/* process.c: FRV specific parts of process handling * * Copyright (C) 2003-5 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * - Derived from arch/m68k/kernel/process.c * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "local.h" asmlinkage void ret_from_fork(void); asmlinkage void ret_from_kernel_thread(void); #include void (*pm_power_off)(void); EXPORT_SYMBOL(pm_power_off); static void core_sleep_idle(void) { #ifdef LED_DEBUG_SLEEP /* Show that we're sleeping... */ __set_LEDS(0x55aa); #endif frv_cpu_core_sleep(); #ifdef LED_DEBUG_SLEEP /* ... and that we woke up */ __set_LEDS(0); #endif mb(); } void arch_cpu_idle(void) { if (!frv_dma_inprogress) core_sleep_idle(); else local_irq_enable(); } void machine_restart(char * __unused) { unsigned long reset_addr; #ifdef CONFIG_GDBSTUB gdbstub_exit(0); #endif if (PSR_IMPLE(__get_PSR()) == PSR_IMPLE_FR551) reset_addr = 0xfefff500; else reset_addr = 0xfeff0500; /* Software reset. */ asm volatile(" dcef @(gr0,gr0),1 ! membar !" " sti %1,@(%0,0) !" " nop ! nop ! nop ! nop ! nop ! " " nop ! nop ! nop ! nop ! nop ! " " nop ! nop ! nop ! nop ! nop ! " " nop ! nop ! nop ! nop ! nop ! " : : "r" (reset_addr), "r" (1) ); for (;;) ; } void machine_halt(void) { #ifdef CONFIG_GDBSTUB gdbstub_exit(0); #endif for (;;); } void machine_power_off(void) { #ifdef CONFIG_GDBSTUB gdbstub_exit(0); #endif for (;;); } void flush_thread(void) { /* nothing */ } inline unsigned long user_stack(const struct pt_regs *regs) { while (regs->next_frame) regs = regs->next_frame; return user_mode(regs) ? regs->sp : 0; } /* * set up the kernel stack and exception frames for a new process */ int copy_thread(unsigned long clone_flags, unsigned long usp, unsigned long arg, struct task_struct *p) { struct pt_regs *childregs; childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE - FRV_FRAME0_SIZE); /* set up the userspace frame (the only place that the USP is stored) */ *childregs = *current_pt_regs(); p->thread.frame = childregs; p->thread.curr = p; p->thread.sp = (unsigned long) childregs; p->thread.fp = 0; p->thread.lr = 0; p->thread.frame0 = childregs; if (unlikely(p->flags & PF_KTHREAD)) { childregs->gr9 = usp; /* function */ childregs->gr8 = arg; p->thread.pc = (unsigned long) ret_from_kernel_thread; save_user_regs(p->thread.user); return 0; } if (usp) childregs->sp = usp; childregs->next_frame = NULL; p->thread.pc = (unsigned long) ret_from_fork; /* the new TLS pointer is passed in as arg #5 to sys_clone() */ if (clone_flags & CLONE_SETTLS) childregs->gr29 = childregs->gr12; save_user_regs(p->thread.user); return 0; } /* end copy_thread() */ unsigned long get_wchan(struct task_struct *p) { struct pt_regs *regs0; unsigned long fp, pc; unsigned long stack_limit; int count = 0; if (!p || p == current || p->state == TASK_RUNNING) return 0; stack_limit = (unsigned long) (p + 1); fp = p->thread.fp; regs0 = p->thread.frame0; do { if (fp < stack_limit || fp >= (unsigned long) regs0 || fp & 3) return 0; pc = ((unsigned long *) fp)[2]; /* FIXME: This depends on the order of these functions. */ if (!in_sched_functions(pc)) return pc; fp = *(unsigned long *) fp; } while (count++ < 16); return 0; } unsigned long thread_saved_pc(struct task_struct *tsk) { /* Check whether the thread is blocked in resume() */ if (in_sched_functions(tsk->thread.pc)) return ((unsigned long *)tsk->thread.fp)[2]; else return tsk->thread.pc; } int elf_check_arch(const struct elf32_hdr *hdr) { unsigned long hsr0 = __get_HSR(0); unsigned long psr = __get_PSR(); if (hdr->e_machine != EM_FRV) return 0; switch (hdr->e_flags & EF_FRV_GPR_MASK) { case EF_FRV_GPR64: if ((hsr0 & HSR0_GRN) == HSR0_GRN_32) return 0; case EF_FRV_GPR32: case 0: break; default: return 0; } switch (hdr->e_flags & EF_FRV_FPR_MASK) { case EF_FRV_FPR64: if ((hsr0 & HSR0_FRN) == HSR0_FRN_32) return 0; case EF_FRV_FPR32: case EF_FRV_FPR_NONE: case 0: break; default: return 0; } if ((hdr->e_flags & EF_FRV_MULADD) == EF_FRV_MULADD) if (PSR_IMPLE(psr) != PSR_IMPLE_FR405 && PSR_IMPLE(psr) != PSR_IMPLE_FR451) return 0; switch (hdr->e_flags & EF_FRV_CPU_MASK) { case EF_FRV_CPU_GENERIC: break; case EF_FRV_CPU_FR300: case EF_FRV_CPU_SIMPLE: case EF_FRV_CPU_TOMCAT: default: return 0; case EF_FRV_CPU_FR400: if (PSR_IMPLE(psr) != PSR_IMPLE_FR401 && PSR_IMPLE(psr) != PSR_IMPLE_FR405 && PSR_IMPLE(psr) != PSR_IMPLE_FR451 && PSR_IMPLE(psr) != PSR_IMPLE_FR551) return 0; break; case EF_FRV_CPU_FR450: if (PSR_IMPLE(psr) != PSR_IMPLE_FR451) return 0; break; case EF_FRV_CPU_FR500: if (PSR_IMPLE(psr) != PSR_IMPLE_FR501) return 0; break; case EF_FRV_CPU_FR550: if (PSR_IMPLE(psr) != PSR_IMPLE_FR551) return 0; break; } return 1; } int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs) { memcpy(fpregs, ¤t->thread.user->f, sizeof(current->thread.user->f)); return 1; }