/* * linux/arch/arm/mach-omap2/board-h4.c * * Copyright (C) 2005 Nokia Corporation * Author: Paul Mundt <paul.mundt@nokia.com> * * Modified from mach-omap/omap1/board-generic.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/platform_device.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/delay.h> #include <linux/workqueue.h> #include <linux/i2c.h> #include <linux/input.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/io.h> #include <mach/hardware.h> #include <asm/mach-types.h> #include <asm/mach/arch.h> #include <asm/mach/map.h> #include <asm/mach/flash.h> #include <mach/control.h> #include <mach/gpio.h> #include <mach/gpioexpander.h> #include <mach/mux.h> #include <mach/usb.h> #include <mach/irda.h> #include <mach/board.h> #include <mach/common.h> #include <mach/keypad.h> #include <mach/menelaus.h> #include <mach/dma.h> #include <mach/gpmc.h> #define H4_FLASH_CS 0 #define H4_SMC91X_CS 1 static unsigned int row_gpios[6] = { 88, 89, 124, 11, 6, 96 }; static unsigned int col_gpios[7] = { 90, 91, 100, 36, 12, 97, 98 }; static int h4_keymap[] = { KEY(0, 0, KEY_LEFT), KEY(0, 1, KEY_RIGHT), KEY(0, 2, KEY_A), KEY(0, 3, KEY_B), KEY(0, 4, KEY_C), KEY(1, 0, KEY_DOWN), KEY(1, 1, KEY_UP), KEY(1, 2, KEY_E), KEY(1, 3, KEY_F), KEY(1, 4, KEY_G), KEY(2, 0, KEY_ENTER), KEY(2, 1, KEY_I), KEY(2, 2, KEY_J), KEY(2, 3, KEY_K), KEY(2, 4, KEY_3), KEY(3, 0, KEY_M), KEY(3, 1, KEY_N), KEY(3, 2, KEY_O), KEY(3, 3, KEY_P), KEY(3, 4, KEY_Q), KEY(4, 0, KEY_R), KEY(4, 1, KEY_4), KEY(4, 2, KEY_T), KEY(4, 3, KEY_U), KEY(4, 4, KEY_ENTER), KEY(5, 0, KEY_V), KEY(5, 1, KEY_W), KEY(5, 2, KEY_L), KEY(5, 3, KEY_S), KEY(5, 4, KEY_ENTER), 0 }; static struct mtd_partition h4_partitions[] = { /* bootloader (U-Boot, etc) in first sector */ { .name = "bootloader", .offset = 0, .size = SZ_128K, .mask_flags = MTD_WRITEABLE, /* force read-only */ }, /* bootloader params in the next sector */ { .name = "params", .offset = MTDPART_OFS_APPEND, .size = SZ_128K, .mask_flags = 0, }, /* kernel */ { .name = "kernel", .offset = MTDPART_OFS_APPEND, .size = SZ_2M, .mask_flags = 0 }, /* file system */ { .name = "filesystem", .offset = MTDPART_OFS_APPEND, .size = MTDPART_SIZ_FULL, .mask_flags = 0 } }; static struct flash_platform_data h4_flash_data = { .map_name = "cfi_probe", .width = 2, .parts = h4_partitions, .nr_parts = ARRAY_SIZE(h4_partitions), }; static struct resource h4_flash_resource = { .flags = IORESOURCE_MEM, }; static struct platform_device h4_flash_device = { .name = "omapflash", .id = 0, .dev = { .platform_data = &h4_flash_data, }, .num_resources = 1, .resource = &h4_flash_resource, }; /* Select between the IrDA and aGPS module */ static int h4_select_irda(struct device *dev, int state) { unsigned char expa; int err = 0; if ((err = read_gpio_expa(&expa, 0x21))) { printk(KERN_ERR "Error reading from I/O expander\n"); return err; } /* 'P6' enable/disable IRDA_TX and IRDA_RX */ if (state & IR_SEL) { /* IrDa */ if ((err = write_gpio_expa(expa | 0x01, 0x21))) { printk(KERN_ERR "Error writing to I/O expander\n"); return err; } } else { if ((err = write_gpio_expa(expa & ~0x01, 0x21))) { printk(KERN_ERR "Error writing to I/O expander\n"); return err; } } return err; } static void set_trans_mode(struct work_struct *work) { struct omap_irda_config *irda_config = container_of(work, struct omap_irda_config, gpio_expa.work); int mode = irda_config->mode; unsigned char expa; int err = 0; if ((err = read_gpio_expa(&expa, 0x20)) != 0) { printk(KERN_ERR "Error reading from I/O expander\n"); } expa &= ~0x01; if (!