/* * DMA Mapping glue for ARC * * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef ASM_ARC_DMA_MAPPING_H #define ASM_ARC_DMA_MAPPING_H #include #include #ifndef CONFIG_ARC_PLAT_NEEDS_CPU_TO_DMA /* * dma_map_* API take cpu addresses, which is kernel logical address in the * untranslated address space (0x8000_0000) based. The dma address (bus addr) * ideally needs to be 0x0000_0000 based hence these glue routines. * However given that intermediate bus bridges can ignore the high bit, we can * do with these routines being no-ops. * If a platform/device comes up which sriclty requires 0 based bus addr * (e.g. AHB-PCI bridge on Angel4 board), then it can provide it's own versions */ #define plat_dma_addr_to_kernel(dev, addr) ((unsigned long)(addr)) #define plat_kernel_addr_to_dma(dev, ptr) ((dma_addr_t)(ptr)) #else #include #endif void *dma_alloc_noncoherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp); void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle); void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp); void dma_free_coherent(struct device *dev, size_t size, void *kvaddr, dma_addr_t dma_handle); /* drivers/base/dma-mapping.c */ extern int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size); extern int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size); #define dma_mmap_coherent(d, v, c, h, s) dma_common_mmap(d, v, c, h, s) #define dma_get_sgtable(d, t, v, h, s) dma_common_get_sgtable(d, t, v, h, s) /* * streaming DMA Mapping API... * CPU accesses page via normal paddr, thus needs to explicitly made * consistent before each use */ static inline void __inline_dma_cache_sync(unsigned long paddr, size_t size, enum dma_data_direction dir) { switch (dir) { case DMA_FROM_DEVICE: dma_cache_inv(paddr, size); break; case DMA_TO_DEVICE: dma_cache_wback(paddr, size); break; case DMA_BIDIRECTIONAL: dma_cache_wback_inv(paddr, size); break; default: pr_err("Invalid DMA dir [%d] for OP @ %lx\n", dir, paddr); } } void __arc_dma_cache_sync(unsigned long paddr, size_t size, enum dma_data_direction dir); #define _dma_cache_sync(addr, sz, dir) \ do { \ if (__builtin_constant_p(dir)) \ __inline_dma_cache_sync(addr, sz, dir); \ else \ __arc_dma_cache_sync(addr, sz, dir); \ } \ while (0); static inline dma_addr_t dma_map_single(struct device *dev, void *cpu_addr, size_t size, enum dma_data_direction dir) { _dma_cache_sync((unsigned long)cpu_addr, size, dir); return plat_kernel_addr_to_dma(dev, cpu_addr); } static inline void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction dir) { } static inline dma_addr_t dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir) { unsigned long paddr = page_to_phys(page) + offset; return dma_map_single(dev, (void *)paddr, size, dir); } static inline void dma_unmap_page(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) { } static inline int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { struct scatterlist *s; int i; for_each_sg(sg, s, nents, i) s->dma_address = dma_map_page(dev, sg_page(s), s->offset, s->length, dir); return nents; } static inline void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { struct scatterlist *s; int i; for_each_sg(sg, s, nents, i) dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); } static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) { _dma_cache_sync(plat_dma_addr_to_kernel(dev, dma_handle), size, DMA_FROM_DEVICE); } static inline void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) { _dma_cache_sync(plat_dma_addr_to_kernel(dev, dma_handle), size, DMA_TO_DEVICE); } static inline void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction) { _dma_cache_sync(plat_dma_addr_to_kernel(dev, dma_handle) + offset, size, DMA_FROM_DEVICE); } static inline void dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction) { _dma_cache_sync(plat_dma_addr_to_kernel(dev, dma_handle) + offset, size, DMA_TO_DEVICE); } static inline void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction dir) { int i; for (i = 0; i < nelems; i++, sg++) _dma_cache_sync((unsigned int)sg_virt(sg), sg->length, dir); } static inline void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction dir) { int i; for (i = 0; i < nelems; i++, sg++) _dma_cache_sync((unsigned int)sg_virt(sg), sg->length, dir); } static inline int dma_supported(struct device *dev, u64 dma_mask) { /* Support 32 bit DMA mask exclusively */ return dma_mask == DMA_BIT_MASK(32); } static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) { return 0; } static inline int dma_set_mask(struct device *dev, u64 dma_mask) { if (!dev->dma_mask || !dma_supported(dev, dma_mask)) return -EIO; *dev->dma_mask = dma_mask; return 0; } #endif