# # div(u,s)l # ############# _div64: mov.b EXC_OPWORD+1(%a6), %d0 andi.b &0x38, %d0 # extract src mode bne.w dcontrolmodel_s # %dn dest or control mode? mov.b EXC_OPWORD+1(%a6), %d0 # extract Dn from opcode andi.w &0x7, %d0 mov.l (EXC_DREGS,%a6,%d0.w*4), %d7 # fetch divisor from register dgotsrcl: beq.w div64eq0 # divisor is = 0!!! mov.b EXC_EXTWORD+1(%a6), %d0 # extract Dr from extword mov.b EXC_EXTWORD(%a6), %d1 # extract Dq from extword and.w &0x7, %d0 lsr.b &0x4, %d1 and.w &0x7, %d1 mov.w %d0, NDRSAVE(%a6) # save Dr for later mov.w %d1, NDQSAVE(%a6) # save Dq for later # fetch %dr and %dq directly off stack since all regs are saved there mov.l (EXC_DREGS,%a6,%d0.w*4), %d5 # get dividend hi mov.l (EXC_DREGS,%a6,%d1.w*4), %d6 # get dividend lo # separate signed and unsigned divide btst &0x3, EXC_EXTWORD(%a6) # signed or unsigned? beq.b dspecialcases # use positive divide # save the sign of the divisor # make divisor unsigned if it's negative tst.l %d7 # chk sign of divisor slt NDIVISOR(%a6) # save sign of divisor bpl.b dsgndividend neg.l %d7 # complement negative divisor # save the sign of the dividend # make dividend unsigned if it's negative dsgndividend: tst.l %d5 # chk sign of hi(dividend) slt NDIVIDEND(%a6) # save sign of dividend bpl.b dspecialcases mov.w &0x0, %cc # clear 'X' cc bit negx.l %d6 # complement signed dividend negx.l %d5 # extract some special cases: # - is (dividend == 0) ? # - is (hi(dividend) == 0 && (divisor <= lo(dividend))) ? (32-bit div) dspecialcases: tst.l %d5 # is (hi(dividend) == 0) bne.b dnormaldivide # no, so try it the long way tst.l %d6 # is (lo(dividend) == 0), too beq.w ddone # yes, so (dividend == 0) cmp.l %d7,%d6 # is (divisor <= lo(dividend)) bls.b d32bitdivide # yes, so use 32 bit divide exg %d5,%d6 # q = 0, r = dividend bra.w divfinish # can't divide, we're done. d32bitdivide: tdivu.l %d7, %d5:%d6 # it's only a 32/32 bit div! bra.b divfinish dnormaldivide: # last special case: # - is hi(dividend) >= divisor ? if yes, then overflow cmp.l %d7,%d5 bls.b ddovf # answer won't fit in 32 bits # perform the divide algorithm: bsr.l dclassical # do int divide # separate into signed and unsigned finishes. divfinish: btst &0x3, EXC_EXTWORD(%a6) # do divs, divu separately beq.b ddone # divu has no processing!!! # it was a divs.l, so ccode setting is a little more complicated... tst.b NDIVIDEND(%a6) # remainder has same sign beq.b dcc # as dividend. neg.l %d5 # sgn(rem) = sgn(dividend) dcc: mov.b NDIVISOR(%a6), %d0 eor.b %d0, NDIVIDEND(%a6) # chk if quotient is negative beq.b dqpos # branch to quot positive # 0x80000000 is the largest number representable as a 32-bit negative # number. the negative of 0x80000000 is 0x80000000. cmpi.l %d6, &0x80000000 # will (-quot) fit in 32 bits? bhi.b ddovf neg.l %d6 # make (-quot) 2's comp bra.b ddone dqpos: btst &0x1f, %d6 # will (+quot) fit in 32 bits? bne.b ddovf ddone: # at this point, result is normal so ccodes are set based on result. mov.w EXC_CC(%a6), %cc tst.l %d6 # set %ccode bits mov.w %cc, EXC_CC(%a6) mov.w NDRSAVE(%a6), %d0 # get Dr off stack mov.w NDQSAVE(%a6), %d1 # get Dq off stack # if the register numbers are the same, only the quotient gets saved. # so, if we always save the quotient second, we save ourselves a cmp&beq mov.l %d5, (EXC_DREGS,%a6,%d0.w*4) # save remainder mov.l %d6, (EXC_DREGS,%a6,%d1.w*4) # save quotient rts ddovf: bset &0x1, EXC_CC+1(%a6) # 'V' set on overflow bclr &0x0, EXC_CC+1(%a6) # 'C' cleared on overflow rts div64eq0: andi.b &0x1e, EXC_CC+1(%a6) # clear 'C' bit on divbyzero ori.b &idbyz_flg,SPCOND_FLG(%a6) # set "special case" flag rts ########################################################################### ######################################################################### # This routine uses the 'classical' Algorithm D from Donald Knuth's # # Art of Computer Programming, vol II, Seminumerical Algorithms. # # For this implementation b=2**16, and the target is U1U2U3U4/V1V2, # # where U,V are words of the quadword dividend and longword divisor, # # and U1, V1 are the most significant words. # # # # The most sig. longword of the 64 bit dividend must be in %d5, least # # in %d6. The divisor must be in the variable ddivisor, and the # # signed/unsigned flag ddusign must be set (0=unsigned,1=signed). # # The quotient is returned in %d6, remainder in %d5, unless the # # v (overflow) bit is set in the saved %ccr. If overflow, the dividend # # is unchanged. # ######################################################################### dclassical: # if the divisor msw is 0, use simpler algorithm then the full blown # one at ddknuth: cmpi.l %d7, &0xffff bhi.b ddknuth # go use D. Knuth algorithm # Since the divisor is only a word (and larger than the mslw of the dividend), # a simpler algorithm may be used : # In the general case, four quotient words would be created by # dividing the divisor word into each dividend word. In this case, # the first two quotient words must be zero, or overflow would occur. # Since we already checked this case above, we can treat the most significant # longword of the dividend as (0) remainder (see Knuth) and merely complete # the last two divisions to get a quotient longword and word remainder: clr.l %d1 swap %d5 # same as r*b if previous step rqd swap %d6 # get u3 to lsw position mov.w %d6, %d5 # rb + u3 divu.w %d7, %d5 mov.w %d5, %d1 # first quotient word swap %d6 # get u4 mov.w %d6, %d5 # rb + u4 divu.w %d7, %d5 swap %d1 mov.w %d5, %d1 # 2nd quotient 'digit' clr.w %d5 swap %d5 # now remainder mov.l %d1, %d6 # and quotient rts ddknuth: # In this algorithm, the divisor is treated as a 2 digit (word) number # which is divided into a 3 digit (word) dividend to get one quotient # digit (word). After subtraction, the dividend is shifted and the # process repeated. Before beginning, the divisor and quotient are # 'normalized' so that the process of estimating the quotient digit # will yield verifiably correct results.. clr.l DDNORMAL(%a6) # count of shifts for normalization clr.b DDSECOND(%a6) # clear flag for quotient digits clr.l %d1 # %d1 will hold trial quotient ddnchk: btst &31, %d7 # must we normalize? first word of bne.b ddnormalized # divisor (V1) must be >= 65536/2 addq.l &0x1, DDNORMAL(%a6) # count normalization shifts lsl.l &0x1, %d7 # shift the divisor lsl.l &0x1, %d6 # shift u4,u3 with overflow to u2 roxl.l &0x1, %d5 # shift u1,u2 bra.w ddnchk ddnormalized: # Now calculate an estimate of the quotient words (msw first, then lsw). # The comments use subscripts for the first quotient digit determination. mov.l %d7, %d3 # divisor mov.l %d5, %d2 # dividend mslw swap %d2 swap %d3 cmp.w %d2, %d3 # V1 = U1 ? bne.b ddqcalc1 mov.w &0xffff, %d1 # use max trial quotient word bra.b ddadj0 ddqcalc1: mov.l %d5, %d1 divu.w %d3, %d1 # use quotient of mslw/msw andi.l &0x0000ffff, %d1 # zero any remainder ddadj0: # now test the trial quotient and adjust. This step plus the # normalization assures (according to Knuth) that the trial # quotient will be at worst 1 too large. mov.l %d6, -(%sp) clr.w %d6 # word u3 left swap %d6 # in lsw position ddadj1: mov.l %d7, %d3 mov.l %d1, %d2 mulu.w %d7, %d2 # V2q swap %d3 mulu.w %d1, %d3 # V1q mov.l %d5, %d4 # U1U2 sub.l %d3, %d4 # U1U2 - V1q swap %d4 mov.w %d4,%d0 mov.w %d6,%d4 # insert lower word (U3) tst.w %d0 # is upper word set? bne.w ddadjd1 # add.l %d6, %d4 # (U1U2 - V1q) + U3 cmp.l %d2, %d4 bls.b ddadjd1 # is V2q > (U1U2-V1q) + U3 ? subq.l &0x1, %d1 # yes, decrement and recheck