/* NetWinder Floating Point Emulator (c) Rebel.COM, 1998,1999 Direct questions, comments to Scott Bambrough This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "fpa11.h" #include "fpopcode.h" #include "fpmodule.h" #include "fpmodule.inl" #include #include /* forward declarations */ unsigned int EmulateCPDO(const unsigned int); unsigned int EmulateCPDT(const unsigned int); unsigned int EmulateCPRT(const unsigned int); /* Reset the FPA11 chip. Called to initialize and reset the emulator. */ void resetFPA11(void) { int i; FPA11 *fpa11 = GET_FPA11(); /* initialize the register type array */ for (i=0;i<=7;i++) { fpa11->fType[i] = typeNone; } /* FPSR: set system id to FP_EMULATOR, set AC, clear all other bits */ fpa11->fpsr = FP_EMULATOR | BIT_AC; /* FPCR: set SB, AB and DA bits, clear all others */ #if MAINTAIN_FPCR fpa11->fpcr = MASK_RESET; #endif } void SetRoundingMode(const unsigned int opcode) { #if MAINTAIN_FPCR FPA11 *fpa11 = GET_FPA11(); fpa11->fpcr &= ~MASK_ROUNDING_MODE; #endif switch (opcode & MASK_ROUNDING_MODE) { default: case ROUND_TO_NEAREST: float_rounding_mode = float_round_nearest_even; #if MAINTAIN_FPCR fpa11->fpcr |= ROUND_TO_NEAREST; #endif break; case ROUND_TO_PLUS_INFINITY: float_rounding_mode = float_round_up; #if MAINTAIN_FPCR fpa11->fpcr |= ROUND_TO_PLUS_INFINITY; #endif break; case ROUND_TO_MINUS_INFINITY: float_rounding_mode = float_round_down; #if MAINTAIN_FPCR fpa11->fpcr |= ROUND_TO_MINUS_INFINITY; #endif break; case ROUND_TO_ZERO: float_rounding_mode = float_round_to_zero; #if MAINTAIN_FPCR fpa11->fpcr |= ROUND_TO_ZERO; #endif break; } } void SetRoundingPrecision(const unsigned int opcode) { #if MAINTAIN_FPCR FPA11 *fpa11 = GET_FPA11(); fpa11->fpcr &= ~MASK_ROUNDING_PRECISION; #endif switch (opcode & MASK_ROUNDING_PRECISION) { case ROUND_SINGLE: floatx80_rounding_precision = 32; #if MAINTAIN_FPCR fpa11->fpcr |= ROUND_SINGLE; #endif break; case ROUND_DOUBLE: floatx80_rounding_precision = 64; #if MAINTAIN_FPCR fpa11->fpcr |= ROUND_DOUBLE; #endif break; case ROUND_EXTENDED: floatx80_rounding_precision = 80; #if MAINTAIN_FPCR fpa11->fpcr |= ROUND_EXTENDED; #endif break; default: floatx80_rounding_precision = 80; } } void FPA11_CheckInit(void) { FPA11 *fpa11 = GET_FPA11(); if (unlikely(fpa11->initflag == 0)) { resetFPA11(); SetRoundingMode(ROUND_TO_NEAREST); SetRoundingPrecision(ROUND_EXTENDED); fpa11->initflag = 1; } } /* Emulate the instruction in the opcode. */ unsigned int EmulateAll(unsigned int opcode) { unsigned int nRc = 1, code; code = opcode & 0x00000f00; if (code == 0x00000100 || code == 0x00000200) { /* For coprocessor 1 or 2 (FPA11) */ code = opcode & 0x0e000000; if (code == 0x0e000000) { if (opcode & 0x00000010) { /* Emulate conversion opcodes. */ /* Emulate register transfer opcodes. */ /* Emulate comparison opcodes. */ nRc = EmulateCPRT(opcode); } else { /* Emulate monadic arithmetic opcodes. */ /* Emulate dyadic arithmetic opcodes. */ nRc = EmulateCPDO(opcode); } } else if (code == 0x0c000000) { /* Emulate load/store opcodes. */ /* Emulate load/store multiple opcodes. */ nRc = EmulateCPDT(opcode); } else { /* Invalid instruction detected. Return FALSE. */ nRc = 0; } } return(nRc); } #if 0 unsigned int EmulateAll1(unsigned int opcode) { switch ((opcode >> 24) & 0xf) { case 0xc: case 0xd: if ((opcode >> 20) & 0x1) { switch ((opcode >> 8) & 0xf) { case 0x1: return PerformLDF(opcode); break; case 0x2: return PerformLFM(opcode); break; default: return 0; } } else { switch ((opcode >> 8) & 0xf) { case 0x1: return PerformSTF(opcode); break; case 0x2: return PerformSFM(opcode); break; default: return 0; } } break; case 0xe: if (opcode & 0x10) return EmulateCPDO(opcode); else return EmulateCPRT(opcode); break; default: return 0; } } #endif