/* * linux/arch/alpha/kernel/setup.c * * Copyright (C) 1995 Linus Torvalds */ /* 2.3.x bootmem, 1999 Andrea Arcangeli */ /* * Bootup setup stuff. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_MAGIC_SYSRQ #include #include #endif #include #include #include #include #include extern struct atomic_notifier_head panic_notifier_list; static int alpha_panic_event(struct notifier_block *, unsigned long, void *); static struct notifier_block alpha_panic_block = { alpha_panic_event, NULL, INT_MAX /* try to do it first */ }; #include #include #include #include #include #include #include "proto.h" #include "pci_impl.h" struct hwrpb_struct *hwrpb; EXPORT_SYMBOL(hwrpb); unsigned long srm_hae; int alpha_l1i_cacheshape; int alpha_l1d_cacheshape; int alpha_l2_cacheshape; int alpha_l3_cacheshape; #ifdef CONFIG_VERBOSE_MCHECK /* 0=minimum, 1=verbose, 2=all */ /* These can be overridden via the command line, ie "verbose_mcheck=2") */ unsigned long alpha_verbose_mcheck = CONFIG_VERBOSE_MCHECK_ON; #endif #ifdef CONFIG_NUMA struct cpumask node_to_cpumask_map[MAX_NUMNODES] __read_mostly; EXPORT_SYMBOL(node_to_cpumask_map); #endif /* Which processor we booted from. */ int boot_cpuid; /* * Using SRM callbacks for initial console output. This works from * setup_arch() time through the end of time_init(), as those places * are under our (Alpha) control. * "srmcons" specified in the boot command arguments allows us to * see kernel messages during the period of time before the true * console device is "registered" during console_init(). * As of this version (2.5.59), console_init() will call * disable_early_printk() as the last action before initializing * the console drivers. That's the last possible time srmcons can be * unregistered without interfering with console behavior. * * By default, OFF; set it with a bootcommand arg of "srmcons" or * "console=srm". The meaning of these two args is: * "srmcons" - early callback prints * "console=srm" - full callback based console, including early prints */ int srmcons_output = 0; /* Enforce a memory size limit; useful for testing. By default, none. */ unsigned long mem_size_limit = 0; /* Set AGP GART window size (0 means disabled). */ unsigned long alpha_agpgart_size = DEFAULT_AGP_APER_SIZE; #ifdef CONFIG_ALPHA_GENERIC struct alpha_machine_vector alpha_mv; #endif #ifndef alpha_using_srm int alpha_using_srm; EXPORT_SYMBOL(alpha_using_srm); #endif #ifndef alpha_using_qemu int alpha_using_qemu; #endif static struct alpha_machine_vector *get_sysvec(unsigned long, unsigned long, unsigned long); static struct alpha_machine_vector *get_sysvec_byname(const char *); static void get_sysnames(unsigned long, unsigned long, unsigned long, char **, char **); static void determine_cpu_caches (unsigned int); static char __initdata command_line[COMMAND_LINE_SIZE]; /* * The format of "screen_info" is strange, and due to early * i386-setup code. This is just enough to make the console * code think we're on a VGA color display. */ struct screen_info screen_info = { .orig_x = 0, .orig_y = 25, .orig_video_cols = 80, .orig_video_lines = 25, .orig_video_isVGA = 1, .orig_video_points = 16 }; EXPORT_SYMBOL(screen_info); /* * The direct map I/O window, if any. This should be the same * for all busses, since it's used by virt_to_bus. */ unsigned long __direct_map_base; unsigned long __direct_map_size; EXPORT_SYMBOL(__direct_map_base); EXPORT_SYMBOL(__direct_map_size); /* * Declare all of the machine vectors. */ /* GCC 2.7.2 (on alpha at least) is lame. It does not support either __attribute__((weak)) or #pragma weak. Bypass it and talk directly to the assembler. */ #define WEAK(X) \ extern struct alpha_machine_vector X; \ asm(".weak "#X) WEAK(alcor_mv); WEAK(alphabook1_mv); WEAK(avanti_mv); WEAK(cabriolet_mv); WEAK(clipper_mv); WEAK(dp264_mv); WEAK(eb164_mv); WEAK(eb64p_mv); WEAK(eb66_mv); WEAK(eb66p_mv); WEAK(eiger_mv); WEAK(jensen_mv); WEAK(lx164_mv); WEAK(lynx_mv); WEAK(marvel_ev7_mv); WEAK(miata_mv); WEAK(mikasa_mv); WEAK(mikasa_primo_mv); WEAK(monet_mv); WEAK(nautilus_mv); WEAK(noname_mv); WEAK(noritake_mv); WEAK(noritake_primo_mv); WEAK(p2k_mv); WEAK(pc164_mv); WEAK(privateer_mv); WEAK(rawhide_mv); WEAK(ruffian_mv); WEAK(rx164_mv); WEAK(sable_mv); WEAK(sable_gamma_mv); WEAK(shark_mv); WEAK(sx164_mv); WEAK(takara_mv); WEAK(titan_mv); WEAK(webbrick_mv); WEAK(wildfire_mv); WEAK(xl_mv); WEAK(xlt_mv); #undef WEAK /* * I/O resources inherited from PeeCees. Except for perhaps the * turbochannel