(mode & IR_SIRMODE)) { /* MIR/FIR */ expa |= 0x01; } if ((err = write_gpio_expa(expa, 0x20)) != 0) { printk(KERN_ERR "Error writing to I/O expander\n"); } } static int h4_transceiver_mode(struct device *dev, int mode) { struct omap_irda_config *irda_config = dev->platform_data; irda_config->mode = mode; cancel_delayed_work(&irda_config->gpio_expa); PREPARE_DELAYED_WORK(&irda_config->gpio_expa, set_trans_mode); schedule_delayed_work(&irda_config->gpio_expa, 0); return 0; } static struct omap_irda_config h4_irda_data = { .transceiver_cap = IR_SIRMODE | IR_MIRMODE | IR_FIRMODE, .transceiver_mode = h4_transceiver_mode, .select_irda = h4_select_irda, .rx_channel = OMAP24XX_DMA_UART3_RX, .tx_channel = OMAP24XX_DMA_UART3_TX, .dest_start = OMAP_UART3_BASE, .src_start = OMAP_UART3_BASE, .tx_trigger = OMAP24XX_DMA_UART3_TX, .rx_trigger = OMAP24XX_DMA_UART3_RX, }; static struct resource h4_irda_resources[] = { [0] = { .start = INT_24XX_UART3_IRQ, .end = INT_24XX_UART3_IRQ, .flags = IORESOURCE_IRQ, }, }; static struct platform_device h4_irda_device = { .name = "omapirda", .id = -1, .dev = { .platform_data = &h4_irda_data, }, .num_resources = 1, .resource = h4_irda_resources, }; static struct omap_kp_platform_data h4_kp_data = { .rows = 6, .cols = 7, .keymap = h4_keymap, .keymapsize = ARRAY_SIZE(h4_keymap), .rep = 1, .row_gpios = row_gpios, .col_gpios = col_gpios, }; static struct platform_device h4_kp_device = { .name = "omap-keypad", .id = -1, .dev = { .platform_data = &h4_kp_data, }, }; static struct platform_device h4_lcd_device = { .name = "lcd_h4", .id = -1, }; static struct platform_device *h4_devices[] __initdata = { &h4_flash_device, &h4_irda_device, &h4_kp_device, &h4_lcd_device, }; /* 2420 Sysboot setup (2430 is different) */ static u32 get_sysboot_value(void) { return (omap_ctrl_readl(OMAP24XX_CONTROL_STATUS) & (OMAP2_SYSBOOT_5_MASK | OMAP2_SYSBOOT_4_MASK | OMAP2_SYSBOOT_3_MASK | OMAP2_SYSBOOT_2_MASK | OMAP2_SYSBOOT_1_MASK | OMAP2_SYSBOOT_0_MASK)); } /* H4-2420's always used muxed mode, H4-2422's always use non-muxed * * Note: OMAP-GIT doesn't correctly do is_cpu_omap2422 and is_cpu_omap2423 * correctly. The macro needs to look at production_id not just hawkeye. */ static u32 is_gpmc_muxed(void) { u32 mux; mux = get_sysboot_value(); if ((mux & 0xF) == 0xd) return 1; /* NAND config (could be either) */ if (mux & 0x2) /* if mux'ed */ return 1; else return 0; } static inline void __init h4_init_debug(void) { int eth_cs; unsigned long cs_mem_base; unsigned int muxed, rate; struct clk *gpmc_fck; eth_cs = H4_SMC91X_CS; gpmc_fck = clk_get(NULL, "gpmc_fck"); /* Always on ENABLE_ON_INIT */ if (IS_ERR(gpmc_fck)) { WARN_ON(1); return; } clk_enable(gpmc_fck); rate = clk_get_rate(gpmc_fck); clk_disable(gpmc_fck); clk_put(gpmc_fck); if (is_gpmc_muxed()) muxed = 0x200; else muxed = 0; /* Make sure CS1 timings are correct */ gpmc_cs_write_reg(eth_cs, GPMC_CS_CONFIG1, 0x00011000 | muxed); if (rate >= 160000000) { gpmc_cs_write_reg(eth_cs, GPMC_CS_CONFIG2, 0x001f1f01); gpmc_cs_write_reg(eth_cs, GPMC_CS_CONFIG3, 