From 0487ccac2032872ea3bcfed08d4ecaefb55cf017 Mon Sep 17 00:00:00 2001 From: Sabrina Dubroca Date: Fri, 28 Apr 2017 18:11:56 +0200 Subject: crypto: aesni - make non-AVX AES-GCM work with any aadlen This is the first step to make the aesni AES-GCM implementation generic. The current code was written for rfc4106, so it handles only some specific sizes of associated data. Signed-off-by: Sabrina Dubroca Signed-off-by: Herbert Xu --- arch/x86/crypto/aesni-intel_asm.S | 169 +++++++++++++++++++++++++++++--------- 1 file changed, 132 insertions(+), 37 deletions(-) (limited to 'arch/x86/crypto') diff --git a/arch/x86/crypto/aesni-intel_asm.S b/arch/x86/crypto/aesni-intel_asm.S index 3c46518..605726a 100644 --- a/arch/x86/crypto/aesni-intel_asm.S +++ b/arch/x86/crypto/aesni-intel_asm.S @@ -89,6 +89,29 @@ SHIFT_MASK: .octa 0x0f0e0d0c0b0a09080706050403020100 ALL_F: .octa 0xffffffffffffffffffffffffffffffff .octa 0x00000000000000000000000000000000 +.section .rodata +.align 16 +.type aad_shift_arr, @object +.size aad_shift_arr, 272 +aad_shift_arr: + .octa 0xffffffffffffffffffffffffffffffff + .octa 0xffffffffffffffffffffffffffffff0C + .octa 0xffffffffffffffffffffffffffff0D0C + .octa 0xffffffffffffffffffffffffff0E0D0C + .octa 0xffffffffffffffffffffffff0F0E0D0C + .octa 0xffffffffffffffffffffff0C0B0A0908 + .octa 0xffffffffffffffffffff0D0C0B0A0908 + .octa 0xffffffffffffffffff0E0D0C0B0A0908 + .octa 0xffffffffffffffff0F0E0D0C0B0A0908 + .octa 0xffffffffffffff0C0B0A090807060504 + .octa 0xffffffffffff0D0C0B0A090807060504 + .octa 0xffffffffff0E0D0C0B0A090807060504 + .octa 0xffffffff0F0E0D0C0B0A090807060504 + .octa 0xffffff0C0B0A09080706050403020100 + .octa 0xffff0D0C0B0A09080706050403020100 + .octa 0xff0E0D0C0B0A09080706050403020100 + .octa 0x0F0E0D0C0B0A09080706050403020100 + .text @@ -252,32 +275,66 @@ XMM2 XMM3 XMM4 XMMDst TMP6 TMP7 i i_seq operation mov arg8, %r12 # %r12 = aadLen mov %r12, %r11 pxor %xmm\i, %xmm\i + pxor \XMM2, \XMM2 -_get_AAD_loop\num_initial_blocks\operation: - movd (%r10), \TMP1 - pslldq $12, \TMP1 - psrldq $4, %xmm\i + cmp $16, %r11 + jl _get_AAD_rest8\num_initial_blocks\operation +_get_AAD_blocks\num_initial_blocks\operation: + movdqu (%r10), %xmm\i + PSHUFB_XMM %xmm14, %xmm\i # byte-reflect the AAD data + pxor %xmm\i, \XMM2 + GHASH_MUL \XMM2, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1 + add $16, %r10 + sub $16, %r12 + sub $16, %r11 + cmp $16, %r11 + jge _get_AAD_blocks\num_initial_blocks\operation + + movdqu \XMM2, %xmm\i + cmp $0, %r11 + je _get_AAD_done\num_initial_blocks\operation + + pxor %xmm\i,%xmm\i + + /* read the last <16B of AAD. since we have at least 4B of + data right after the AAD (the ICV, and maybe some CT), we can + read 4B/8B blocks safely, and then get rid of the extra stuff */ +_get_AAD_rest8\num_initial_blocks\operation: + cmp $4, %r11 + jle _get_AAD_rest4\num_initial_blocks\operation + movq (%r10), \TMP1 + add $8, %r10 + sub $8, %r11 + pslldq $8, \TMP1 + psrldq $8, %xmm\i pxor \TMP1, %xmm\i + jmp _get_AAD_rest8\num_initial_blocks\operation +_get_AAD_rest4\num_initial_blocks\operation: + cmp $0, %r11 + jle _get_AAD_rest0\num_initial_blocks\operation + mov (%r10), %eax + movq %rax, \TMP1 add $4, %r10 - sub $4, %r12 - jne _get_AAD_loop\num_initial_blocks\operation - - cmp $16, %r11 - je _get_AAD_loop2_done\num_initial_blocks\operation - - mov $16, %r12 -_get_AAD_loop2\num_initial_blocks\operation: + sub $4, %r10 + pslldq $12, \TMP1 psrldq $4, %xmm\i - sub $4, %r12 - cmp %r11, %r12 - jne _get_AAD_loop2\num_initial_blocks\operation - -_get_AAD_loop2_done\num_initial_blocks\operation: + pxor \TMP1, %xmm\i +_get_AAD_rest0\num_initial_blocks\operation: + /* finalize: shift out the extra bytes we read, and align + left. since pslldq can only shift by an immediate, we use + vpshufb and an array of shuffle masks */ + movq %r12, %r11 + salq $4, %r11 + movdqu aad_shift_arr(%r11), \TMP1 + PSHUFB_XMM \TMP1, %xmm\i +_get_AAD_rest_final\num_initial_blocks\operation: PSHUFB_XMM %xmm14, %xmm\i # byte-reflect the AAD data + pxor \XMM2, %xmm\i + GHASH_MUL %xmm\i, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1 +_get_AAD_done\num_initial_blocks\operation: xor %r11, %r11 # initialise the data pointer offset as zero - - # start AES for num_initial_blocks blocks + # start AES for num_initial_blocks blocks mov %arg5, %rax # %rax = *Y0 movdqu (%rax), \XMM0 # XMM0 = Y0 @@ -322,7 +379,7 @@ aes_loop_initial_dec\num_initial_blocks: # prepare plaintext/ciphertext for GHASH computation .endr .endif - GHASH_MUL %xmm\i, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1 + # apply GHASH on num_initial_blocks blocks .if \i == 5 @@ -477,28 +534,66 @@ XMM2 XMM3 XMM4 XMMDst TMP6 TMP7 i i_seq operation mov arg8, %r12 # %r12 = aadLen mov %r12, %r11 pxor %xmm\i, %xmm\i -_get_AAD_loop\num_initial_blocks\operation: - movd (%r10), \TMP1 - pslldq $12, \TMP1 - psrldq $4, %xmm\i + pxor \XMM2, \XMM2 + + cmp $16, %r11 + jl _get_AAD_rest8\num_initial_blocks\operation +_get_AAD_blocks\num_initial_blocks\operation: + movdqu (%r10), %xmm\i + PSHUFB_XMM %xmm14, %xmm\i # byte-reflect the AAD data + pxor %xmm\i, \XMM2 + GHASH_MUL \XMM2, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1 + add $16, %r10 + sub $16, %r12 + sub $16, %r11 + cmp $16, %r11 + jge _get_AAD_blocks\num_initial_blocks\operation + + movdqu \XMM2, %xmm\i + cmp $0, %r11 + je _get_AAD_done\num_initial_blocks\operation + + pxor %xmm\i,%xmm\i + + /* read the last <16B of AAD. since we have at least 4B of + data right after the AAD (the ICV, and maybe some PT), we can + read 4B/8B blocks safely, and then get rid of the extra stuff */ +_get_AAD_rest8\num_initial_blocks\operation: + cmp $4, %r11 + jle _get_AAD_rest4\num_initial_blocks\operation + movq (%r10), \TMP1 + add $8, %r10 + sub $8, %r11 + pslldq $8, \TMP1 + psrldq $8, %xmm\i pxor \TMP1, %xmm\i + jmp _get_AAD_rest8\num_initial_blocks\operation +_get_AAD_rest4\num_initial_blocks\operation: + cmp $0, %r11 + jle _get_AAD_rest0\num_initial_blocks\operation + mov (%r10), %eax + movq %rax, \TMP1 add $4, %r10 - sub $4, %r12 - jne _get_AAD_loop\num_initial_blocks\operation - cmp $16, %r11 - je _get_AAD_loop2_done\num_initial_blocks\operation - mov $16, %r12 -_get_AAD_loop2\num_initial_blocks\operation: + sub $4, %r10 + pslldq $12, \TMP1 psrldq $4, %xmm\i - sub $4, %r12 - cmp %r11, %r12 - jne _get_AAD_loop2\num_initial_blocks\operation -_get_AAD_loop2_done\num_initial_blocks\operation: + pxor \TMP1, %xmm\i +_get_AAD_rest0\num_initial_blocks\operation: + /* finalize: shift out the extra bytes we read, and align + left. since pslldq can only shift by an immediate, we use + vpshufb and an array of shuffle masks */ + movq %r12, %r11 + salq $4, %r11 + movdqu aad_shift_arr(%r11), \TMP1 + PSHUFB_XMM \TMP1, %xmm\i +_get_AAD_rest_final\num_initial_blocks\operation: PSHUFB_XMM %xmm14, %xmm\i # byte-reflect the AAD data + pxor \XMM2, %xmm\i + GHASH_MUL %xmm\i, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1 +_get_AAD_done\num_initial_blocks\operation: xor %r11, %r11 # initialise the data pointer offset as zero - - # start AES for num_initial_blocks blocks + # start AES for num_initial_blocks blocks mov %arg5, %rax # %rax = *Y0 movdqu (%rax), \XMM0 # XMM0 = Y0 @@ -543,7 +638,7 @@ aes_loop_initial_enc\num_initial_blocks: # prepare plaintext/ciphertext for GHASH computation .endr .endif - GHASH_MUL %xmm\i, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1 + # apply GHASH on num_initial_blocks blocks .if \i == 5 -- cgit v1.1