| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| | |
Resolve conflicts with current mainline
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
On my GICv3 system, the following is printed to the kernel log at boot:
kvm [1]: 8-bit VMID
kvm [1]: IDMAP page: d20e35000
kvm [1]: HYP VA range: 800000000000:ffffffffffff
kvm [1]: vgic-v2@2c020000
kvm [1]: GIC system register CPU interface enabled
kvm [1]: vgic interrupt IRQ1
kvm [1]: virtual timer IRQ4
kvm [1]: Hyp mode initialized successfully
The KVM IDMAP is a mapping of a statically allocated kernel structure,
and so printing its physical address leaks the physical placement of
the kernel when physical KASLR in effect. So change the kvm_info() to
kvm_debug() to remove it from the log output.
While at it, trim the output a bit more: IRQ numbers can be found in
/proc/interrupts, and the HYP VA and vgic-v2 lines are not highly
informational either.
Cc: <stable@vger.kernel.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Christoffer Dall <cdall@kernel.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We currently don't allow resetting mapped IRQs from userspace, because
their state is controlled by the hardware. But we do need to reset the
state when the VM is reset, so we provide a function for the 'owner' of
the mapped interrupt to reset the interrupt state.
Currently only the timer uses mapped interrupts, so we call this
function from the timer reset logic.
Cc: stable@vger.kernel.org
Fixes: 4c60e360d6df ("KVM: arm/arm64: Provide a get_input_level for the arch timer")
Signed-off-by: Christoffer Dall <cdall@kernel.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When introducing support for irqchip in userspace we needed a way to
mask the timer signal to prevent the guest continuously exiting due to a
screaming timer.
We did this by disabling the corresponding percpu interrupt on the
host interrupt controller, because we cannot rely on the host system
having a GIC, and therefore cannot make any assumptions about having an
active state to hide the timer signal.
Unfortunately, when introducing this feature, it became entirely
possible that a VCPU which belongs to a VM that has a userspace irqchip
can disable the vtimer irq on the host on some physical CPU, and then go
away without ever enabling the vtimer irq on that physical CPU again.
This means that using irqchips in userspace on a system that also
supports running VMs with an in-kernel GIC can prevent forward progress
from in-kernel GIC VMs.
Later on, when we started taking virtual timer interrupts in the arch
timer code, we would also leave this timer state active for userspace
irqchip VMs, because we leave it up to a VGIC-enabled guest to
deactivate the hardware IRQ using the HW bit in the LR.
Both issues are solved by only using the enable/disable trick on systems
that do not have a host GIC which supports the active state, because all
VMs on such systems must use irqchips in userspace. Systems that have a
working GIC with support for an active state use the active state to
mask the timer signal for both userspace and in-kernel irqchips.
Cc: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: <stable@vger.kernel.org> # v4.12+
Fixes: d9e139778376 ("KVM: arm/arm64: Support arch timers with a userspace gic")
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Moving the call to vcpu_load() in kvm_arch_vcpu_ioctl_run() to after
we've called kvm_vcpu_first_run_init() simplifies some of the vgic and
there is also no need to do vcpu_load() for things such as handling the
immediate_exit flag.
Reviewed-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In AArch64/AArch32, the virtual counter uses a fixed virtual offset
of zero in the following situations as per ARMv8 specifications:
1) HCR_EL2.E2H is 1, and CNTVCT_EL0/CNTVCT are read from EL2.
2) HCR_EL2.{E2H, TGE} is {1, 1}, and either:
— CNTVCT_EL0 is read from Non-secure EL0 or EL2.
— CNTVCT is read from Non-secure EL0.
So, no need to zero CNTVOFF_EL2/CNTVOFF for VHE case.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|\
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Topic branch for stable KVM clockource under Hyper-V.
Thanks to Christoffer Dall for resolving the ARM conflict.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When enabling the timer on the first run, we fail to ever restore the
state and mark it as loaded. That means, that in the initial entry to
the VCPU ioctl, unless we exit to userspace for some reason such as a
pending signal, if the guest programs a timer and blocks, we will wait
forever, because we never read back the hardware state (the loaded flag
is not set), and so we think the timer is disabled, and we never
schedule a background soft timer.