bra.b ddadj1 ddadjd1: # now test the word by multiplying it by the divisor (V1V2) and comparing # the 3 digit (word) result with the current dividend words mov.l %d5, -(%sp) # save %d5 (%d6 already saved) mov.l %d1, %d6 swap %d6 # shift answer to ms 3 words mov.l %d7, %d5 bsr.l dmm2 mov.l %d5, %d2 # now %d2,%d3 are trial*divisor mov.l %d6, %d3 mov.l (%sp)+, %d5 # restore dividend mov.l (%sp)+, %d6 sub.l %d3, %d6 subx.l %d2, %d5 # subtract double precision bcc dd2nd # no carry, do next quotient digit subq.l &0x1, %d1 # q is one too large # need to add back divisor longword to current ms 3 digits of dividend # - according to Knuth, this is done only 2 out of 65536 times for random # divisor, dividend selection. clr.l %d2 mov.l %d7, %d3 swap %d3 clr.w %d3 # %d3 now ls word of divisor add.l %d3, %d6 # aligned with 3rd word of dividend addx.l %d2, %d5 mov.l %d7, %d3 clr.w %d3 # %d3 now ms word of divisor swap %d3 # aligned with 2nd word of dividend add.l %d3, %d5 dd2nd: tst.b DDSECOND(%a6) # both q words done? bne.b ddremain # first quotient digit now correct. store digit and shift the # (subtracted) dividend mov.w %d1, DDQUOTIENT(%a6) clr.l %d1 swap %d5 swap %d6 mov.w %d6, %d5 clr.w %d6 st DDSECOND(%a6) # second digit bra.w ddnormalized ddremain: # add 2nd word to quotient, get the remainder. mov.w %d1, DDQUOTIENT+2(%a6) # shift down one word/digit to renormalize remainder. mov.w %d5, %d6 swap %d6 swap %d5 mov.l DDNORMAL(%a6), %d7 # get norm shift count beq.b ddrn subq.l &0x1, %d7 # set for loop count ddnlp: lsr.l &0x1, %d5 # shift into %d6 roxr.l &0x1, %d6 dbf %d7, ddnlp ddrn: mov.l %d6, %d5 # remainder mov.l DDQUOTIENT(%a6), %d6 # quotient rts dmm2: # factors for the 32X32->64 multiplication are in %d5 and %d6. # returns 64 bit result in %d5 (hi) %d6(lo). # destroys %d2,%d3,%d4. # multiply hi,lo words of each factor to get 4 intermediate products mov.l %d6, %d2 mov.l %d6, %d3 mov.l %d5, %d4 swap %d3 swap %d4 mulu.w %d5, %d6 # %d6 <- lsw*lsw mulu.w %d3, %d5 # %d5 <- msw-dest*lsw-source mulu.w %d4, %d2 # %d2 <- msw-source*lsw-dest mulu.w %d4, %d3 # %d3 <- msw*msw # now use swap and addx to consolidate to two longwords clr.l %d4 swap %d6 add.w %d5, %d6 # add msw of l*l to lsw of m*l product addx.w %d4, %d3 # add any carry to m*m product add.w %d2, %d6 # add in lsw of other m*l product addx.w %d4, %d3 # add any carry to m*m product swap %d6 # %d6 is low 32 bits of final product clr.w %d5 clr.w %d2 # lsw of two mixed products used, swap %d5 # now use msws of longwords swap %d2 add.l %d2, %d5 add.l %d3, %d5 # %d5 now ms 32 bits of final product rts ########## dcontrolmodel_s: movq.l &LONG,%d0 bsr.l _calc_ea # calc cmpi.b SPCOND_FLG(%a6),&immed_flg # immediate addressing mode? beq.b dimmed # yes mov.l %a0,%a2 bsr.l _dmem_read_long # fetch divisor from tst.l %d1 # dfetch error? bne.b div64_err # yes mov.l %d0, %d7 bra.w dgotsrcl # we have to split out immediate data here because it must be read using # imem_read() instead of dmem_read(). this becomes especially important # if the fetch runs into some deadly fault. dimmed: addq.l &0x4,EXC_EXTWPTR(%a6) bsr.l _imem_read_long # read immediate value tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.l %d0,%d7 bra.w dgotsrcl ########## # if dmem_read_long() returns a fail message in d1, the package # must create an access error frame. here, we pass a skeleton fslw # and the failing address to the routine that creates the new frame. # also, we call isp_restore in case the effective addressing mode was # (an)+ or -(an) in which case the previous "an" value must be restored. # FSLW: # read = true # size = longword # TM = data # software emulation error = true div64_err: bsr.l isp_restore # restore addr reg mov.l %a2,%a0 # pass failing address mov.l &0x01010001,%d0 # pass fslw bra.l isp_dacc ######################################################################### # XDEF **************************************************************** # # _mul64(): routine to emulate mul{u,s}.l ,Dh:Dl 32x32->64 # # # # XREF **************************************************************** # # _calc_ea() - calculate effective address # # isp_iacc() - handle instruction access error exception # # isp_dacc() - handle data access error exception # # isp_restore() - restore An on access error w/ -() or ()+ # # # # INPUT *************************************************************** # # none # # # # OUTPUT ************************************************************** # # If exiting through isp_dacc... # # a0 = failing address # # d0 = FSLW # # else # # none # # # # ALGORITHM *********************************************************** # # First, decode the operand location. If it's in Dn, fetch from # # the stack. If it's in memory, use _calc_ea() to calculate the # # effective address. Use _dmem_read_long() to fetch at that address. # # Unless the operand is immediate data. Then use _imem_read_long(). # # Send failures to isp_dacc() or isp_iacc() as appropriate. # # If the operands are signed, make them unsigned and save the # # sign info for later. Perform the multiplication using 16x16->32 # # unsigned multiplies and "add" instructions. Store the high and low # # portions of the result in the appropriate data registers on the # # stack. Calculate the condition codes, also. # # # ######################################################################### ############# # mul(u,s)l # ############# global _mul64 _mul64: mov.b EXC_OPWORD+1(%a6), %d0 # extract src {mode,reg} cmpi.b %d0, &0x7 # is src mode Dn or other? bgt.w mul64_memop # src is in memory # multiplier operand in the data register file. # must extract the register number and fetch the operand from the stack. mul64_regop: andi.w &0x7, %d0 # extract Dn mov.l (EXC_DREGS,%a6,%d0.w*4), %d3 # fetch multiplier # multiplier is in %d3. now, extract Dl and Dh fields and fetch the # multiplicand from the data register specified by Dl. mul64_multiplicand: mov.w EXC_EXTWORD(%a6), %d2 # fetch ext word clr.w %d1 # clear Dh reg mov.b %d2, %d1 # grab Dh rol.w &0x4, %d2 # align Dl byte andi.w &0x7, %d2 # extract Dl mov.l (EXC_DREGS,%a6,%d2.w*4), %d4 # get multiplicand # check for the case of "zero" result early tst.l %d4 # test multiplicand beq.w mul64_zero # handle zero separately tst.l %d3 # test multiplier beq.w mul64_zero # handle zero separately # multiplier is in %d3 and multiplicand is in %d4. # if the operation is to be signed, then the operands are converted # to unsigned and the result sign is saved for the end. clr.b EXC_TEMP(%a6) # clear temp space btst &0x3, EXC_EXTWORD(%a6) # signed or unsigned? beq.b mul64_alg # unsigned; skip sgn calc tst.l %d3 # is multiplier negative? bge.b mul64_chk_md_sgn # no neg.l %d3 # make multiplier positive ori.b &0x1, EXC_TEMP(%a6) # save multiplier sgn # the result sign is the exclusive or of the operand sign bits. mul64_chk_md_sgn: tst.l %d4 # is multiplicand negative? bge.b mul64_alg # no neg.l %d4 # make multiplicand positive eori.b &0x1, EXC_TEMP(%a6) # calculate correct sign ######################################################################### # 63 32 0 # # ---------------------------- # # | hi(mplier) * hi(mplicand)| # # ---------------------------- # # ----------------------------- # # | hi(mplier) * lo(mplicand) | # # ----------------------------- # # ----------------------------- # # | lo(mplier) * hi(mplicand) | # # ----------------------------- # # | ----------------------------- # # --|-- | lo(mplier) * lo(mplicand) | # # | ----------------------------- # # ======================================================== # # -------------------------------------------------------- # # | hi(result) | lo(result) | # # -------------------------------------------------------- # ######################################################################### mul64_alg: # load temp registers with operands mov.l %d3, %d5 # mr in %d5 mov.l %d3, %d6 # mr in %d6 mov.l %d4, %d7 # md in %d7 swap %d6 # hi(mr) in lo %d6 swap %d7 # hi(md) in lo %d7 # complete necessary multiplies: mulu.w %d4, %d3 # [1] lo(mr) * lo(md) mulu.w %d6, %d4 # [2] hi(mr) * lo(md) mulu.w %d7, %d5 # [3] lo(mr) * hi(md) mulu.w %d7, %d6 # [4] hi(mr) * hi(md) # add lo portions of [2],[3] to hi portion of [1]. # add carries produced from these adds to [4]. # lo([1]) is the final lo 16 bits of the result. clr.l %d7 # load %d7 w/ zero value swap %d3 # hi([1]) <==> lo([1]) add.w %d4, %d3 # hi([1]) + lo([2]) addx.l %d7, %d6 # [4] + carry add.w %d5, %d3 # hi([1]) + lo([3]) addx.l %d7, %d6 # [4] + carry swap %d3 # lo([1]) <==> hi([1]) # lo portions of [2],[3] have been added in to final result. # now, clear lo, put hi in lo reg, and add to [4] clr.w %d4 # clear lo([2]) clr.w %d5 # clear hi([3]) swap %d4 # hi([2]) in lo %d4 swap %d5 # hi([3]) in lo %d5 add.l %d5, %d4 # [4] + hi([2]) add.l %d6, %d4 # [4] + hi([3]) # unsigned result is now in {%d4,%d3} tst.b EXC_TEMP(%a6) # should result be signed? beq.b mul64_done # no # result should be a signed negative number. # compute 2's complement of the unsigned number: # -negate all bits and add 1 mul64_neg: not.l %d3 # negate lo(result) bits not.l %d4 # negate hi(result) bits addq.l &1, %d3 # add 1 to lo(result) addx.l %d7, %d4 # add carry to hi(result) # the result is saved to the register file. # for '040 compatibility, if Dl == Dh then only the hi(result) is # saved. so, saving hi after lo accomplishes this without need to # check Dl,Dh equality. mul64_done: mov.l %d3, (EXC_DREGS,%a6,%d2.w*4) # save lo(result) mov.w &0x0, %cc mov.l %d4, (EXC_DREGS,%a6,%d1.w*4) # save hi(result) # now, grab the condition codes. only one that can be set is 'N'. # 'N' CAN be set if the operation is unsigned if bit 63 is set. mov.w %cc, %d7 # fetch %ccr to see if 'N' set andi.b &0x8, %d7 # extract 'N' bit mul64_ccode_set: mov.b EXC_CC+1(%a6), %d6 # fetch previous %ccr andi.b &0x10, %d6 # all but 'X' bit changes or.b %d7, %d6 # group 'X' and 'N' mov.b %d6, EXC_CC+1(%a6) # save new %ccr rts # one or both of the operands is zero so the result is also zero. # save the zero result to the register file and set the 'Z' ccode bit. mul64_zero: clr.l (EXC_DREGS,%a6,%d2.w*4) # save lo(result) clr.l (EXC_DREGS,%a6,%d1.w*4) # save hi(result) movq.l &0x4, %d7 # set 'Z' ccode bit bra.b mul64_ccode_set # finish ccode set ########## # multiplier operand is in memory at the effective address. # must calculate the and go fetch the 32-bit operand. mul64_memop: movq.l &LONG, %d0 # pass # of bytes bsr.l _calc_ea # calculate cmpi.b SPCOND_FLG(%a6),&immed_flg # immediate addressing mode? beq.b mul64_immed # yes mov.l %a0,%a2 bsr.l _dmem_read_long # fetch src from addr (%a0) tst.l %d1 # dfetch error? bne.w mul64_err # yes mov.l %d0, %d3 # store multiplier in %d3 bra.w mul64_multiplicand # we have to split out immediate data here because it must be read using # imem_read() instead of dmem_read(). this becomes especially important # if the fetch runs into some deadly fault. mul64_immed: addq.l &0x4,EXC_EXTWPTR(%a6) bsr.l _imem_read_long # read immediate value tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.l %d0,%d3 bra.w mul64_multiplicand ########## # if dmem_read_long() returns a fail message in d1, the package # must create an access error frame. here, we pass a skeleton fslw # and the failing address to the routine that creates the new frame. # also, we call isp_restore in case the effective addressing mode was # (an)+ or -(an) in which case the previous "an" value must be restored. # FSLW: # read = true # size = longword # TM = data # software emulation error = true mul64_err: bsr.l isp_restore # restore addr reg mov.l %a2,%a0 # pass failing address mov.l &0x01010001,%d0 # pass fslw bra.l isp_dacc ######################################################################### # XDEF **************************************************************** # # _compandset2(): routine to emulate cas2() # # (internal to package) # # # # _isp_cas2_finish(): store ccodes, store compare regs # # (external to package) # # # # XREF **************************************************************** # # _real_lock_page() - "callout" to lock op's page from page-outs # # _cas_terminate2() - access error exit # # _real_cas2() - "callout" to core cas2 emulation code # # _real_unlock_page() - "callout" to unlock page # # # # INPUT *************************************************************** # # _compandset2(): # # d0 = instruction extension word # # # # _isp_cas2_finish(): # # see cas2 core emulation code # # # # OUTPUT ************************************************************** # # _compandset2(): # # see cas2 core emulation code # # # # _isp_cas_finish(): # # None (register file or memroy changed as appropriate) # # # # ALGORITHM *********************************************************** # # compandset2(): # # Decode the instruction and fetch the appropriate Update and # # Compare operands. Then call the "callout" _real_lock_page() for each # # memory operand address so that the operating system can keep these # # pages from being paged out. If either _real_lock_page() fails, exit # # through _cas_terminate2(). Don't forget to unlock the 1st locked page # # using _real_unlock_paged() if the 2nd lock-page fails. # # Finally, branch to the core cas2 emulation code by calling the # # "callout" _real_cas2(). # # # # _isp_cas2_finish(): # # Re-perform the comparison so we can determine the condition # # codes which were too much trouble to keep around during the locked # # emulation. Then unlock each operands page by calling the "callout" # # _real_unlock_page(). # # # ######################################################################### set ADDR1, EXC_TEMP+0xc set ADDR2, EXC_TEMP+0x0 set DC2, EXC_TEMP+0xa set DC1, EXC_TEMP+0x8 global _compandset2 _compandset2: mov.l %d0,EXC_TEMP+0x4(%a6) # store for possible restart mov.l %d0,%d1 # extension word in d0 rol.w &0x4,%d0 andi.w &0xf,%d0 # extract Rn2 mov.l (EXC_DREGS,%a6,%d0.w*4),%a1 # fetch ADDR2 mov.l %a1,ADDR2(%a6) mov.l %d1,%d0 lsr.w &0x6,%d1 andi.w &0x7,%d1 # extract Du2 mov.l (EXC_DREGS,%a6,%d1.w*4),%d5 # fetch Update2 Op andi.w &0x7,%d0 # extract Dc2 mov.l (EXC_DREGS,%a6,%d0.w*4),%d3 # fetch Compare2 Op mov.w %d0,DC2(%a6) mov.w EXC_EXTWORD(%a6),%d0 mov.l %d0,%d1 rol.w &0x4,%d0 andi.w &0xf,%d0 # extract Rn1 mov.l (EXC_DREGS,%a6,%d0.w*4),%a0 # fetch ADDR1 mov.l %a0,ADDR1(%a6) mov.l %d1,%d0 lsr.w &0x6,%d1 andi.w &0x7,%d1 # extract Du1 mov.l (EXC_DREGS,%a6,%d1.w*4),%d4 # fetch Update1 Op andi.w &0x7,%d0 # extract Dc1 mov.l (EXC_DREGS,%a6,%d0.w*4),%d2 # fetch Compare1 Op mov.w %d0,DC1(%a6) btst &0x1,EXC_OPWORD(%a6) # word or long? sne %d7 btst &0x5,EXC_ISR(%a6) # user or supervisor? sne %d6 mov.l %a0,%a2 mov.l %a1,%a3 mov.l %d7,%d1 # pass size mov.l %d6,%d0 # pass mode bsr.l _real_lock_page # lock page mov.l %a2,%a0 tst.l %d0 # error? bne.l _cas_terminate2 # yes mov.l %d7,%d1 # pass size mov.l %d6,%d0 # pass mode mov.l %a3,%a0 # pass addr bsr.l _real_lock_page # lock page mov.l %a3,%a0 tst.l %d0 # error? bne.b cas_preterm # yes mov.l %a2,%a0 mov.l %a3,%a1 bra.l _real_cas2 # if the 2nd lock attempt fails, then we must still unlock the # first page(s). cas_preterm: mov.l %d0,-(%sp) # save FSLW mov.l %d7,%d1 # pass size mov.l %d6,%d0 # pass mode mov.l %a2,%a0 # pass ADDR1 bsr.l _real_unlock_page # unlock first page(s) mov.l (%sp)+,%d0 # restore FSLW mov.l %a3,%a0 # pass failing addr bra.l _cas_terminate2 ############################################################# global _isp_cas2_finish _isp_cas2_finish: btst &0x1,EXC_OPWORD(%a6) bne.b cas2_finish_l mov.w EXC_CC(%a6),%cc # load old ccodes cmp.w %d0,%d2 bne.b cas2_finish_w_save cmp.w %d1,%d3 cas2_finish_w_save: mov.w %cc,EXC_CC(%a6) # save new ccodes tst.b %d4 # update compare reg? bne.b cas2_finish_w_done # no mov.w DC2(%a6),%d3 # fetch Dc2 mov.w %d1,(2+EXC_DREGS,%a6,%d3.w*4) # store new Compare2 Op mov.w DC1(%a6),%d2 # fetch Dc1 mov.w %d0,(2+EXC_DREGS,%a6,%d2.w*4) # store new Compare1 Op cas2_finish_w_done: btst &0x5,EXC_ISR(%a6) sne %d2 mov.l %d2,%d0 # pass mode sf %d1 # pass size mov.l ADDR1(%a6),%a0 # pass ADDR1 bsr.l _real_unlock_page # unlock page mov.l %d2,%d0 # pass mode sf %d1 # pass size mov.l ADDR2(%a6),%a0 # pass ADDR2 bsr.l _real_unlock_page # unlock page rts cas2_finish_l: mov.w EXC_CC(%a6),%cc # load old ccodes cmp.l %d0,%d2 bne.b cas2_finish_l_save cmp.l %d1,%d3 cas2_finish_l_save: mov.w %cc,EXC_CC(%a6) # save new ccodes tst.b %d4 # update compare reg? bne.b cas2_finish_l_done # no mov.w DC2(%a6),%d3 # fetch Dc2 mov.l %d1,(EXC_DREGS,%a6,%d3.w*4) # store new Compare2 Op mov.w DC1(%a6),%d2 # fetch Dc1 mov.l %d0,(EXC_DREGS,%a6,%d2.w*4) # store new Compare1 Op cas2_finish_l_done: btst &0x5,EXC_ISR(%a6) sne %d2 mov.l %d2,%d0 # pass mode st %d1 # pass size mov.l ADDR1(%a6),%a0 # pass ADDR1 bsr.l _real_unlock_page # unlock page mov.l %d2,%d0 # pass mode st %d1 # pass size mov.l ADDR2(%a6),%a0 # pass ADDR2 bsr.l _real_unlock_page # unlock page rts ######## global cr_cas2 cr_cas2: mov.l EXC_TEMP+0x4(%a6),%d0 bra.w _compandset2 ######################################################################### # XDEF **************************************************************** # # _compandset(): routine to emulate cas w/ misaligned # # (internal to package) # # _isp_cas_finish(): routine called when cas emulation completes # # (external and internal to package) # # _isp_cas_restart(): restart cas emulation after a fault # # (external to package) # # _isp_cas_terminate(): create access error stack frame on fault # # (external and internal to package) # # _isp_cas_inrange(): checks whether instr addess is within range # # of core cas/cas2emulation code # # (external to package) # # # # XREF **************************************************************** # # _calc_ea(): calculate effective address # # # # INPUT *************************************************************** # # compandset(): # # none # # _isp_cas_restart(): # # d6 = previous sfc/dfc # # _isp_cas_finish(): # # _isp_cas_terminate(): # # a0 = failing address # # d0 = FSLW # # d6 = previous sfc/dfc # # _isp_cas_inrange(): # # a0 = instruction address to be checked # # # # OUTPUT ************************************************************** # # compandset(): # # none # # _isp_cas_restart(): # # a0 = effective address # # d7 = word or longword flag # # _isp_cas_finish(): # # a0 = effective address # # _isp_cas_terminate(): # # initial register set before emulation exception # # _isp_cas_inrange(): # # d0 = 0 => in range; -1 => out of range # # # # ALGORITHM *********************************************************** # # # # compandset(): # # First, calculate the effective address. Then, decode the # # instruction word and fetch the "compare" (DC) and "update" (Du) # # operands. # # Next, call the external routine _real_lock_page() so that the # # operating system can keep this page from being paged out while we're # # in this routine. If this call fails, jump to _cas_terminate2(). # # The routine then branches to _real_cas(). This external routine # # that actually emulates cas can be supplied by the external os or # # made to point directly back into the 060ISP which has a routine for # # this purpose. # # # # _isp_cas_finish(): # # Either way, after emulation, the package is re-entered at # # _isp_cas_finish(). This routine re-compares the operands in order to # # set the condition codes. Finally, these routines will call # # _real_unlock_page() in order to unlock the pages that were previously # # locked. # # # # _isp_cas_restart(): # # This routine can be entered from an access error handler where # # the emulation sequence should be re-started from the beginning. # # # # _isp_cas_terminate(): # # This routine can be entered from an access error handler where # # an emulation operand access failed and the operating system would # # like an access error stack frame created instead of the current # # unimplemented integer instruction frame. # # Also, the package enters here if a call to _real_lock_page() # # fails. # # # # _isp_cas_inrange(): # # Checks to see whether the instruction address passed to it in # # a0 is within the software package cas/cas2 emulation routines. This # # can be helpful for an operating system to determine whether an access # # error during emulation was due to a cas/cas2 emulation access. # # # ######################################################################### set DC, EXC_TEMP+0x8 set ADDR, EXC_TEMP+0x4 global _compandset _compandset: btst &0x1,EXC_OPWORD(%a6) # word or long operation? bne.b compandsetl # long compandsetw: movq.l &0x2,%d0 # size = 2 bytes bsr.l _calc_ea # a0 = calculated mov.l %a0,ADDR(%a6) # save for possible restart sf %d7 # clear d7 for word size bra.b compandsetfetch compandsetl: movq.l &0x4,%d0 # size = 4 bytes bsr.l _calc_ea # a0 = calculated mov.l %a0,ADDR(%a6) # save for possible restart st %d7 # set d7 for longword size compandsetfetch: mov.w EXC_EXTWORD(%a6),%d0 # fetch cas extension word mov.l %d0,%d1 # make a copy lsr.w &0x6,%d0 andi.w &0x7,%d0 # extract Du mov.l (EXC_DREGS,%a6,%d0.w*4),%d2 # get update operand andi.w &0x7,%d1 # extract Dc mov.l (EXC_DREGS,%a6,%d1.w*4),%d4 # get compare operand mov.w %d1,DC(%a6) # save Dc btst &0x5,EXC_ISR(%a6) # which mode for exception? sne %d6 # set on supervisor mode mov.l %a0,%a2 # save temporarily mov.l %d7,%d1 # pass size mov.l %d6,%d0 # pass mode bsr.l _real_lock_page # lock page tst.l %d0 # did error occur? bne.w _cas_terminate2 # yes, clean up the mess mov.l %a2,%a0 # pass addr in a0 bra.l _real_cas ######## global _isp_cas_finish _isp_cas_finish: btst &0x1,EXC_OPWORD(%a6) bne.b cas_finish_l # just do the compare again since it's faster than saving the ccodes # from the locked routine... cas_finish_w: mov.w EXC_CC(%a6),%cc # restore cc cmp.w %d0,%d4 # do word compare mov.w %cc,EXC_CC(%a6) # save cc tst.b %d1 # update compare reg? bne.b cas_finish_w_done # no mov.w DC(%a6),%d3 mov.w %d0,(EXC_DREGS+2,%a6,%d3.w*4) # Dc = destination cas_finish_w_done: mov.l ADDR(%a6),%a0 # pass addr sf %d1 # pass size btst &0x5,EXC_ISR(%a6) sne %d0 # pass mode bsr.l _real_unlock_page # unlock page rts # just do the compare again since it's faster than saving the ccodes # from the locked routine... cas_finish_l: mov.w EXC_CC(%a6),%cc # restore cc cmp.l %d0,%d4 # do longword compare mov.w %cc,EXC_CC(%a6) # save cc tst.b %d1 # update compare reg? bne.b cas_finish_l_done # no mov.w DC(%a6),%d3 mov.l %d0,(EXC_DREGS,%a6,%d3.w*4) # Dc = destination