alphas, everyone has these on some sort of SuperIO chip. * * ??? If this becomes less standard, move the struct out into the * machine vector. */ static void __init reserve_std_resources(void) { static struct resource standard_io_resources[] = { { .name = "rtc", .start = -1, .end = -1 }, { .name = "dma1", .start = 0x00, .end = 0x1f }, { .name = "pic1", .start = 0x20, .end = 0x3f }, { .name = "timer", .start = 0x40, .end = 0x5f }, { .name = "keyboard", .start = 0x60, .end = 0x6f }, { .name = "dma page reg", .start = 0x80, .end = 0x8f }, { .name = "pic2", .start = 0xa0, .end = 0xbf }, { .name = "dma2", .start = 0xc0, .end = 0xdf }, }; struct resource *io = &ioport_resource; size_t i; if (hose_head) { struct pci_controller *hose; for (hose = hose_head; hose; hose = hose->next) if (hose->index == 0) { io = hose->io_space; break; } } /* Fix up for the Jensen's queer RTC placement. */ standard_io_resources[0].start = RTC_PORT(0); standard_io_resources[0].end = RTC_PORT(0) + 0x10; for (i = 0; i < ARRAY_SIZE(standard_io_resources); ++i) request_resource(io, standard_io_resources+i); } #define PFN_MAX PFN_DOWN(0x80000000) #define for_each_mem_cluster(memdesc, _cluster, i) \ for ((_cluster) = (memdesc)->cluster, (i) = 0; \ (i) < (memdesc)->numclusters; (i)++, (_cluster)++) static unsigned long __init get_mem_size_limit(char *s) { unsigned long end = 0; char *from = s; end = simple_strtoul(from, &from, 0); if ( *from == 'K' || *from == 'k' ) { end = end << 10; from++; } else if ( *from == 'M' || *from == 'm' ) { end = end << 20; from++; } else if ( *from == 'G' || *from == 'g' ) { end = end << 30; from++; } return end >> PAGE_SHIFT; /* Return the PFN of the limit. */ } #ifdef CONFIG_BLK_DEV_INITRD void * __init move_initrd(unsigned long mem_limit) { void *start; unsigned long size; size = initrd_end - initrd_start; start = __alloc_bootmem(PAGE_ALIGN(size), PAGE_SIZE, 0); if (!start || __pa(start) + size > mem_limit) { initrd_start = initrd_end = 0; return NULL; } memmove(start, (void *)initrd_start, size); initrd_start = (unsigned long)start; initrd_end = initrd_start + size; printk("initrd moved to %p\n", start); return start; } #endif #ifndef CONFIG_DISCONTIGMEM static void __init setup_memory(void *kernel_end) { struct memclust_struct * cluster; struct memdesc_struct * memdesc; unsigned long start_kernel_pfn, end_kernel_pfn; unsigned long bootmap_size, bootmap_pages, bootmap_start; unsigned long start, end; unsigned long i; /* Find free clusters, and init and free the bootmem accordingly. */ memdesc = (struct memdesc_struct *) (hwrpb->mddt_offset + (unsigned long) hwrpb); for_each_mem_cluster(memdesc, cluster, i) { printk("memcluster %lu, usage %01lx, start %8lu, end %8lu\n", i, cluster->usage, cluster->start_pfn, cluster->start_pfn + cluster->numpages); /* Bit 0 is console/PALcode reserved. Bit 1 is non-volatile memory -- we might want to mark this for later. */ if (cluster->usage & 3) continue; end = cluster->start_pfn + cluster->numpages; if (end > max_low_pfn) max_low_pfn = end; } /* * Except for the NUMA systems (wildfire, marvel) all of the * Alpha systems we run on support 32GB of memory or less. * Since the NUMA systems introduce large holes in memory addressing, * we can get into a situation where there is not enough contiguous * memory for the memory map. * * Limit memory to the first 32GB to limit the NUMA systems to * memory on their first node (wildfire) or 2 (marvel) to avoid * not being able to produce the memory map. In order to access * all of the memory on the NUMA systems, build with discontiguous * memory support. * * If the user specified a memory limit, let that memory limit stand. */ if (!mem_size_limit) mem_size_limit = (32ul * 1024 * 1024 * 1024) >> PAGE_SHIFT; if (mem_size_limit && max_low_pfn >= mem_size_limit) { printk("setup: forcing memory size to %ldK (from %ldK).