The end result? The VCPU blocks forever, and the only solution is to
kill the thread.
Fixes: 4a2c4da1250d ("arm/arm64: KVM: Load the timer state when enabling the timer")
Reported-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The recent timer rework was assuming that once the timer was disabled,
we should no longer see any interrupts from the timer. This assumption
turns out to not be true, and instead we have to handle the case when
the timer ISR runs even after the timer has been disabled.
This requires a couple of changes:
First, we should never overwrite the cached guest state of the timer
control register when the ISR runs, because KVM may have disabled its
timers when doing vcpu_put(), even though the guest still had the timer
enabled.
Second, we shouldn't assume that the timer is actually firing just
because we see an interrupt, but we should check the actual state of the
timer in the timer control register to understand if the hardware timer
is really firing or not.
We also add an ISB to vtimer_save_state() to ensure the timer is
actually disabled once we enable interrupts, which should clarify the
intention of the implementation, and reduce the risk of unwanted
interrupts.
Fixes: b103cc3f10c0 ("KVM: arm/arm64: Avoid timer save/restore in vcpu entry/exit")
Reported-by: Marc Zyngier <marc.zyngier@arm.com>
Reported-by: Jia He <hejianet@gmail.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If we don't have a usable GIC, do not try to set the vcpu affinity
as this is guaranteed to fail.
Reported-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When I introduced a static key to avoid work in the critical path for
userspace irqchips which is very rarely used, I accidentally messed up
my logic and used && where I should have used ||, because the point was
to short-circuit the evaluation in case userspace irqchips weren't even
in use.
This fixes an issue when running in-kernel irqchip VMs alongside
userspace irqchip VMs.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Fixes: c44c232ee2d3 ("KVM: arm/arm64: Avoid work when userspace iqchips are not used")
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
After the recently introduced support for level-triggered mapped
interrupt, I accidentally left the VCPU thread busily going back and
forward between the guest and the hypervisor whenever the guest was
blocking, because I would always incorrectly report that a timer
interrupt was pending.
This is because the timer->irq.level field is not valid for mapped
interrupts, where we offload the level state to the hardware, and as a
result this field is always true.
Luckily the problem can be relatively easily solved by not checking the
cached signal state of either timer in kvm_timer_should_fire() but
instead compute the timer state on the fly, which we do already if the
cached signal state wasn't high. In fact, the only reason for checking
the cached signal state was a tiny optimization which would only be
potentially faster when the polling loop detects a pending timer
interrupt, which is quite unlikely.
Instead of duplicating the logic from kvm_arch_timer_handler(), we
enlighten kvm_timer_should_fire() to report something valid when the
timer state is loaded onto the hardware. We can then call this from
kvm_arch_timer_handler() as well and avoid the call to
__timer_snapshot_state() in kvm_arch_timer_get_input_level().
Reported-by: Tomasz Nowicki <tn@semihalf.com>
Tested-by: Tomasz Nowicki <tn@semihalf.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We currently check if the VM has a userspace irqchip in several places
along the critical path, and if so, we do some work which is only
required for having an irqchip in userspace. This is unfortunate, as we
could avoid doing any work entirely, if we didn't have to support
irqchip in userspace.
Realizing the userspace irqchip on ARM is mostly a developer or hobby
feature, and is unlikely to be used in servers or other scenarios where
performance is a priority, we can use a refcounted static key to only
check the irqchip configuration when we have at least one VM that uses
an irqchip in userspace.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The VGIC can now support the life-cycle of mapped level-triggered
interrupts, and we no longer have to read back the timer state on every
exit from the VM if we had an asserted timer interrupt signal, because
the VGIC already knows if we hit the unlikely case where the guest
disables the timer without ACKing the virtual timer interrupt.
This means we rework a bit of the code to factor out the functionality
to snapshot the timer state from vtimer_save_state(), and we can reuse
this functionality in the sync path when we have an irqchip in
userspace, and also to support our implementation of the
get_input_level() function for the timer.