cas_finish_l_done: mov.l ADDR(%a6),%a0 # pass addr st %d1 # pass size btst &0x5,EXC_ISR(%a6) sne %d0 # pass mode bsr.l _real_unlock_page # unlock page rts ######## global _isp_cas_restart _isp_cas_restart: mov.l %d6,%sfc # restore previous sfc mov.l %d6,%dfc # restore previous dfc cmpi.b EXC_OPWORD+1(%a6),&0xfc # cas or cas2? beq.l cr_cas2 # cas2 cr_cas: mov.l ADDR(%a6),%a0 # load btst &0x1,EXC_OPWORD(%a6) # word or long operation? sne %d7 # set d7 accordingly bra.w compandsetfetch ######## # At this stage, it would be nice if d0 held the FSLW. global _isp_cas_terminate _isp_cas_terminate: mov.l %d6,%sfc # restore previous sfc mov.l %d6,%dfc # restore previous dfc global _cas_terminate2 _cas_terminate2: mov.l %a0,%a2 # copy failing addr to a2 mov.l %d0,-(%sp) bsr.l isp_restore # restore An (if ()+ or -()) mov.l (%sp)+,%d0 addq.l &0x4,%sp # remove sub return addr subq.l &0x8,%sp # make room for bigger stack subq.l &0x8,%a6 # shift frame ptr down, too mov.l &26,%d1 # want to move 51 longwords lea 0x8(%sp),%a0 # get address of old stack lea 0x0(%sp),%a1 # get address of new stack cas_term_cont: mov.l (%a0)+,(%a1)+ # move a longword dbra.w %d1,cas_term_cont # keep going mov.w &0x4008,EXC_IVOFF(%a6) # put new stk fmt, voff mov.l %a2,EXC_IVOFF+0x2(%a6) # put faulting addr on stack mov.l %d0,EXC_IVOFF+0x6(%a6) # put FSLW on stack movm.l EXC_DREGS(%a6),&0x3fff # restore user regs unlk %a6 # unlink stack frame bra.l _real_access ######## global _isp_cas_inrange _isp_cas_inrange: clr.l %d0 # clear return result lea _CASHI(%pc),%a1 # load end of CAS core code cmp.l %a1,%a0 # is PC in range? blt.b cin_no # no lea _CASLO(%pc),%a1 # load begin of CAS core code cmp.l %a0,%a1 # is PC in range? blt.b cin_no # no rts # yes; return d0 = 0 cin_no: mov.l &-0x1,%d0 # out of range; return d0 = -1 rts ################################################################# ################################################################# ################################################################# # This is the start of the cas and cas2 "core" emulation code. # # This is the section that may need to be replaced by the host # # OS if it is too operating system-specific. # # Please refer to the package documentation to see how to # # "replace" this section, if necessary. # ################################################################# ################################################################# ################################################################# # ###### ## ###### #### # # # # # # # # # ###### ###### # # # # # # # # ###### # # ###### ###### ######################################################################### # XDEF **************************************************************** # # _isp_cas2(): "core" emulation code for the cas2 instruction # # # # XREF **************************************************************** # # _isp_cas2_finish() - only exit point for this emulation code; # # do clean-up; calculate ccodes; store # # Compare Ops if appropriate. # # # # INPUT *************************************************************** # # *see chart below* # # # # OUTPUT ************************************************************** # # *see chart below* # # # # ALGORITHM *********************************************************** # # (1) Make several copies of the effective address. # # (2) Save current SR; Then mask off all maskable interrupts. # # (3) Save current SFC/DFC (ASSUMED TO BE EQUAL!!!); Then set # # according to whether exception occurred in user or # # supervisor mode. # # (4) Use "plpaw" instruction to pre-load ATC with effective # # address pages(s). THIS SHOULD NOT FAULT!!! The relevant # # page(s) should have already been made resident prior to # # entering this routine. # # (5) Push the operand lines from the cache w/ "cpushl". # # In the 68040, this was done within the locked region. In # # the 68060, it is done outside of the locked region. # # (6) Use "plpar" instruction to do a re-load of ATC entries for # # ADDR1 since ADDR2 entries may have pushed ADDR1 out of the # # ATC. # # (7) Pre-fetch the core emulation instructions by executing # # one branch within each physical line (16 bytes) of the code # # before actually executing the code. # # (8) Load the BUSCR w/ the bus lock value. # # (9) Fetch the source operands using "moves". # # (10)Do the compares. If both equal, go to step (13). # # (11)Unequal. No update occurs. But, we do write the DST1 op # # back to itself (as w/ the '040) so we can gracefully unlock # # the bus (and assert LOCKE*) using BUSCR and the final move. # # (12)Exit. # # (13)Write update operand to the DST locations. Use BUSCR to # # assert LOCKE* for the final write operation. # # (14)Exit. # # # # The algorithm is actually implemented slightly differently # # depending on the size of the operation and the misalignment of the # # operands. A misaligned operand must be written in aligned chunks or # # else the BUSCR register control gets confused. # # # ######################################################################### ################################################################# # THIS IS THE STATE OF THE INTEGER REGISTER FILE UPON # # ENTERING _isp_cas2(). # # # # D0 = xxxxxxxx # # D1 = xxxxxxxx # # D2 = cmp operand 1 # # D3 = cmp operand 2 # # D4 = update oper 1 # # D5 = update oper 2 # # D6 = 'xxxxxxff if supervisor mode; 'xxxxxx00 if user mode # # D7 = 'xxxxxxff if longword operation; 'xxxxxx00 if word # # A0 = ADDR1 # # A1 = ADDR2 # # A2 = xxxxxxxx # # A3 = xxxxxxxx # # A4 = xxxxxxxx # # A5 = xxxxxxxx # # A6 = frame pointer # # A7 = stack pointer # ################################################################# # align 0x1000 # beginning label used by _isp_cas_inrange() global _CASLO _CASLO: global _isp_cas2 _isp_cas2: tst.b %d6 # user or supervisor mode? bne.b cas2_supervisor # supervisor cas2_user: movq.l &0x1,%d0 # load user data fc bra.b cas2_cont cas2_supervisor: movq.l &0x5,%d0 # load supervisor data fc cas2_cont: tst.b %d7 # word or longword? beq.w cas2w # word #### cas2l: mov.l %a0,%a2 # copy ADDR1 mov.l %a1,%a3 # copy ADDR2 mov.l %a0,%a4 # copy ADDR1 mov.l %a1,%a5 # copy ADDR2 addq.l &0x3,%a4 # ADDR1+3 addq.l &0x3,%a5 # ADDR2+3 mov.l %a2,%d1 # ADDR1 # mask interrupts levels 0-6. save old mask value. mov.w %sr,%d7 # save current SR ori.w &0x0700,%sr # inhibit interrupts # load the SFC and DFC with the appropriate mode. movc %sfc,%d6 # save old SFC/DFC movc %d0,%sfc # store new SFC movc %d0,%dfc # store new DFC # pre-load the operand ATC. no page faults should occur here because # _real_lock_page() should have taken care of this. plpaw (%a2) # load atc for ADDR1 plpaw (%a4) # load atc for ADDR1+3 plpaw (%a3) # load atc for ADDR2 plpaw (%a5) # load atc for ADDR2+3 # push the operand lines from the cache if they exist. cpushl %dc,(%a2) # push line for ADDR1 cpushl %dc,(%a4) # push line for ADDR1+3 cpushl %dc,(%a3) # push line for ADDR2 cpushl %dc,(%a5) # push line for ADDR2+2 mov.l %d1,%a2 # ADDR1 addq.l &0x3,%d1 mov.l %d1,%a4 # ADDR1+3 # if ADDR1 was ATC resident before the above "plpaw" and was executed # and it was the next entry scheduled for replacement and ADDR2 # shares the same set, then the "plpaw" for ADDR2 can push the ADDR1 # entries from the ATC. so, we do a second set of "plpa"s. plpar (%a2) # load atc for ADDR1 plpar (%a4) # load atc for ADDR1+3 # load the BUSCR values. mov.l &0x80000000,%a2 # assert LOCK* buscr value mov.l &0xa0000000,%a3 # assert LOCKE* buscr value mov.l &0x00000000,%a4 # buscr unlock value # there are three possible mis-aligned cases for longword cas. they # are separated because the final write which asserts LOCKE* must # be aligned. mov.l %a0,%d0 # is ADDR1 misaligned? andi.b &0x3,%d0 beq.b CAS2L_ENTER # no cmpi.b %d0,&0x2 beq.w CAS2L2_ENTER # yes; word misaligned bra.w CAS2L3_ENTER # yes; byte misaligned # # D0 = dst operand 1 <- # D1 = dst operand 2 <- # D2 = cmp operand 1 # D3 = cmp operand 2 # D4 = update oper 1 # D5 = update oper 2 # D6 = old SFC/DFC # D7 = old SR # A0 = ADDR1 # A1 = ADDR2 # A2 = bus LOCK* value # A3 = bus LOCKE* value # A4 = bus unlock value # A5 = xxxxxxxx # align 0x10 CAS2L_START: movc %a2,%buscr # assert LOCK* movs.l (%a1),%d1 # fetch Dest2[31:0] movs.l (%a0),%d0 # fetch Dest1[31:0] bra.b CAS2L_CONT CAS2L_ENTER: bra.b ~+16 CAS2L_CONT: cmp.l %d0,%d2 # Dest1 - Compare1 bne.b CAS2L_NOUPDATE cmp.l %d1,%d3 # Dest2 - Compare2 bne.b CAS2L_NOUPDATE movs.l %d5,(%a1) # Update2[31:0] -> DEST2 bra.b CAS2L_UPDATE bra.b ~+16 CAS2L_UPDATE: movc %a3,%buscr # assert LOCKE* movs.l %d4,(%a0) # Update1[31:0] -> DEST1 movc %a4,%buscr # unlock the bus bra.b cas2l_update_done bra.b ~+16 CAS2L_NOUPDATE: movc %a3,%buscr # assert LOCKE* movs.l %d0,(%a0) # Dest1[31:0] -> DEST1 movc %a4,%buscr # unlock the bus bra.b cas2l_noupdate_done bra.b ~+16 CAS2L_FILLER: nop nop nop nop nop nop nop bra.b CAS2L_START #### ################################################################# # THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON # # ENTERING _isp_cas2(). # # # # D0 = destination[31:0] operand 1 # # D1 = destination[31:0] operand 2 # # D2 = cmp[31:0] operand 1 # # D3 = cmp[31:0] operand 2 # # D4 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required # # D5 = xxxxxxxx # # D6 = xxxxxxxx # # D7 = xxxxxxxx # # A0 = xxxxxxxx # # A1 = xxxxxxxx # # A2 = xxxxxxxx # # A3 = xxxxxxxx # # A4 = xxxxxxxx # # A5 = xxxxxxxx # # A6 = frame pointer # # A7 = stack pointer # ################################################################# cas2l_noupdate_done: # restore previous SFC/DFC value. movc %d6,%sfc # restore old SFC movc %d6,%dfc # restore old DFC # restore previous interrupt mask level. mov.w %d7,%sr # restore old SR sf %d4 # indicate no update was done bra.l _isp_cas2_finish cas2l_update_done: # restore previous SFC/DFC value. movc %d6,%sfc # restore old SFC movc %d6,%dfc # restore old DFC # restore previous interrupt mask level. mov.w %d7,%sr # restore old SR st %d4 # indicate update was done bra.l _isp_cas2_finish #### align 0x10 CAS2L2_START: movc %a2,%buscr # assert LOCK* movs.l (%a1),%d1 # fetch Dest2[31:0] movs.l (%a0),%d0 # fetch Dest1[31:0] bra.b CAS2L2_CONT CAS2L2_ENTER: bra.b ~+16 CAS2L2_CONT: cmp.l %d0,%d2 # Dest1 - Compare1 bne.b CAS2L2_NOUPDATE cmp.l %d1,%d3 # Dest2 - Compare2 bne.b CAS2L2_NOUPDATE movs.l %d5,(%a1) # Update2[31:0] -> Dest2 bra.b CAS2L2_UPDATE bra.b ~+16 CAS2L2_UPDATE: swap %d4 # get Update1[31:16] movs.w %d4,(%a0)+ # Update1[31:16] -> DEST1 movc %a3,%buscr # assert LOCKE* swap %d4 # get Update1[15:0] bra.b CAS2L2_UPDATE2 bra.b ~+16 CAS2L2_UPDATE2: movs.w %d4,(%a0) # Update1[15:0] -> DEST1+0x2 movc %a4,%buscr # unlock the bus bra.w cas2l_update_done nop bra.b ~+16 CAS2L2_NOUPDATE: swap %d0 # get Dest1[31:16] movs.w %d0,(%a0)+ # Dest1[31:16] -> DEST1 movc %a3,%buscr # assert LOCKE* swap %d0 # get Dest1[15:0] bra.b CAS2L2_NOUPDATE2 bra.b ~+16 CAS2L2_NOUPDATE2: movs.w %d0,(%a0) # Dest1[15:0] -> DEST1+0x2 movc %a4,%buscr # unlock the bus bra.w cas2l_noupdate_done nop bra.b ~+16 CAS2L2_FILLER: nop nop nop nop nop nop nop bra.b CAS2L2_START ################################# align 0x10 CAS2L3_START: movc %a2,%buscr # assert LOCK* movs.l (%a1),%d1 # fetch Dest2[31:0] movs.l (%a0),%d0 # fetch Dest1[31:0] bra.b CAS2L3_CONT CAS2L3_ENTER: bra.b ~+16 CAS2L3_CONT: cmp.l %d0,%d2 # Dest1 - Compare1 bne.b CAS2L3_NOUPDATE cmp.l %d1,%d3 # Dest2 - Compare2 bne.b CAS2L3_NOUPDATE movs.l %d5,(%a1) # Update2[31:0] -> DEST2 bra.b CAS2L3_UPDATE bra.b ~+16 CAS2L3_UPDATE: rol.l &0x8,%d4 # get Update1[31:24] movs.b %d4,(%a0)+ # Update1[31:24] -> DEST1 swap %d4 # get Update1[23:8] movs.w %d4,(%a0)+ # Update1[23:8] -> DEST1+0x1 bra.b CAS2L3_UPDATE2 bra.b ~+16 CAS2L3_UPDATE2: rol.l &0x8,%d4 # get Update1[7:0] movc %a3,%buscr # assert LOCKE* movs.b %d4,(%a0) # Update1[7:0] -> DEST1+0x3 bra.b CAS2L3_UPDATE3 nop bra.b ~+16 CAS2L3_UPDATE3: movc %a4,%buscr # unlock the bus bra.w cas2l_update_done nop nop nop bra.b ~+16 CAS2L3_NOUPDATE: rol.l &0x8,%d0 # get Dest1[31:24] movs.b %d0,(%a0)+ # Dest1[31:24] -> DEST1 swap %d0 # get Dest1[23:8] movs.w %d0,(%a0)+ # Dest1[23:8] -> DEST1+0x1 bra.b CAS2L3_NOUPDATE2 bra.b ~+16 CAS2L3_NOUPDATE2: rol.l &0x8,%d0 # get Dest1[7:0] movc %a3,%buscr # assert LOCKE* movs.b %d0,(%a0) # Update1[7:0] -> DEST1+0x3 bra.b CAS2L3_NOUPDATE3 nop bra.b ~+16 CAS2L3_NOUPDATE3: movc %a4,%buscr # unlock the bus bra.w cas2l_noupdate_done nop nop nop bra.b ~+14 CAS2L3_FILLER: nop nop nop nop nop nop bra.w CAS2L3_START ############################################################# ############################################################# cas2w: mov.l %a0,%a2 # copy ADDR1 mov.l %a1,%a3 # copy ADDR2 mov.l %a0,%a4 # copy ADDR1 mov.l %a1,%a5 # copy ADDR2 addq.l &0x1,%a4 # ADDR1+1 addq.l &0x1,%a5 # ADDR2+1 mov.l %a2,%d1 # ADDR1 # mask interrupt levels 0-6. save old mask value. mov.w %sr,%d7 # save current SR ori.w &0x0700,%sr # inhibit interrupts # load the SFC and DFC with the appropriate mode. movc %sfc,%d6 # save old SFC/DFC movc %d0,%sfc # store new SFC movc %d0,%dfc # store new DFC # pre-load the operand ATC. no page faults should occur because # _real_lock_page() should have taken care of this. plpaw (%a2) # load atc for ADDR1 plpaw (%a4) # load atc for ADDR1+1 plpaw (%a3) # load atc for ADDR2 plpaw (%a5) # load atc for ADDR2+1 # push the operand cache lines from the cache if they exist. cpushl %dc,(%a2) # push line for ADDR1 cpushl %dc,(%a4) # push line for ADDR1+1 cpushl %dc,(%a3) # push line for ADDR2 cpushl %dc,(%a5) # push line for ADDR2+1 mov.l %d1,%a2 # ADDR1 addq.l &0x3,%d1 mov.l %d1,%a4 # ADDR1+3 # if ADDR1 was ATC resident before the above "plpaw" and was executed # and it was the next entry scheduled for replacement and ADDR2 # shares the same set, then the "plpaw" for ADDR2 can push the ADDR1 # entries from the ATC. so, we do a second set of "plpa"s. plpar (%a2) # load atc for ADDR1 plpar (%a4) # load atc for ADDR1+3 # load the BUSCR values. mov.l &0x80000000,%a2 # assert LOCK* buscr value mov.l &0xa0000000,%a3 # assert LOCKE* buscr value mov.l &0x00000000,%a4 # buscr unlock value # there are two possible mis-aligned cases for word cas. they # are separated because the final write which asserts LOCKE* must # be aligned. mov.l %a0,%d0 # is ADDR1 misaligned? btst &0x0,%d0 bne.w CAS2W2_ENTER # yes bra.b CAS2W_ENTER # no # # D0 = dst operand 1 <- # D1 = dst operand 2 <- # D2 = cmp operand 1 # D3 = cmp operand 2 # D4 = update oper 1 # D5 = update oper 2 # D6 = old SFC/DFC # D7 = old SR # A0 = ADDR1 # A1 = ADDR2 # A2 = bus LOCK* value # A3 = bus LOCKE* value # A4 = bus unlock value # A5 = xxxxxxxx # align 0x10 CAS2W_START: movc %a2,%buscr # assert LOCK* movs.w (%a1),%d1 # fetch Dest2[15:0] movs.w (%a0),%d0 # fetch Dest1[15:0] bra.b CAS2W_CONT2 CAS2W_ENTER: bra.b ~+16 CAS2W_CONT2: cmp.w %d0,%d2 # Dest1 - Compare1 bne.b CAS2W_NOUPDATE cmp.w %d1,%d3 # Dest2 - Compare2 bne.b CAS2W_NOUPDATE movs.w %d5,(%a1) # Update2[15:0] -> DEST2 bra.b CAS2W_UPDATE bra.b ~+16 CAS2W_UPDATE: movc %a3,%buscr # assert LOCKE* movs.w %d4,(%a0) # Update1[15:0] -> DEST1 movc %a4,%buscr # unlock the bus bra.b cas2w_update_done bra.b ~+16 CAS2W_NOUPDATE: movc %a3,%buscr # assert LOCKE* movs.w %d0,(%a0) # Dest1[15:0] -> DEST1 movc %a4,%buscr # unlock the bus bra.b cas2w_noupdate_done bra.b ~+16 CAS2W_FILLER: nop nop nop nop nop nop nop bra.b CAS2W_START #### ################################################################# # THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON # # ENTERING _isp_cas2(). # # # # D0 = destination[15:0] operand 1 # # D1 = destination[15:0] operand 2 # # D2 = cmp[15:0] operand 1 # # D3 = cmp[15:0] operand 2 # # D4 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required # # D5 = xxxxxxxx # # D6 = xxxxxxxx # # D7 = xxxxxxxx # # A0 = xxxxxxxx # # A1 = xxxxxxxx # # A2 = xxxxxxxx # # A3 = xxxxxxxx # # A4 = xxxxxxxx # # A5 = xxxxxxxx # # A6 = frame pointer # # A7 = stack pointer # ################################################################# cas2w_noupdate_done: # restore previous SFC/DFC value. movc %d6,%sfc # restore old SFC movc %d6,%dfc # restore old DFC # restore previous interrupt mask level. mov.w %d7,%sr # restore old SR sf %d4 # indicate no update was done bra.l _isp_cas2_finish cas2w_update_done: # restore previous SFC/DFC value. movc %d6,%sfc # restore old SFC movc %d6,%dfc # restore old DFC # restore previous interrupt mask level. mov.w %d7,%sr # restore old SR st %d4 # indicate update was done bra.l _isp_cas2_finish #### align 0x10 CAS2W2_START: movc %a2,%buscr # assert LOCK* movs.w (%a1),%d1 # fetch Dest2[15:0] movs.w (%a0),%d0 # fetch Dest1[15:0] bra.b CAS2W2_CONT2 CAS2W2_ENTER: bra.b ~+16 CAS2W2_CONT2: cmp.w %d0,%d2 # Dest1 - Compare1 bne.b CAS2W2_NOUPDATE cmp.w %d1,%d3 # Dest2 - Compare2 bne.b CAS2W2_NOUPDATE movs.w %d5,(%a1) # Update2[15:0] -> DEST2 bra.b CAS2W2_UPDATE bra.b ~+16 CAS2W2_UPDATE: ror.l &0x8,%d4 # get Update1[15:8] movs.b %d4,(%a0)+ # Update1[15:8] -> DEST1 movc %a3,%buscr # assert LOCKE* rol.l &0x8,%d4 # get Update1[7:0] bra.b CAS2W2_UPDATE2 bra.b ~+16 CAS2W2_UPDATE2: movs.b %d4,(%a0) # Update1[7:0] -> DEST1+0x1 movc %a4,%buscr # unlock the bus bra.w cas2w_update_done nop bra.b ~+16 CAS2W2_NOUPDATE: ror.l &0x8,%d0 # get Dest1[15:8] movs.b %d0,(%a0)+ # Dest1[15:8] -> DEST1 movc %a3,%buscr # assert LOCKE* rol.l &0x8,%d0 # get Dest1[7:0] bra.b CAS2W2_NOUPDATE2 bra.b ~+16 CAS2W2_NOUPDATE2: movs.b %d0,(%a0) # Dest1[7:0] -> DEST1+0x1 movc %a4,%buscr # unlock the bus bra.w cas2w_noupdate_done nop bra.b ~+16 CAS2W2_FILLER: nop nop nop nop nop nop nop bra.b CAS2W2_START # ###### ## ###### # # # # # # # ###### ###### # # # # # # ###### # # ###### ######################################################################### # XDEF **************************************************************** # # _isp_cas(): "core" emulation code for the cas instruction # # # # XREF **************************************************************** # # _isp_cas_finish() - only exit point for this emulation code; # # do clean-up # # # # INPUT *************************************************************** # # *see entry chart below* # # # # OUTPUT ************************************************************** # # *see exit chart below* # # # # ALGORITHM *********************************************************** # # (1) Make several copies of the effective address. # # (2) Save current SR; Then mask off all maskable interrupts. # # (3) Save current DFC/SFC (ASSUMED TO BE EQUAL!!!); Then set # # SFC/DFC according to whether exception occurred in user or # # supervisor mode. # # (4) Use "plpaw" instruction to pre-load ATC with efective # # address page(s). THIS SHOULD NOT FAULT!!! The relevant # # page(s) should have been made resident prior to entering # # this routine. # # (5) Push the operand lines from the cache w/ "cpushl". # # In the 68040, this was done within the locked region. In # # the 68060, it is done outside of the locked region. # # (6) Pre-fetch the core emulation instructions by executing one # # branch within each physical line (16 bytes) of the code # # before actually executing the code. # # (7) Load the BUSCR with the bus lock value. # # (8) Fetch the source operand. # # (9) Do the compare. If equal, go to step (12). # # (10)Unequal. No update occurs. But, we do write the DST op back # # to itself (as w/ the '040) so we can gracefully unlock # # the bus (and assert LOCKE*) using BUSCR and the final move. # # (11)Exit. # # (12)Write update operand to the DST location. Use BUSCR to # # assert LOCKE* for the final write operation. # # (13)Exit. # # # # The algorithm is actually implemented slightly differently # # depending on the size of the operation and the misalignment of the # # operand. A misaligned operand must be written in aligned chunks or # # else the BUSCR register control gets confused. # # # ######################################################################### ######################################################### # THIS IS THE STATE OF THE INTEGER REGISTER FILE UPON # # ENTERING _isp_cas(). # # # # D0 = xxxxxxxx # # D1 = xxxxxxxx # # D2 = update operand # # D3 = xxxxxxxx # # D4 = compare operand # # D5 = xxxxxxxx # # D6 = supervisor ('xxxxxxff) or user mode ('xxxxxx00) # # D7 = longword ('xxxxxxff) or word size ('xxxxxx00) # # A0 = ADDR # # A1 = xxxxxxxx # # A2 = xxxxxxxx # # A3 = xxxxxxxx # # A4 = xxxxxxxx # # A5 = xxxxxxxx # # A6 = frame pointer # # A7 = stack pointer # ######################################################### global _isp_cas _isp_cas: tst.b %d6 # user or supervisor mode? bne.b cas_super # supervisor cas_user: movq.l &0x1,%d0 # load user data fc bra.b cas_cont cas_super: movq.l &0x5,%d0 # load supervisor data fc cas_cont: tst.b %d7 # word or longword? bne.w casl # longword #### casw: mov.l %a0,%a1 # make copy for plpaw1 mov.l %a0,%a2 # make copy for plpaw2 addq.l &0x1,%a2 # plpaw2 points to end of word mov.l %d2,%d3 # d3 = update[7:0] lsr.w &0x8,%d2 # d2 = update[15:8] # mask interrupt levels 0-6. save old mask value. mov.w %sr,%d7 # save current SR ori.w &0x0700,%sr # inhibit interrupts # load the SFC and DFC with the appropriate mode. movc %sfc,%d6 # save old SFC/DFC movc %d0,%sfc # load new sfc movc %d0,%dfc # load new dfc # pre-load the operand ATC. no page faults should occur here because # _real_lock_page() should have taken care of this. plpaw (%a1) # load atc for ADDR plpaw (%a2) # load atc for ADDR+1 # push the operand lines from the cache if they exist. cpushl %dc,(%a1) # push dirty data cpushl %dc,(%a2) # push dirty data # load the BUSCR values. mov.l &0x80000000,%a1 # assert LOCK* buscr value mov.l &0xa0000000,%a2 # assert LOCKE* buscr value mov.l &0x00000000,%a3 # buscr unlock value # pre-load the instruction cache for the following algorithm. # this will minimize the number of cycles that LOCK* will be asserted. bra.b CASW_ENTER # start pre-loading icache # # D0 = dst operand <- # D1 = update[15:8] operand # D2 = update[7:0] operand # D3 = xxxxxxxx # D4 = compare[15:0] operand # D5 = xxxxxxxx # D6 = old SFC/DFC # D7 = old SR # A0 = ADDR # A1 = bus LOCK* value # A2 = bus LOCKE* value # A3 = bus unlock value # A4 = xxxxxxxx # A5 = xxxxxxxx # align 0x10 CASW_START: movc %a1,%buscr # assert LOCK* movs.w (%a0),%d0 # fetch Dest[15:0] cmp.w %d0,%d4 # Dest - Compare bne.b CASW_NOUPDATE bra.b CASW_UPDATE CASW_ENTER: bra.b ~+16 CASW_UPDATE: movs.b %d2,(%a0)+ # Update[15:8] -> DEST movc %a2,%buscr # assert LOCKE* movs.b %d3,(%a0) # Update[7:0] -> DEST+0x1 