From 63295cb2ff4329f563579f3d20c5855a96a866d5 Mon Sep 17 00:00:00 2001 From: Claudio Scordino Date: Thu, 11 Nov 2010 11:22:36 +0100 Subject: serial: add Documentation about RS485 serial communications Documentation about RS485 serial communications Signed-off-by: Claudio Scordino Acked-by: Randy Dunlap Acked-by: Russell King Acked-by: Grant Edwards Signed-off-by: Greg Kroah-Hartman --- Documentation/serial/00-INDEX | 2 + Documentation/serial/serial-rs485.txt | 119 ++++++++++++++++++++++++++++++++++ 2 files changed, 121 insertions(+) create mode 100644 Documentation/serial/serial-rs485.txt diff --git a/Documentation/serial/00-INDEX b/Documentation/serial/00-INDEX index 07dcdb0..e09468a 100644 --- a/Documentation/serial/00-INDEX +++ b/Documentation/serial/00-INDEX @@ -14,6 +14,8 @@ riscom8.txt - notes on using the RISCom/8 multi-port serial driver. rocket.txt - info on the Comtrol RocketPort multiport serial driver. +serial-rs485.txt + - info about RS485 structures and support in the kernel. specialix.txt - info on hardware/driver for specialix IO8+ multiport serial card. stallion.txt diff --git a/Documentation/serial/serial-rs485.txt b/Documentation/serial/serial-rs485.txt new file mode 100644 index 0000000..a3b1af7 --- /dev/null +++ b/Documentation/serial/serial-rs485.txt @@ -0,0 +1,119 @@ + RS485 SERIAL COMMUNICATIONS + +1. INTRODUCTION + + EIA-485, also known as TIA/EIA-485 or RS-485, is a standard defining the + electrical characteristics of drivers and receivers for use in balanced + digital multipoint systems. + This standard is widely used for communications in industrial automation + because it can be used effectively over long distances and in electrically + noisy environments. + +2. HARDWARE-RELATED CONSIDERATIONS + + Some CPUs (e.g., Atmel AT91) contain a built-in half-duplex mode capable of + automatically controlling line direction by toggling RTS. That can used to + control external half-duplex hardware like an RS485 transceiver or any + RS232-connected half-duplex device like some modems. + + For these microcontrollers, the Linux driver should be made capable of + working in both modes, and proper ioctls (see later) should be made + available at user-level to allow switching from one mode to the other, and + vice versa. + +3. DATA STRUCTURES ALREADY AVAILABLE IN THE KERNEL + + The Linux kernel provides the serial_rs485 structure (see [1]) to handle + RS485 communications. This data structure is used to set and configure RS485 + parameters in the platform data and in ioctls. + + Any driver for devices capable of working both as RS232 and RS485 should + provide at least the following ioctls: + + - TIOCSRS485 (typically associated with number 0x542F). This ioctl is used + to enable/disable RS485 mode from user-space + + - TIOCGRS485 (typically associated with number 0x542E). This ioctl is used + to get RS485 mode from kernel-space (i.e., driver) to user-space. + + In other words, the serial driver should contain a code similar to the next + one: + + static struct uart_ops atmel_pops = { + /* ... */ + .ioctl = handle_ioctl, + }; + + static int handle_ioctl(struct uart_port *port, + unsigned int cmd, + unsigned long arg) + { + struct serial_rs485 rs485conf; + + switch (cmd) { + case TIOCSRS485: + if (copy_from_user(&rs485conf, + (struct serial_rs485 *) arg, + sizeof(rs485conf))) + return -EFAULT; + + /* ... */ + break; + + case TIOCGRS485: + if (copy_to_user((struct serial_rs485 *) arg, + ..., + sizeof(rs485conf))) + return -EFAULT; + /* ... */ + break; + + /* ... */ + } + } + + +4. USAGE FROM USER-LEVEL + + From user-level, RS485 configuration can be get/set using the previous + ioctls. For instance, to set RS485 you can use the following code: + + #include + + /* Driver-specific ioctls: */ + #define TIOCGRS485 0x542E + #define TIOCSRS485 0x542F + + /* Open your specific device (e.g., /dev/mydevice): */ + int fd = open ("/dev/mydevice", O_RDWR); + if (fd < 0) { + /* Error handling. See errno. */ + } + + struct serial_rs485 rs485conf; + + /* Set RS485 mode: */ + rs485conf.flags |= SER_RS485_ENABLED; + + /* Set rts delay before send, if needed: */ + rs485conf.flags |= SER_RS485_RTS_BEFORE_SEND; + rs485conf.delay_rts_before_send = ...; + + /* Set rts delay after send, if needed: */ + rs485conf.flags |= SER_RS485_RTS_AFTER_SEND; + rs485conf.delay_rts_after_send = ...; + + if (ioctl (fd, TIOCSRS485, &rs485conf) < 0) { + /* Error handling. See errno. */ + } + + /* Use read() and write() syscalls here... */ + + /* Close the device when finished: */ + if (close (fd) < 0) { + /* Error handling. See errno. */ + } + +5. REFERENCES + + [1] include/linux/serial.h -- cgit v1.1