\n", mem_size_limit << (PAGE_SHIFT - 10), max_low_pfn << (PAGE_SHIFT - 10)); max_low_pfn = mem_size_limit; } /* Find the bounds of kernel memory. */ start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS); end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end)); bootmap_start = -1; try_again: if (max_low_pfn <= end_kernel_pfn) panic("not enough memory to boot"); /* We need to know how many physically contiguous pages we'll need for the bootmap. */ bootmap_pages = bootmem_bootmap_pages(max_low_pfn); /* Now find a good region where to allocate the bootmap. */ for_each_mem_cluster(memdesc, cluster, i) { if (cluster->usage & 3) continue; start = cluster->start_pfn; end = start + cluster->numpages; if (start >= max_low_pfn) continue; if (end > max_low_pfn) end = max_low_pfn; if (start < start_kernel_pfn) { if (end > end_kernel_pfn && end - end_kernel_pfn >= bootmap_pages) { bootmap_start = end_kernel_pfn; break; } else if (end > start_kernel_pfn) end = start_kernel_pfn; } else if (start < end_kernel_pfn) start = end_kernel_pfn; if (end - start >= bootmap_pages) { bootmap_start = start; break; } } if (bootmap_start == ~0UL) { max_low_pfn >>= 1; goto try_again; } /* Allocate the bootmap and mark the whole MM as reserved. */ bootmap_size = init_bootmem(bootmap_start, max_low_pfn); /* Mark the free regions. */ for_each_mem_cluster(memdesc, cluster, i) { if (cluster->usage & 3) continue; start = cluster->start_pfn; end = cluster->start_pfn + cluster->numpages; if (start >= max_low_pfn) continue; if (end > max_low_pfn) end = max_low_pfn; if (start < start_kernel_pfn) { if (end > end_kernel_pfn) { free_bootmem(PFN_PHYS(start), (PFN_PHYS(start_kernel_pfn) - PFN_PHYS(start))); printk("freeing pages %ld:%ld\n", start, start_kernel_pfn); start = end_kernel_pfn; } else if (end > start_kernel_pfn) end = start_kernel_pfn; } else if (start < end_kernel_pfn) start = end_kernel_pfn; if (start >= end) continue; free_bootmem(PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start)); printk("freeing pages %ld:%ld\n", start, end); } /* Reserve the bootmap memory. */ reserve_bootmem(PFN_PHYS(bootmap_start), bootmap_size, BOOTMEM_DEFAULT); printk("reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size)); #ifdef CONFIG_BLK_DEV_INITRD initrd_start = INITRD_START; if (initrd_start) { initrd_end = initrd_start+INITRD_SIZE; printk("Initial ramdisk at: 0x%p (%lu bytes)\n", (void *) initrd_start, INITRD_SIZE); if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) { if (!move_initrd(PFN_PHYS(max_low_pfn))) printk("initrd extends beyond end of memory " "(0x%08lx > 0x%p)\ndisabling initrd\n", initrd_end, phys_to_virt(PFN_PHYS(max_low_pfn))); } else { reserve_bootmem(virt_to_phys((void *)initrd_start), INITRD_SIZE, BOOTMEM_DEFAULT); } } #endif /* CONFIG_BLK_DEV_INITRD */ } #else extern void setup_memory(void *); #endif /* !CONFIG_DISCONTIGMEM */ int __init page_is_ram(unsigned long pfn) { struct memclust_struct * cluster; struct memdesc_struct * memdesc; unsigned long i; memdesc = (struct memdesc_struct *) (hwrpb->mddt_offset + (unsigned long) hwrpb); for_each_mem_cluster(memdesc, cluster, i) { if (pfn >= cluster->start_pfn && pfn < cluster->start_pfn + cluster->numpages) { return (cluster->usage & 3) ? 0 : 1; } } return 0; } static int __init register_cpus(void) { int i; for_each_possible_cpu(i) { struct cpu *p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) return -ENOMEM; register_cpu(p, i); } return 0; } arch_initcall(register_cpus); void __init setup_arch(char **cmdline_p) { extern char _end[]; struct alpha_machine_vector *vec = NULL; struct percpu_struct *cpu; char *type_name, *var_name, *p; void *kernel_end = _end; /* end of kernel */ char *args = command_line; hwrpb = (struct hwrpb_struct*) __va(INIT_HWRPB->phys_addr); boot_cpuid = hard_smp_processor_id(); /* * Pre-process the system type to make sure it will be valid. * * This may restore real CABRIO and EB66+ family names, ie * EB64+ and EB66. * * Oh, and "white box" AS800 (aka DIGITAL Server 3000 series) * and AS1200 (DIGITAL Server 5000 series) have the type as * the negative of the real one. */ if ((long)hwrpb->sys_type < 0) { hwrpb->sys_type = -((long)hwrpb->sys_type); hwrpb_update_checksum(hwrpb); } /* Register a call for panic conditions. */ atomic_notifier_chain_register(&panic_notifier_list, &alpha_panic_block); #ifndef alpha_using_srm /* Assume that we've booted from SRM if we haven't booted from MILO. Detect the later by looking for "MILO" in the system serial nr. */ alpha_using_srm = strncmp((const char *)hwrpb->ssn, "MILO", 4) != 0; #endif #ifndef alpha_using_qemu /* Similarly, look for QEMU. */ alpha_using_qemu = strstr((const char *)hwrpb->ssn, "QEMU") != 0; #endif /* If we are using SRM, we want to allow callbacks as early as possible, so do this NOW, and then they should work immediately thereafter. */ kernel_end = callback_init(kernel_end); /* * Locate the command line. */ /* Hack for Jensen... since we're restricted to 8 or 16 chars for boot flags depending on the boot mode, we need some shorthand. This should do for installation. */ if (strcmp(COMMAND_LINE, "INSTALL") == 0) { strlcpy(command_line, "root=/dev/fd0 load_ramdisk=1", sizeof command_line); } else { strlcpy(command_line, COMMAND_LINE, sizeof command_line); } strcpy(boot_command_line, command_line); *cmdline_p = command_line; /* * Process command-line arguments. */ while ((p = strsep(&args, " \t")) != NULL) { if (!