bra.b CASW_UPDATE2 bra.b ~+16 CASW_UPDATE2: movc %a3,%buscr # unlock the bus bra.b casw_update_done nop nop nop nop bra.b ~+16 CASW_NOUPDATE: ror.l &0x8,%d0 # get Dest[15:8] movs.b %d0,(%a0)+ # Dest[15:8] -> DEST movc %a2,%buscr # assert LOCKE* rol.l &0x8,%d0 # get Dest[7:0] bra.b CASW_NOUPDATE2 bra.b ~+16 CASW_NOUPDATE2: movs.b %d0,(%a0) # Dest[7:0] -> DEST+0x1 movc %a3,%buscr # unlock the bus bra.b casw_noupdate_done nop nop bra.b ~+16 CASW_FILLER: nop nop nop nop nop nop nop bra.b CASW_START ################################################################# # THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON # # CALLING _isp_cas_finish(). # # # # D0 = destination[15:0] operand # # D1 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required # # D2 = xxxxxxxx # # D3 = xxxxxxxx # # D4 = compare[15:0] operand # # D5 = xxxxxxxx # # D6 = xxxxxxxx # # D7 = xxxxxxxx # # A0 = xxxxxxxx # # A1 = xxxxxxxx # # A2 = xxxxxxxx # # A3 = xxxxxxxx # # A4 = xxxxxxxx # # A5 = xxxxxxxx # # A6 = frame pointer # # A7 = stack pointer # ################################################################# casw_noupdate_done: # restore previous SFC/DFC value. movc %d6,%sfc # restore old SFC movc %d6,%dfc # restore old DFC # restore previous interrupt mask level. mov.w %d7,%sr # restore old SR sf %d1 # indicate no update was done bra.l _isp_cas_finish casw_update_done: # restore previous SFC/DFC value. movc %d6,%sfc # restore old SFC movc %d6,%dfc # restore old DFC # restore previous interrupt mask level. mov.w %d7,%sr # restore old SR st %d1 # indicate update was done bra.l _isp_cas_finish ################ # there are two possible mis-aligned cases for longword cas. they # are separated because the final write which asserts LOCKE* must # be an aligned write. casl: mov.l %a0,%a1 # make copy for plpaw1 mov.l %a0,%a2 # make copy for plpaw2 addq.l &0x3,%a2 # plpaw2 points to end of longword mov.l %a0,%d1 # byte or word misaligned? btst &0x0,%d1 bne.w casl2 # byte misaligned mov.l %d2,%d3 # d3 = update[15:0] swap %d2 # d2 = update[31:16] # mask interrupts levels 0-6. save old mask value. mov.w %sr,%d7 # save current SR ori.w &0x0700,%sr # inhibit interrupts # load the SFC and DFC with the appropriate mode. movc %sfc,%d6 # save old SFC/DFC movc %d0,%sfc # load new sfc movc %d0,%dfc # load new dfc # pre-load the operand ATC. no page faults should occur here because # _real_lock_page() should have taken care of this. plpaw (%a1) # load atc for ADDR plpaw (%a2) # load atc for ADDR+3 # push the operand lines from the cache if they exist. cpushl %dc,(%a1) # push dirty data cpushl %dc,(%a2) # push dirty data # load the BUSCR values. mov.l &0x80000000,%a1 # assert LOCK* buscr value mov.l &0xa0000000,%a2 # assert LOCKE* buscr value mov.l &0x00000000,%a3 # buscr unlock value bra.b CASL_ENTER # start pre-loading icache # # D0 = dst operand <- # D1 = xxxxxxxx # D2 = update[31:16] operand # D3 = update[15:0] operand # D4 = compare[31:0] operand # D5 = xxxxxxxx # D6 = old SFC/DFC # D7 = old SR # A0 = ADDR # A1 = bus LOCK* value # A2 = bus LOCKE* value # A3 = bus unlock value # A4 = xxxxxxxx # A5 = xxxxxxxx # align 0x10 CASL_START: movc %a1,%buscr # assert LOCK* movs.l (%a0),%d0 # fetch Dest[31:0] cmp.l %d0,%d4 # Dest - Compare bne.b CASL_NOUPDATE bra.b CASL_UPDATE CASL_ENTER: bra.b ~+16 CASL_UPDATE: movs.w %d2,(%a0)+ # Update[31:16] -> DEST movc %a2,%buscr # assert LOCKE* movs.w %d3,(%a0) # Update[15:0] -> DEST+0x2 bra.b CASL_UPDATE2 bra.b ~+16 CASL_UPDATE2: movc %a3,%buscr # unlock the bus bra.b casl_update_done nop nop nop nop bra.b ~+16 CASL_NOUPDATE: swap %d0 # get Dest[31:16] movs.w %d0,(%a0)+ # Dest[31:16] -> DEST swap %d0 # get Dest[15:0] movc %a2,%buscr # assert LOCKE* bra.b CASL_NOUPDATE2 bra.b ~+16 CASL_NOUPDATE2: movs.w %d0,(%a0) # Dest[15:0] -> DEST+0x2 movc %a3,%buscr # unlock the bus bra.b casl_noupdate_done nop nop bra.b ~+16 CASL_FILLER: nop nop nop nop nop nop nop bra.b CASL_START ################################################################# # THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON # # CALLING _isp_cas_finish(). # # # # D0 = destination[31:0] operand # # D1 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required # # D2 = xxxxxxxx # # D3 = xxxxxxxx # # D4 = compare[31:0] operand # # D5 = xxxxxxxx # # D6 = xxxxxxxx # # D7 = xxxxxxxx # # A0 = xxxxxxxx # # A1 = xxxxxxxx # # A2 = xxxxxxxx # # A3 = xxxxxxxx # # A4 = xxxxxxxx # # A5 = xxxxxxxx # # A6 = frame pointer # # A7 = stack pointer # ################################################################# casl_noupdate_done: # restore previous SFC/DFC value. movc %d6,%sfc # restore old SFC movc %d6,%dfc # restore old DFC # restore previous interrupt mask level. mov.w %d7,%sr # restore old SR sf %d1 # indicate no update was done bra.l _isp_cas_finish casl_update_done: # restore previous SFC/DFC value. movc %d6,%sfc # restore old SFC movc %d6,%dfc # restore old DFC # restore previous interrupts mask level. mov.w %d7,%sr # restore old SR st %d1 # indicate update was done bra.l _isp_cas_finish ####################################### casl2: mov.l %d2,%d5 # d5 = Update[7:0] lsr.l &0x8,%d2 mov.l %d2,%d3 # d3 = Update[23:8] swap %d2 # d2 = Update[31:24] # mask interrupts levels 0-6. save old mask value. mov.w %sr,%d7 # save current SR ori.w &0x0700,%sr # inhibit interrupts # load the SFC and DFC with the appropriate mode. movc %sfc,%d6 # save old SFC/DFC movc %d0,%sfc # load new sfc movc %d0,%dfc # load new dfc # pre-load the operand ATC. no page faults should occur here because # _real_lock_page() should have taken care of this already. plpaw (%a1) # load atc for ADDR plpaw (%a2) # load atc for ADDR+3 # puch the operand lines from the cache if they exist. cpushl %dc,(%a1) # push dirty data cpushl %dc,(%a2) # push dirty data # load the BUSCR values. mov.l &0x80000000,%a1 # assert LOCK* buscr value mov.l &0xa0000000,%a2 # assert LOCKE* buscr value mov.l &0x00000000,%a3 # buscr unlock value # pre-load the instruction cache for the following algorithm. # this will minimize the number of cycles that LOCK* will be asserted. bra.b CASL2_ENTER # start pre-loading icache # # D0 = dst operand <- # D1 = xxxxxxxx # D2 = update[31:24] operand # D3 = update[23:8] operand # D4 = compare[31:0] operand # D5 = update[7:0] operand # D6 = old SFC/DFC # D7 = old SR # A0 = ADDR # A1 = bus LOCK* value # A2 = bus LOCKE* value # A3 = bus unlock value # A4 = xxxxxxxx # A5 = xxxxxxxx # align 0x10 CASL2_START: movc %a1,%buscr # assert LOCK* movs.l (%a0),%d0 # fetch Dest[31:0] cmp.l %d0,%d4 # Dest - Compare bne.b CASL2_NOUPDATE bra.b CASL2_UPDATE CASL2_ENTER: bra.b ~+16 CASL2_UPDATE: movs.b %d2,(%a0)+ # Update[31:24] -> DEST movs.w %d3,(%a0)+ # Update[23:8] -> DEST+0x1 movc %a2,%buscr # assert LOCKE* bra.b CASL2_UPDATE2 bra.b ~+16 CASL2_UPDATE2: movs.b %d5,(%a0) # Update[7:0] -> DEST+0x3 movc %a3,%buscr # unlock the bus bra.w casl_update_done nop bra.b ~+16 CASL2_NOUPDATE: rol.l &0x8,%d0 # get Dest[31:24] movs.b %d0,(%a0)+ # Dest[31:24] -> DEST swap %d0 # get Dest[23:8] movs.w %d0,(%a0)+ # Dest[23:8] -> DEST+0x1 bra.b CASL2_NOUPDATE2 bra.b ~+16 CASL2_NOUPDATE2: rol.l &0x8,%d0 # get Dest[7:0] movc %a2,%buscr # assert LOCKE* movs.b %d0,(%a0) # Dest[7:0] -> DEST+0x3 bra.b CASL2_NOUPDATE3 nop bra.b ~+16 CASL2_NOUPDATE3: movc %a3,%buscr # unlock the bus bra.w casl_noupdate_done nop nop nop bra.b ~+16 CASL2_FILLER: nop nop nop nop nop nop nop bra.b CASL2_START #### #### # end label used by _isp_cas_inrange() global _CASHI _CASHI: