From 6acce3ef84520537f8a09a12c9ddbe814a584dd2 Mon Sep 17 00:00:00 2001 From: Peter Zijlstra Date: Fri, 11 Oct 2013 14:38:20 +0200 Subject: sched: Remove get_online_cpus() usage Remove get_online_cpus() usage from the scheduler; there's 4 sites that use it: - sched_init_smp(); where its completely superfluous since we're in 'early' boot and there simply cannot be any hotplugging. - sched_getaffinity(); we already take a raw spinlock to protect the task cpus_allowed mask, this disables preemption and therefore also stabilizes cpu_online_mask as that's modified using stop_machine. However switch to active mask for symmetry with sched_setaffinity()/set_cpus_allowed_ptr(). We guarantee active mask stability by inserting sync_rcu/sched() into _cpu_down. - sched_setaffinity(); we don't appear to need get_online_cpus() either, there's two sites where hotplug appears relevant: * cpuset_cpus_allowed(); for the !cpuset case we use possible_mask, for the cpuset case we hold task_lock, which is a spinlock and thus for mainline disables preemption (might cause pain on RT). * set_cpus_allowed_ptr(); Holds all scheduler locks and thus has preemption properly disabled; also it already deals with hotplug races explicitly where it releases them. - migrate_swap(); we can make stop_two_cpus() do the heavy lifting for us with a little trickery. By adding a sync_sched/rcu() after the CPU_DOWN_PREPARE notifier we can provide preempt/rcu guarantees for cpu_active_mask. Use these to validate that both our cpus are active when queueing the stop work before we queue the stop_machine works for take_cpu_down(). Signed-off-by: Peter Zijlstra Cc: "Srivatsa S. Bhat" Cc: Paul McKenney Cc: Mel Gorman Cc: Rik van Riel Cc: Srikar Dronamraju Cc: Andrea Arcangeli Cc: Johannes Weiner Cc: Linus Torvalds Cc: Andrew Morton Cc: Steven Rostedt Cc: Oleg Nesterov Link: http://lkml.kernel.org/r/20131011123820.GV3081@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar --- kernel/stop_machine.c | 26 +++++++++++++++++++++----- 1 file changed, 21 insertions(+), 5 deletions(-) (limited to 'kernel/stop_machine.c') diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c index 32a6c44..c530bc5 100644 --- a/kernel/stop_machine.c +++ b/kernel/stop_machine.c @@ -234,11 +234,13 @@ static void irq_cpu_stop_queue_work(void *arg) */ int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) { - int call_cpu; struct cpu_stop_done done; struct cpu_stop_work work1, work2; struct irq_cpu_stop_queue_work_info call_args; - struct multi_stop_data msdata = { + struct multi_stop_data msdata; + + preempt_disable(); + msdata = (struct multi_stop_data){ .fn = fn, .data = arg, .num_threads = 2, @@ -262,16 +264,30 @@ int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void * set_state(&msdata, MULTI_STOP_PREPARE); /* + * If we observe both CPUs active we know _cpu_down() cannot yet have + * queued its stop_machine works and therefore ours will get executed + * first. Or its not either one of our CPUs that's getting unplugged, + * in which case we don't care. + * + * This relies on the stopper workqueues to be FIFO. + */ + if (!cpu_active(cpu1) || !cpu_active(cpu2)) { + preempt_enable(); + return -ENOENT; + } + + /* * Queuing needs to be done by the lowest numbered CPU, to ensure * that works are always queued in the same order on every CPU. * This prevents deadlocks. */ - call_cpu = min(cpu1, cpu2); - - smp_call_function_single(call_cpu, &irq_cpu_stop_queue_work, + smp_call_function_single(min(cpu1, cpu2), + &irq_cpu_stop_queue_work, &call_args, 0); + preempt_enable(); wait_for_completion(&done.completion); + return done.executed ? done.ret : -ENOENT; } -- cgit v1.1