*p) continue; if (strncmp(p, "alpha_mv=", 9) == 0) { vec = get_sysvec_byname(p+9); continue; } if (strncmp(p, "cycle=", 6) == 0) { est_cycle_freq = simple_strtol(p+6, NULL, 0); continue; } if (strncmp(p, "mem=", 4) == 0) { mem_size_limit = get_mem_size_limit(p+4); continue; } if (strncmp(p, "srmcons", 7) == 0) { srmcons_output |= 1; continue; } if (strncmp(p, "console=srm", 11) == 0) { srmcons_output |= 2; continue; } if (strncmp(p, "gartsize=", 9) == 0) { alpha_agpgart_size = get_mem_size_limit(p+9) << PAGE_SHIFT; continue; } #ifdef CONFIG_VERBOSE_MCHECK if (strncmp(p, "verbose_mcheck=", 15) == 0) { alpha_verbose_mcheck = simple_strtol(p+15, NULL, 0); continue; } #endif } /* Replace the command line, now that we've killed it with strsep. */ strcpy(command_line, boot_command_line); /* If we want SRM console printk echoing early, do it now. */ if (alpha_using_srm && srmcons_output) { register_srm_console(); /* * If "console=srm" was specified, clear the srmcons_output * flag now so that time.c won't unregister_srm_console */ if (srmcons_output & 2) srmcons_output = 0; } #ifdef CONFIG_MAGIC_SYSRQ /* If we're using SRM, make sysrq-b halt back to the prom, not auto-reboot. */ if (alpha_using_srm) { struct sysrq_key_op *op = __sysrq_get_key_op('b'); op->handler = (void *) machine_halt; } #endif /* * Identify and reconfigure for the current system. */ cpu = (struct percpu_struct*)((char*)hwrpb + hwrpb->processor_offset); get_sysnames(hwrpb->sys_type, hwrpb->sys_variation, cpu->type, &type_name, &var_name); if (*var_name == '0') var_name = ""; if (!vec) { vec = get_sysvec(hwrpb->sys_type, hwrpb->sys_variation, cpu->type); } if (!vec) { panic("Unsupported system type: %s%s%s (%ld %ld)\n", type_name, (*var_name ? " variation " : ""), var_name, hwrpb->sys_type, hwrpb->sys_variation); } if (vec != &alpha_mv) { alpha_mv = *vec; } printk("Booting " #ifdef CONFIG_ALPHA_GENERIC "GENERIC " #endif "on %s%s%s using machine vector %s from %s\n", type_name, (*var_name ? " variation " : ""), var_name, alpha_mv.vector_name, (alpha_using_srm ? "SRM" : "MILO")); printk("Major Options: " #ifdef CONFIG_SMP "SMP " #endif #ifdef CONFIG_ALPHA_EV56 "EV56 " #endif #ifdef CONFIG_ALPHA_EV67 "EV67 " #endif #ifdef CONFIG_ALPHA_LEGACY_START_ADDRESS "LEGACY_START " #endif #ifdef CONFIG_VERBOSE_MCHECK "VERBOSE_MCHECK " #endif #ifdef CONFIG_DISCONTIGMEM "DISCONTIGMEM " #ifdef CONFIG_NUMA "NUMA " #endif #endif #ifdef CONFIG_DEBUG_SPINLOCK "DEBUG_SPINLOCK " #endif #ifdef CONFIG_MAGIC_SYSRQ "MAGIC_SYSRQ " #endif "\n"); printk("Command line: %s\n", command_line); /* * Sync up the HAE. * Save the SRM's current value for restoration. */ srm_hae = *alpha_mv.hae_register; __set_hae(alpha_mv.hae_cache); /* Reset enable correctable error reports. */ wrmces(0x7); /* Find our memory. */ setup_memory(kernel_end); /* First guess at cpu cache sizes. Do this before init_arch. */ determine_cpu_caches(cpu->type); /* Initialize the machine. Usually has to do with setting up DMA windows and the like. */ if (alpha_mv.init_arch) alpha_mv.init_arch(); /* Reserve standard resources. */ reserve_std_resources(); /* * Give us a default console. TGA users will see nothing until * chr_dev_init is called, rather late in the boot sequence. */ #ifdef CONFIG_VT #if defined(CONFIG_VGA_CONSOLE) conswitchp = &vga_con; #elif defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; #endif #endif /* Default root filesystem to sda2. */ ROOT_DEV = Root_SDA2; #ifdef CONFIG_EISA /* FIXME: only set this when we actually have EISA in this box? */ EISA_bus = 1; #endif /* * Check ASN in HWRPB for validity, report if bad. * FIXME: how was this failing? Should we trust it instead, * and copy the value into alpha_mv.max_asn? */ if (hwrpb->max_asn != MAX_ASN) { printk("Max ASN from HWRPB is bad (0x%lx)\n", hwrpb->max_asn); } /* * Identify the flock of penguins. */ #ifdef CONFIG_SMP setup_smp(); #endif paging_init(); } static char sys_unknown[] = "Unknown"; static char systype_names[][16] = { "0", "ADU", "Cobra", "Ruby", "Flamingo", "Mannequin", "Jensen", "Pelican", "Morgan", "Sable", "Medulla", "Noname", "Turbolaser", "Avanti", "Mustang", "Alcor", "Tradewind", "Mikasa", "EB64", "EB66", "EB64+", "AlphaBook1", "Rawhide", "K2", "Lynx", "XL", "EB164", "Noritake", "Cortex", "29", "Miata", "XXM", "Takara", "Yukon", "Tsunami", "Wildfire", "CUSCO", "Eiger", "Titan", "Marvel" }; static char unofficial_names[][8] = {"100", "Ruffian"}; static char api_names[][16] = {"200", "Nautilus"}; static char eb164_names[][8] = {"EB164", "PC164", "LX164", "SX164", "RX164"}; static int eb164_indices[] = {0,0,0,1,1,1,1,1,2,2,2,2,3,3,3,3,4}; static char alcor_names[][16] = {"Alcor", "Maverick", "Bret"}; static int alcor_indices[] = {0,0,0,1,1,1,0,0,0,0,0,0,2,2,2,2,2,2}; static char eb64p_names[][16] = {"EB64+", "Cabriolet", "AlphaPCI64"}; static int eb64p_indices[] = {0,0,1,2}; static char eb66_names[][8] = {"EB66", "EB66+"}; static int eb66_indices[] = {0,0,1}; static char marvel_names[][16] = { "Marvel/EV7" }; static int marvel_indices[] = { 0 }; static char rawhide_names[][16] = { "Dodge", "Wrangler", "Durango", "Tincup", "DaVinci" }; static int rawhide_indices[] = {0,0,0,1,1,2,2,3,3,4,4}; static char titan_names[][16] = { "DEFAULT", "Privateer", "Falcon", "Granite" }; static int titan_indices[] = {0,1,2,2,3}; static char tsunami_names[][16] = { "0", "DP264", "Warhol", "Windjammer", "Monet", "Clipper", "Goldrush", "Webbrick", "Catamaran", "Brisbane", "Melbourne", "Flying Clipper", "Shark" }; static int tsunami_indices[] = {0,1,2,3,4,5,6,7,8,9,10,11,12}; static struct alpha_machine_vector * __init get_sysvec(unsigned long type, unsigned long variation, unsigned long cpu) { static struct alpha_machine_vector *systype_vecs[] __initdata = { NULL, /* 0 */ NULL, /* ADU */ NULL, /* Cobra */ NULL, /* Ruby */ NULL, /* Flamingo */ NULL, /* Mannequin */ &jensen_mv, NULL, /* Pelican */ NULL, /* Morgan */ NULL, /* Sable -- see below. */ NULL, /* Medulla */ &noname_mv, NULL, /* Turbolaser */ &avanti_mv, NULL, /* Mustang */ NULL, /* Alcor, Bret, Maverick. HWRPB inaccurate? */ NULL, /* Tradewind */ NULL, /* Mikasa -- see below. */ NULL, /* EB64 */ NULL, /* EB66 -- see variation. */ NULL, /* EB64+ -- see variation. */ &alphabook1_mv, &rawhide_mv, NULL, /* K2 */ &lynx_mv, /* Lynx */ &xl_mv, NULL, /* EB164 -- see variation. */ NULL, /* Noritake -- see below. */ NULL, /* Cortex */ NULL, /* 29 */ &miata_mv, NULL, /* XXM */ &takara_mv, NULL, /* Yukon */ NULL, /* Tsunami -- see variation. */ &wildfire_mv, /* Wildfire */ NULL, /* CUSCO */ &eiger_mv, /* Eiger */ NULL, /* Titan */ NULL, /* Marvel */ }; static struct alpha_machine_vector *unofficial_vecs[] __initdata = { NULL, /* 100 */ &ruffian_mv, }; static struct alpha_machine_vector *api_vecs[] __initdata = { NULL, /* 200 */ &nautilus_mv, }; static struct alpha_machine_vector *alcor_vecs[] __initdata = { &alcor_mv, &xlt_mv, &xlt_mv }; static struct alpha_machine_vector *eb164_vecs[] __initdata = { &eb164_mv, &pc164_mv, &lx164_mv, &sx164_mv, &rx164_mv }; static struct alpha_machine_vector *eb64p_vecs[] __initdata = { &eb64p_mv, &cabriolet_mv, &cabriolet_mv /* AlphaPCI64 */ }; static struct alpha_machine_vector *eb66_vecs[] __initdata = { &eb66_mv, &eb66p_mv }; static struct alpha_machine_vector *marvel_vecs[] __initdata = { &marvel_ev7_mv, }; static struct alpha_machine_vector *titan_vecs[] __initdata = { &titan_mv, /* default */ &privateer_mv, /* privateer */ &titan_mv, /* falcon */ &privateer_mv, /* granite */ }; static struct alpha_machine_vector *tsunami_vecs[] __initdata = { NULL, &dp264_mv, /* dp264 */ &dp264_mv, /* warhol */ &dp264_mv, /* windjammer */ &monet_mv, /* monet */ &clipper_mv, /* clipper */ &dp264_mv, /* goldrush */ &webbrick_mv, /* webbrick */ &dp264_mv, /* catamaran */ NULL, /* brisbane? */ NULL, /* melbourne? */ NULL, /* flying clipper? */ &shark_mv, /* shark */ }; /* ??? Do we need to distinguish between Rawhides? */ struct alpha_machine_vector *vec; /* Search the system tables first... */ vec = NULL; if (type < ARRAY_SIZE(systype_vecs)) { vec = systype_vecs[type]; } else if ((type > ST_API_BIAS) && (type - ST_API_BIAS) < ARRAY_SIZE(api_vecs)) { vec = api_vecs[type - ST_API_BIAS]; } else if ((type > ST_UNOFFICIAL_BIAS) && (type - ST_UNOFFICIAL_BIAS) < ARRAY_SIZE(unofficial_vecs)) { vec = unofficial_vecs[type - ST_UNOFFICIAL_BIAS]; } /* If we've not found one, try for a variation. */ if (!vec) { /* Member ID is a bit-field. */ unsigned long member = (variation >> 10) & 0x3f; cpu &= 0xffffffff; /* make it usable */ switch (type) { case ST_DEC_ALCOR: if (member < ARRAY_SIZE(alcor_indices)) vec = alcor_vecs[alcor_indices[member]]; break; case