/* * linux/arch/arm/vfp/vfp.h * * Copyright (C) 2004 ARM Limited. * Written by Deep Blue Solutions Limited. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) { if (shift) { if (shift < 32) val = val >> shift | ((val << (32 - shift)) != 0); else val = val != 0; } return val; } static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) { if (shift) { if (shift < 64) val = val >> shift | ((val << (64 - shift)) != 0); else val = val != 0; } return val; } static inline u32 vfp_hi64to32jamming(u64 val) { u32 v; asm( "cmp %Q1, #1 @ vfp_hi64to32jamming\n\t" "movcc %0, %R1\n\t" "orrcs %0, %R1, #1" : "=r" (v) : "r" (val) : "cc"); return v; } static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) { asm( "adds %Q0, %Q2, %Q4\n\t" "adcs %R0, %R2, %R4\n\t" "adcs %Q1, %Q3, %Q5\n\t" "adc %R1, %R3, %R5" : "=r" (nl), "=r" (nh) : "0" (nl), "1" (nh), "r" (ml), "r" (mh) : "cc"); *resh = nh; *resl = nl; } static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) { asm( "subs %Q0, %Q2, %Q4\n\t" "sbcs %R0, %R2, %R4\n\t" "sbcs %Q1, %Q3, %Q5\n\t" "sbc %R1, %R3, %R5\n\t" : "=r" (nl), "=r" (nh) : "0" (nl), "1" (nh), "r" (ml), "r" (mh) : "cc"); *resh = nh; *resl = nl; } static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m) { u32 nh, nl, mh, ml; u64 rh, rma, rmb, rl; nl = n; ml = m; rl = (u64)nl * ml; nh = n >> 32; rma = (u64)nh * ml; mh = m >> 32; rmb = (u64)nl * mh; rma += rmb; rh = (u64)nh * mh; rh += ((u64)(rma < rmb) << 32) + (rma >> 32); rma <<= 32; rl += rma; rh += (rl < rma); *resl = rl; *resh = rh; } static inline void shift64left(u64 *resh, u64 *resl, u64 n) { *resh = n >> 63; *resl = n << 1; } static inline u64 vfp_hi64multiply64(u64 n, u64 m) { u64 rh, rl; mul64to128(&rh, &rl, n, m); return rh | (rl != 0); } static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) { u64 mh, ml, remh, reml, termh, terml, z; if (nh >= m) return ~0ULL; mh = m >> 32; if (mh << 32 <= nh) { z = 0xffffffff00000000ULL; } else { z = nh; do_div(z, mh); z <<= 32; } mul64to128(&termh, &terml, m, z); sub128(&remh, &reml, nh, nl, termh, terml); ml = m << 32; while ((s64)remh < 0) { z -= 0x100000000ULL; add128(&remh, &reml, remh, reml, mh, ml); } remh = (remh << 32) | (reml >> 32); if (mh << 32 <= remh) { z |= 0xffffffff; } else { do_div(remh, mh); z |= remh; } return z; } /* * Operations on unpacked elements */ #define vfp_sign_negate(sign) (sign ^ 0x8000) /* * Single-precision */ struct vfp_single { s16 exponent; u16 sign; u32 significand; }; extern s32 vfp_get_float(unsigned int reg); extern void vfp_put_float(s32 val, unsigned int reg); /* * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand * which are not propagated to the float upon packing. */ #define VFP_SINGLE_MANTISSA_BITS (23) #define VFP_SINGLE_EXPONENT_BITS (8) #define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2) #define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1) /* * The bit in an unpacked float which indicates that it is a quiet NaN */ #define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS)) /* * Operations on packed single-precision numbers */ #define vfp_single_packed_sign(v) ((v) & 0x80000000) #define vfp_single_packed_negate(v) ((v) ^ 0x80000000) #define vfp_single_packed_abs(v) ((v) & ~0x80000000) #define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1)) #define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1)) /* * Unpack a single-precision float. Note that this returns the magnitude * of the single-precision float mantissa with the 1. if necessary, * aligned to bit 30. */ static inline void vfp_single_unpack(struct vfp_single *s, s32 val) { u32 significand; s->sign = vfp_single_packed_sign(val) >> 16, s->exponent = vfp_single_packed_exponent(val); significand = (u32) val; significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2; if (s->exponent && s->exponent != 255) significand |= 0x40000000; s->significand = significand; } /* * Re-pack a single-precision float. This assumes that the float is * already normalised such that the MSB is bit 30, _not_ bit 31. */ static inline s32 vfp_single_pack(struct vfp_single *s) { u32 val; val = (s->sign << 16) + (s->exponent << VFP_SINGLE_MANTISSA_BITS) + (s->significand >> VFP_SINGLE_LOW_BITS); return (s32)val; } #define VFP_NUMBER (1<<0) #define VFP_ZERO (1<<1) #define VFP_DENORMAL (1<<2) #define VFP_INFINITY (1<<3) #define VFP_NAN (1<<4) #define VFP_NAN_SIGNAL (1<<5) #define VFP_QNAN (VFP_NAN) #define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL) static inline int vfp_single_type(struct vfp_single *s) { int type = VFP_NUMBER; if (s->exponent == 255) { if (s->significand == 0) type = VFP_INFINITY; else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN) type = VFP_QNAN; else type = VFP_SNAN; } else if (s->exponent == 0) { if (s->significand == 0) type |= VFP_ZERO; else type |= VFP_DENORMAL; } return type; } #ifndef DEBUG #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except) u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions); #else u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func); #endif /* * Double-precision */ struct vfp_double { s16 exponent; u16 sign; u64 significand; }; /* * VFP_REG_ZERO is a special register number for vfp_get_double * which returns (double)0.0. This is useful for the compare with * zero instructions. */ #ifdef CONFIG_VFPv3 #define VFP_REG_ZERO 32 #else #define VFP_REG_ZERO 16 #endif extern u64 vfp_get_double(unsigned int reg); extern void vfp_put_double(u64 val, unsigned int reg); #define VFP_DOUBLE_MANTISSA_BITS (52) #define VFP_DOUBLE_EXPONENT_BITS (11) #define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2) #define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1) /* * The bit in an unpacked double which indicates that it is a quiet NaN */ #define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS)) /* * Operations on packed single-precision numbers */ #define vfp_double_packed_sign(v) ((v) & (1ULL << 63)) #define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63)) #define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63)) #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) /* * Unpack a double-precision float. Note that this returns the magnitude * of the double-precision float mantissa with the 1. if necessary, * aligned to bit 62. */ static inline void vfp_double_unpack(struct vfp_double *s, s64 val) { u64 significand; s->sign = vfp_double_packed_sign(val) >> 48; s->exponent = vfp_double_packed_exponent(val); significand = (u64) val; significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2; if (s->exponent && s->exponent != 2047) significand |= (1ULL << 62); s->significand = significand; } /* * Re-pack a double-precision float. This assumes that the float is * already normalised such that the MSB is bit 30, _not_ bit 31. */ static inline s64 vfp_double_pack(struct vfp_double *s) { u64 val; val = ((u64)s->sign << 48) + ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + (s->significand >> VFP_DOUBLE_LOW_BITS); return (s64)val; } static inline int vfp_double_type(struct vfp_double *s) { int type = VFP_NUMBER; if (s->exponent == 2047) { if (s->significand == 0) type = VFP_INFINITY; else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN) type = VFP_QNAN; else type = VFP_SNAN; } else if (s->exponent == 0) { if (s->significand == 0) type |= VFP_ZERO; else type |= VFP_DENORMAL; } return type; } u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func); u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand); /* * A special flag to tell the normalisation code not to normalise. */ #define VFP_NAN_FLAG 0x100 /* * A bit pattern used to indicate the initial (unset) value of the * exception mask, in case nothing handles an instruction. This * doesn't include the NAN flag, which get masked out before * we check for an error. */ #define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG) /* * A flag to tell vfp instruction type. * OP_SCALAR - this operation always operates in scalar mode * OP_SD - the instruction exceptionally writes to a single precision result. * OP_DD - the instruction exceptionally writes to a double precision result. * OP_SM - the instruction exceptionally reads from a single precision operand. */ #define OP_SCALAR (1 << 0) #define OP_SD (1 << 1) #define OP_DD (1 << 1) #define OP_SM (1 << 2) struct op { u32 (* const fn)(int dd, int dn, int dm, u32 fpscr); u32 flags; }; extern void vfp_save_state(void *location, u32 fpexc);