0x00080803); gpmc_cs_write_reg(eth_cs, GPMC_CS_CONFIG4, 0x1c0b1c0a); gpmc_cs_write_reg(eth_cs, GPMC_CS_CONFIG5, 0x041f1F1F); gpmc_cs_write_reg(eth_cs, GPMC_CS_CONFIG6, 0x000004C4); } else if (rate >= 130000000) { gpmc_cs_write_reg(eth_cs, GPMC_CS_CONFIG2, 0x001f1f00); gpmc_cs_write_reg(eth_cs, GPMC_CS_CONFIG3, 0x00080802); gpmc_cs_write_reg(eth_cs, GPMC_CS_CONFIG4, 0x1C091C09); gpmc_cs_write_reg(eth_cs, GPMC_CS_CONFIG5, 0x041f1F1F); gpmc_cs_write_reg(eth_cs, GPMC_CS_CONFIG6, 0x000004C4); } else {/* rate = 100000000 */ gpmc_cs_write_reg(eth_cs, GPMC_CS_CONFIG2, 0x001f1f00); gpmc_cs_write_reg(eth_cs, GPMC_CS_CONFIG3, 0x00080802); gpmc_cs_write_reg(eth_cs, GPMC_CS_CONFIG4, 0x1C091C09); gpmc_cs_write_reg(eth_cs, GPMC_CS_CONFIG5, 0x031A1F1F); gpmc_cs_write_reg(eth_cs, GPMC_CS_CONFIG6, 0x000003C2); } if (gpmc_cs_request(eth_cs, SZ_16M, &cs_mem_base) < 0) { printk(KERN_ERR "Failed to request GPMC mem for smc91x\n"); goto out; } udelay(100); omap_cfg_reg(M15_24XX_GPIO92); if (debug_card_init(cs_mem_base, OMAP24XX_ETHR_GPIO_IRQ) < 0) gpmc_cs_free(eth_cs); out: clk_disable(gpmc_fck); clk_put(gpmc_fck); } static void __init h4_init_flash(void) { unsigned long base; if (gpmc_cs_request(H4_FLASH_CS, SZ_64M, &base) < 0) { printk("Can't request GPMC CS for flash\n"); return; } h4_flash_resource.start = base; h4_flash_resource.end = base + SZ_64M - 1; } static void __init omap_h4_init_irq(void) { omap2_init_common_hw(); omap_init_irq(); omap_gpio_init(); h4_init_flash(); } static struct omap_uart_config h4_uart_config __initdata = { .enabled_uarts = ((1 << 0) | (1 << 1) | (1 << 2)), }; static struct omap_mmc_config h4_mmc_config __initdata = { .mmc [0] = { .enabled = 1, .wire4 = 1, .wp_pin = -1, .power_pin = -1, .switch_pin = -1, }, }; static struct omap_lcd_config h4_lcd_config __initdata = { .ctrl_name = "internal", }; static struct omap_board_config_kernel h4_config[] = { { OMAP_TAG_UART, &h4_uart_config }, { OMAP_TAG_MMC, &h4_mmc_config }, { OMAP_TAG_LCD, &h4_lcd_config }, }; static struct i2c_board_info __initdata h4_i2c_board_info[] = { { I2C_BOARD_INFO("isp1301_omap", 0x2d), .irq = OMAP_GPIO_IRQ(125), }, }; static void __init omap_h4_init(void) { /* * Make sure the serial ports are muxed on at this point. * You have to mux them off in device drivers later on * if not needed. */ #if defined(CONFIG_OMAP_IR) || defined(CONFIG_OMAP_IR_MODULE) omap_cfg_reg(K15_24XX_UART3_TX); omap_cfg_reg(K14_24XX_UART3_RX); #endif #if defined(CONFIG_KEYBOARD_OMAP) || defined(CONFIG_KEYBOARD_OMAP_MODULE) if (omap_has_menelaus()) { row_gpios[5] = 0; col_gpios[2] = 15; col_gpios[6] = 18; } #endif i2c_register_board_info(1, h4_i2c_board_info, ARRAY_SIZE(h4_i2c_board_info)); platform_add_devices(h4_devices, ARRAY_SIZE(h4_devices)); omap_board_config = h4_config; omap_board_config_size = ARRAY_SIZE(h4_config); omap_serial_init(); } static void __init omap_h4_map_io(void) { omap2_set_globals_242x(); omap2_map_common_io(); } MACHINE_START(OMAP_H4, "OMAP2420 H4 board") /* Maintainer: Paul Mundt <paul.mundt@nokia.com> */ .phys_io = 0x48000000, .io_pg_offst = ((0xd8000000) >> 18) & 0xfffc, .boot_params = 0x80000100, .map_io = omap_h4_map_io, .init_irq = omap_h4_init_irq, .init_machine = omap_h4_init, .timer = &omap_timer, MACHINE_END