ST_DEC_EB164: if (member < ARRAY_SIZE(eb164_indices)) vec = eb164_vecs[eb164_indices[member]]; /* PC164 may show as EB164 variation with EV56 CPU, but, since no true EB164 had anything but EV5... */ if (vec == &eb164_mv && cpu == EV56_CPU) vec = &pc164_mv; break; case ST_DEC_EB64P: if (member < ARRAY_SIZE(eb64p_indices)) vec = eb64p_vecs[eb64p_indices[member]]; break; case ST_DEC_EB66: if (member < ARRAY_SIZE(eb66_indices)) vec = eb66_vecs[eb66_indices[member]]; break; case ST_DEC_MARVEL: if (member < ARRAY_SIZE(marvel_indices)) vec = marvel_vecs[marvel_indices[member]]; break; case ST_DEC_TITAN: vec = titan_vecs[0]; /* default */ if (member < ARRAY_SIZE(titan_indices)) vec = titan_vecs[titan_indices[member]]; break; case ST_DEC_TSUNAMI: if (member < ARRAY_SIZE(tsunami_indices)) vec = tsunami_vecs[tsunami_indices[member]]; break; case ST_DEC_1000: if (cpu == EV5_CPU || cpu == EV56_CPU) vec = &mikasa_primo_mv; else vec = &mikasa_mv; break; case ST_DEC_NORITAKE: if (cpu == EV5_CPU || cpu == EV56_CPU) vec = &noritake_primo_mv; else vec = &noritake_mv; break; case ST_DEC_2100_A500: if (cpu == EV5_CPU || cpu == EV56_CPU) vec = &sable_gamma_mv; else vec = &sable_mv; break; } } return vec; } static struct alpha_machine_vector * __init get_sysvec_byname(const char *name) { static struct alpha_machine_vector *all_vecs[] __initdata = { &alcor_mv, &alphabook1_mv, &avanti_mv, &cabriolet_mv, &clipper_mv, &dp264_mv, &eb164_mv, &eb64p_mv, &eb66_mv, &eb66p_mv, &eiger_mv, &jensen_mv, &lx164_mv, &lynx_mv, &miata_mv, &mikasa_mv, &mikasa_primo_mv, &monet_mv, &nautilus_mv, &noname_mv, &noritake_mv, &noritake_primo_mv, &p2k_mv, &pc164_mv, &privateer_mv, &rawhide_mv, &ruffian_mv, &rx164_mv, &sable_mv, &sable_gamma_mv, &shark_mv, &sx164_mv, &takara_mv, &webbrick_mv, &wildfire_mv, &xl_mv, &xlt_mv }; size_t i; for (i = 0; i < ARRAY_SIZE(all_vecs); ++i) { struct alpha_machine_vector *mv = all_vecs[i]; if (strcasecmp(mv->vector_name, name) == 0) return mv; } return NULL; } static void get_sysnames(unsigned long type, unsigned long variation, unsigned long cpu, char **type_name, char **variation_name) { unsigned long member; /* If not in the tables, make it UNKNOWN, else set type name to family */ if (type < ARRAY_SIZE(systype_names)) { *type_name = systype_names[type]; } else if ((type > ST_API_BIAS) && (type - ST_API_BIAS) < ARRAY_SIZE(api_names)) { *type_name = api_names[type - ST_API_BIAS]; } else if ((type > ST_UNOFFICIAL_BIAS) && (type - ST_UNOFFICIAL_BIAS) < ARRAY_SIZE(unofficial_names)) { *type_name = unofficial_names[type - ST_UNOFFICIAL_BIAS]; } else { *type_name = sys_unknown; *variation_name = sys_unknown; return; } /* Set variation to "0"; if variation is zero, done. */ *variation_name = systype_names[0]; if (variation == 0) { return; } member = (variation >> 10) & 0x3f; /* member ID is a bit-field */ cpu &= 0xffffffff; /* make it usable */ switch (type) { /* select by family */ default: /* default to variation "0" for now */ break; case ST_DEC_EB164: if (member < ARRAY_SIZE(eb164_indices)) *variation_name = eb164_names[eb164_indices[member]]; /* PC164 may show as EB164 variation, but with EV56 CPU, so, since no true EB164 had anything but EV5... */ if (eb164_indices[member] == 0 && cpu == EV56_CPU) *variation_name = eb164_names[1]; /* make it PC164 */ break; case ST_DEC_ALCOR: if (member < ARRAY_SIZE(alcor_indices)) *variation_name = alcor_names[alcor_indices[member]]; break; case ST_DEC_EB64P: if (member < ARRAY_SIZE(eb64p_indices)) *variation_name = eb64p_names[eb64p_indices[member]]; break; case ST_DEC_EB66: if (member < ARRAY_SIZE(eb66_indices)) *variation_name = eb66_names[eb66_indices[member]]; break; case ST_DEC_MARVEL: if (member < ARRAY_SIZE(marvel_indices)) *variation_name = marvel_names[marvel_indices[member]]; break; case ST_DEC_RAWHIDE: if (member < ARRAY_SIZE(rawhide_indices)) *variation_name = rawhide_names[rawhide_indices[member]]; break; case ST_DEC_TITAN: *variation_name = titan_names[0]; /* default */ if (member < ARRAY_SIZE(titan_indices)) *variation_name = titan_names[titan_indices[member]]; break; case ST_DEC_TSUNAMI: if (member < ARRAY_SIZE(tsunami_indices)) *variation_name = tsunami_names[tsunami_indices[member]]; break; } } /* * A change was made to the HWRPB via an ECO and the following code * tracks a part of the ECO. In HWRPB versions less than 5, the ECO * was not implemented in the console firmware. If it's revision 5 or * greater we can get the name of the platform as an ASCII string from * the HWRPB. That's what this function does. It checks the revision * level and if the string is in the HWRPB it returns the address of * the string--a pointer to the name of the platform. * * Returns: * - Pointer to a ASCII string if it's in the HWRPB * - Pointer to a blank string if the data is not in the HWRPB. */ static char * platform_string(void) { struct dsr_struct *dsr; static char unk_system_string[] = "N/A"; /* Go to the console for the string pointer. * If the rpb_vers is not 5 or greater the rpb * is old and does not have this data in it. */ if (hwrpb->revision < 5) return (unk_system_string); else { /* The Dynamic System Recognition struct * has the system platform name starting * after the character count of the string. */ dsr = ((struct dsr_struct *) ((char *)hwrpb + hwrpb->dsr_offset)); return ((char *)dsr + (dsr->sysname_off + sizeof(long))); } } static int get_nr_processors(struct percpu_struct *cpubase, unsigned long num) { struct percpu_struct *cpu; unsigned long i; int count = 0; for (i = 0; i < num; i++) { cpu = (struct percpu_struct *) ((char *)cpubase + i*hwrpb->processor_size); if ((cpu->flags & 0x1cc) == 0x1cc) count++; } return count; } static void show_cache_size (struct seq_file *f, const char *which, int shape) { if (shape == -1) seq_printf (f, "%s\t\t: n/a\n", which); else if (shape == 0) seq_printf (f, "%s\t\t: unknown\n", which); else seq_printf (f, "%s\t\t: %dK, %d-way, %db line\n", which, shape >> 10, shape & 15, 1 << ((shape >> 4) & 15)); } static int show_cpuinfo(struct seq_file *f, void *slot) { extern struct unaligned_stat { unsigned long count, va, pc; } unaligned[2]; static char cpu_names[][8] = { "EV3", "EV4", "Simulate", "LCA4", "EV5", "EV45", "EV56", "EV6", "PCA56", "PCA57", "EV67", "EV68CB", "EV68AL", "EV68CX", "EV7", "EV79", "EV69" }; struct percpu_struct *cpu = slot; unsigned int cpu_index; char *cpu_name; char *systype_name; char *sysvariation_name; int nr_processors; unsigned long timer_freq; cpu_index = (unsigned) (cpu->type - 1); cpu_name = "Unknown"; if (cpu_index < ARRAY_SIZE(cpu_names)) cpu_name = cpu_names[cpu_index]; get_sysnames(hwrpb->sys_type, hwrpb->sys_variation, cpu->type, &systype_name, &sysvariation_name); nr_processors = get_nr_processors(cpu, hwrpb->nr_processors); #if CONFIG_HZ == 1024 || CONFIG_HZ == 1200 timer_freq = (100UL * hwrpb->intr_freq) / 4096; #else timer_freq = 100UL * CONFIG_HZ; #endif seq_printf(f, "cpu\t\t\t: Alpha\n" "cpu model\t\t: %s\n" "cpu variation\t\t: %ld\n" "cpu revision\t\t: %ld\n" "cpu serial number\t: %s\n" "system type\t\t: %s\n" "system variation\t: %s\n" "system revision\t\t: %ld\n" "system serial number\t: %s\n" "cycle frequency [Hz]\t: %lu %s\n" "timer frequency [Hz]\t: %lu.%02lu\n" "page size [bytes]\t: %ld\n" "phys. address bits\t: %ld\n" "max. addr. space #\t: %ld\n" "BogoMIPS\t\t: %lu.%02lu\n" "kernel unaligned acc\t: %ld (pc=%lx,va=%lx)\n" "user unaligned acc\t: %ld (pc=%lx,va=%lx)\n" "platform string\t\t: %s\n" "cpus detected\t\t: %d\n", cpu_name, cpu->variation, cpu->revision, (char*)cpu->serial_no, systype_name, sysvariation_name, hwrpb->sys_revision, (char*)hwrpb->ssn, est_cycle_freq ? : hwrpb->cycle_freq, est_cycle_freq ? "est." : "", timer_freq / 100, timer_freq % 100, hwrpb->pagesize, hwrpb->pa_bits, hwrpb->max_asn, loops_per_jiffy / (500000/HZ), (loops_per_jiffy / (5000/HZ)) % 100, unaligned[0].count, unaligned[0].pc, unaligned[0].va, unaligned[1].count, unaligned[1].pc, unaligned[1].va, platform_string(), nr_processors); #ifdef CONFIG_SMP seq_printf(f, "cpus active\t\t: %u\n" "cpu active mask\t\t: %016lx\n", num_online_cpus(), cpumask_bits(cpu_possible_mask)[0]); #endif show_cache_size (f, "L1 Icache", alpha_l1i_cacheshape); show_cache_size (f, "L1 Dcache", alpha_l1d_cacheshape); show_cache_size (f, "L2 cache", alpha_l2_cacheshape); show_cache_size (f, "L3 cache", alpha_l3_cacheshape); return 0; } static int __init read_mem_block(int *addr, int stride, int size) { long nloads = size / stride, cnt, tmp; __asm__ __volatile__( " rpcc %0\n" "1: ldl %3,0(%2)\n" " subq %1,1,%1\n" /* Next two XORs introduce an explicit data dependency between consecutive loads in the loop, which will give us true load latency. */ " xor %3,%2,%2\n" " xor %3,%2,%2\n" " addq %2,%4,%2\n" " bne %1,1b\n" " rpcc %3\n" " subl %3,%0,%0\n" : "=&r" (cnt), "=&r" (nloads), "=&r" (addr), "=&r" (tmp) : "r" (stride), "1" (nloads), "2" (addr)); return cnt / (size / stride); } #define