/* * omap-pm.h - OMAP power management interface * * Copyright (C) 2008-2010 Texas Instruments, Inc. * Copyright (C) 2008-2010 Nokia Corporation * Paul Walmsley * * Interface developed by (in alphabetical order): Karthik Dasu, Jouni * Högander, Tony Lindgren, Rajendra Nayak, Sakari Poussa, * Veeramanikandan Raju, Anand Sawant, Igor Stoppa, Paul Walmsley, * Richard Woodruff */ #ifndef ASM_ARM_ARCH_OMAP_OMAP_PM_H #define ASM_ARM_ARCH_OMAP_OMAP_PM_H #include #include #include #include /* * agent_id values for use with omap_pm_set_min_bus_tput(): * * OCP_INITIATOR_AGENT is only valid for devices that can act as * initiators -- it represents the device's L3 interconnect * connection. OCP_TARGET_AGENT represents the device's L4 * interconnect connection. */ #define OCP_TARGET_AGENT 1 #define OCP_INITIATOR_AGENT 2 /** * omap_pm_if_early_init - OMAP PM init code called before clock fw init * @mpu_opp_table: array ptr to struct omap_opp for MPU * @dsp_opp_table: array ptr to struct omap_opp for DSP * @l3_opp_table : array ptr to struct omap_opp for CORE * * Initialize anything that must be configured before the clock * framework starts. The "_if_" is to avoid name collisions with the * PM idle-loop code. */ int __init omap_pm_if_early_init(void); /** * omap_pm_if_init - OMAP PM init code called after clock fw init * * The main initialization code. OPP tables are passed in here. The * "_if_" is to avoid name collisions with the PM idle-loop code. */ int __init omap_pm_if_init(void); /* * Device-driver-originated constraints (via board-*.c files, platform_data) */ /** * omap_pm_set_max_mpu_wakeup_lat - set the maximum MPU wakeup latency * @dev: struct device * requesting the constraint * @t: maximum MPU wakeup latency in microseconds * * Request that the maximum interrupt latency for the MPU to be no * greater than @t microseconds. "Interrupt latency" in this case is * defined as the elapsed time from the occurrence of a hardware or * timer interrupt to the time when the device driver's interrupt * service routine has been entered by the MPU. * * It is intended that underlying PM code will use this information to * determine what power state to put the MPU powerdomain into, and * possibly the CORE powerdomain as well, since interrupt handling * code currently runs from SDRAM. Advanced PM or board*.c code may * also configure interrupt controller priorities, OCP bus priorities, * CPU speed(s), etc. * * This function will not affect device wakeup latency, e.g., time * elapsed from when a device driver enables a hardware device with * clk_enable(), to when the device is ready for register access or * other use. To control this device wakeup latency, use * omap_pm_set_max_dev_wakeup_lat() * * Multiple calls to omap_pm_set_max_mpu_wakeup_lat() will replace the * previous t value. To remove the latency target for the MPU, call * with t = -1. * * XXX This constraint will be deprecated soon in favor of the more * general omap_pm_set_max_dev_wakeup_lat() * * Returns -EINVAL for an invalid argument, -ERANGE if the constraint * is not satisfiable, or 0 upon success. */ int omap_pm_set_max_mpu_wakeup_lat(struct device *dev, long t); /** * omap_pm_set_min_bus_tput - set minimum bus throughput needed by device * @dev: struct device * requesting the constraint * @tbus_id: interconnect to operate on (OCP_{INITIATOR,TARGET}_AGENT) * @r: minimum throughput (in KiB/s) * * Request that the minimum data throughput on the OCP interconnect * attached to device @dev interconnect agent @tbus_id be no less * than @r KiB/s. * * It is expected that the OMAP PM or bus code will use this * information to set the interconnect clock to run at the lowest * possible speed that satisfies all current system users. The PM or * bus code will adjust the estimate based on its model of the bus, so * device driver authors should attempt to specify an accurate * quantity for their device use case, and let the PM or bus code * overestimate the numbers as necessary to handle request/response * latency, other competing users on the system, etc. On OMAP2/3, if * a driver requests a minimum L4 interconnect speed constraint, the * code will also need to add an minimum L3 interconnect speed * constraint, * * Multiple calls to omap_pm_set_min_bus_tput() will replace the * previous rate value for this device. To remove the interconnect * throughput restriction for this device, call with r = 0. * * Returns -EINVAL for an invalid argument, -ERANGE if the constraint * is not satisfiable, or 0 upon success. */ int omap_pm_set_min_bus_tput(struct device *dev, u8 agent_id, unsigned long r); /* * CPUFreq-originated constraint * * In the future, this should be handled by custom OPP clocktype * functions. */ /* * Device context loss tracking */ /** * omap_pm_get_dev_context_loss_count - return count of times dev has lost ctx * @dev: struct device * * * This function returns the number of times that the device @dev has * lost its internal context. This generally occurs on a powerdomain * transition to OFF. Drivers use this as an optimization to avoid restoring * context if the device hasn't lost it. To use, drivers should initially * call this in their context save functions and store the result. Early in * the driver's context restore function, the driver should call this function * again, and compare the result to the stored counter. If they differ, the * driver must restore device context. If the number of context losses * exceeds the maximum positive integer, the function will wrap to 0 and * continue counting. Returns the number of context losses for this device, * or negative value upon error. */ int omap_pm_get_dev_context_loss_count(struct device *dev); void omap_pm_enable_off_mode(void); void omap_pm_disable_off_mode(void); #endif