CSHAPE(totalsize, linesize, assoc) \ ((totalsize & ~0xff) | (linesize << 4) | assoc) /* ??? EV5 supports up to 64M, but did the systems with more than 16M of BCACHE ever exist? */ #define MAX_BCACHE_SIZE 16*1024*1024 /* Note that the offchip caches are direct mapped on all Alphas. */ static int __init external_cache_probe(int minsize, int width) { int cycles, prev_cycles = 1000000; int stride = 1 << width; long size = minsize, maxsize = MAX_BCACHE_SIZE * 2; if (maxsize > (max_low_pfn + 1) << PAGE_SHIFT) maxsize = 1 << (ilog2(max_low_pfn + 1) + PAGE_SHIFT); /* Get the first block cached. */ read_mem_block(__va(0), stride, size); while (size < maxsize) { /* Get an average load latency in cycles. */ cycles = read_mem_block(__va(0), stride, size); if (cycles > prev_cycles * 2) { /* Fine, we exceed the cache. */ printk("%ldK Bcache detected; load hit latency %d " "cycles, load miss latency %d cycles\n", size >> 11, prev_cycles, cycles); return CSHAPE(size >> 1, width, 1); } /* Try to get the next block cached. */ read_mem_block(__va(size), stride, size); prev_cycles = cycles; size <<= 1; } return -1; /* No BCACHE found. */ } static void __init determine_cpu_caches (unsigned int cpu_type) { int L1I, L1D, L2, L3; switch (cpu_type) { case EV4_CPU: case EV45_CPU: { if (cpu_type == EV4_CPU) L1I = CSHAPE(8*1024, 5, 1); else L1I = CSHAPE(16*1024, 5, 1); L1D = L1I; L3 = -1; /* BIU_CTL is a write-only Abox register. PALcode has a shadow copy, and may be available from some versions of the CSERVE PALcall. If we can get it, then unsigned long biu_ctl, size; size = 128*1024 * (1 << ((biu_ctl >> 28) & 7)); L2 = CSHAPE (size, 5, 1); Unfortunately, we can't rely on that. */ L2 = external_cache_probe(128*1024, 5); break; } case LCA4_CPU: { unsigned long car, size; L1I = L1D = CSHAPE(8*1024, 5, 1); L3 = -1; car = *(vuip) phys_to_virt (0x120000078UL); size = 64*1024 * (1 << ((car >> 5) & 7)); /* No typo -- 8 byte cacheline size. Whodathunk. */ L2 = (car & 1 ? CSHAPE (size, 3, 1) : -1); break; } case EV5_CPU: case EV56_CPU: { unsigned long sc_ctl, width; L1I = L1D = CSHAPE(8*1024, 5, 1); /* Check the line size of the Scache. */ sc_ctl = *(vulp) phys_to_virt (0xfffff000a8UL); width = sc_ctl & 0x1000 ? 6 : 5; L2 = CSHAPE (96*1024, width, 3); /* BC_CONTROL and BC_CONFIG are write-only IPRs. PALcode has a shadow copy, and may be available from some versions of the CSERVE PALcall. If we can get it, then unsigned long bc_control, bc_config, size; size = 1024*1024 * (1 << ((bc_config & 7) - 1)); L3 = (bc_control & 1 ? CSHAPE (size, width, 1) : -1); Unfortunately, we can't rely on that. */ L3 = external_cache_probe(1024*1024, width); break; } case PCA56_CPU: case PCA57_CPU: { if (cpu_type == PCA56_CPU) { L1I = CSHAPE(16*1024, 6, 1); L1D = CSHAPE(8*1024, 5, 1); } else { L1I = CSHAPE(32*1024, 6, 2); L1D = CSHAPE(16*1024, 5, 1); } L3 = -1; #if 0 unsigned long cbox_config, size; cbox_config = *(vulp) phys_to_virt (0xfffff00008UL); size = 512*1024 * (1 << ((cbox_config >> 12) & 3)); L2 = ((cbox_config >> 31) & 1 ? CSHAPE (size, 6, 1) : -1); #else L2 = external_cache_probe(512*1024, 6); #endif break; } case EV6_CPU: case EV67_CPU: case EV68CB_CPU: case EV68AL_CPU: case EV68CX_CPU: case EV69_CPU: L1I = L1D = CSHAPE(64*1024, 6, 2); L2 = external_cache_probe(1024*1024, 6); L3 = -1; break; case EV7_CPU: case EV79_CPU: L1I = L1D = CSHAPE(64*1024, 6, 2); L2 = CSHAPE(7*1024*1024/4, 6, 7); L3 = -1; break; default: /* Nothing known about this cpu type. */ L1I = L1D = L2 = L3 = 0; break; } alpha_l1i_cacheshape = L1I; alpha_l1d_cacheshape = L1D; alpha_l2_cacheshape = L2; alpha_l3_cacheshape = L3; } /* * We show only CPU #0 info. */ static void * c_start(struct seq_file *f, loff_t *pos) { return *pos ? NULL : (char *)hwrpb + hwrpb->processor_offset; } static void * c_next(struct seq_file *f, void *v, loff_t *pos) { return NULL; } static void c_stop(struct seq_file *f, void *v) { } const struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo, }; static int alpha_panic_event(struct notifier_block *this, unsigned long event, void *ptr) { #if 1 /* FIXME FIXME FIXME */ /* If we are using SRM and serial console, just hard halt here. */ if (alpha_using_srm && srmcons_output) __halt(); #endif return NOTIFY_DONE; } static __init int add_pcspkr(void) { struct platform_device *pd; int ret; pd = platform_device_alloc("pcspkr", -1); if (!pd) return -ENOMEM; ret = platform_device_add(pd); if (ret) platform_device_put(pd); return ret; } device_initcall(add_pcspkr);