This change also means that we can no longer rely on the timer's view of
the interrupt line to set the active state, because we no longer
maintain this state for mapped interrupts when exiting from the guest.
Instead, we only set the active state if the virtual interrupt is
active, and otherwise we simply let the timer fire again and raise the
virtual interrupt from the ISR.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The GIC sometimes need to sample the physical line of a mapped
interrupt. As we know this to be notoriously slow, provide a callback
function for devices (such as the timer) which can do this much faster
than talking to the distributor, for example by comparing a few
in-memory values. Fall back to the good old method of poking the
physical GIC if no callback is provided.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The timer logic was designed after a strict idea of modeling an
interrupt line level in software, meaning that only transitions in the
level need to be reported to the VGIC. This works well for the timer,
because the arch timer code is in complete control of the device and can
track the transitions of the line.
However, as we are about to support using the HW bit in the VGIC not
just for the timer, but also for VFIO which cannot track transitions of
the interrupt line, we have to decide on an interface between the GIC
and other subsystems for level triggered mapped interrupts, which both
the timer and VFIO can use.
VFIO only sees an asserting transition of the physical interrupt line,
and tells the VGIC when that happens. That means that part of the
interrupt flow is offloaded to the hardware.
To use the same interface for VFIO devices and the timer, we therefore
have to change the timer (we cannot change VFIO because it doesn't know
the details of the device it is assigning to a VM).
Luckily, changing the timer is simple, we just need to stop 'caching'
the line level, but instead let the VGIC know the state of the timer
every time there is a potential change in the line level, and when the
line level should be asserted from the timer ISR. The VGIC can ignore
extra notifications using its validate mechanism.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
|
|
|
|
|
|
|
|
| |
The timer optimization patches inadvertendly changed the logic to always
load the timer state as if we have a vgic, even if we don't have a vgic.
Fix this by doing the usual irqchip_in_kernel() check and call the
appropriate load function.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
After the timer optimization rework we accidentally end up calling
physical timer enable/disable functions on VHE systems, which is neither
needed nor correct, since the CNTHCTL_EL2 register format is
different when HCR_EL2.E2H is set.
The CNTHCTL_EL2 is initialized when CPUs become online in
kvm_timer_init_vhe() and we don't have to call these functions on VHE
systems, which also allows us to inline the non-VHE functionality.
Reported-by: Jintack Lim <jintack@cs.columbia.edu>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We want to reuse the core of the map/unmap functions for IRQ
forwarding. Let's move the computation of the hwirq in
kvm_vgic_map_phys_irq and pass the linux IRQ as parameter.
the host_irq is added to struct vgic_irq.
We introduce kvm_vgic_map/unmap_irq which take a struct vgic_irq
handle as a parameter.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
After being lazy with saving/restoring the timer state, we defer that
work to vcpu_load and vcpu_put, which ensure that the timer state is
loaded on the hardware timers whenever the VCPU runs.
Unfortunately, we are failing to do that the first time vcpu_load()
runs, because the timer has not yet been enabled at that time. As long
as the initialized timer state matches what happens to be in the
hardware (a disabled timer, because we never leave the timer screaming),
this does not show up as a problem, but is nevertheless incorrect.
The solution is simple; disable preemption while setting the timer to be
enabled, and call the timer load function when first enabling the timer.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
kvm_timer_should_fire() can be called in two different situations from
the kvm_vcpu_block().
The first case is before calling kvm_timer_schedule(), used for wait
polling, and in this case the VCPU thread is running and the timer state
is loaded onto the hardware so all we have to do is check if the virtual
interrupt lines are asserted, becasue the timer interrupt handler
functions will raise those lines as appropriate.
The second case is inside the wait loop of kvm_vcpu_block(), where we
have already called kvm_timer_schedule() and therefore the hardware will
be disabled and the software view of the timer state is up to date
(timer->loaded is false), and so we can simply check if the timer should
fire by looking at the software state.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Now when both the vtimer and the ptimer when using both the in-kernel
vgic emulation and a userspace IRQ chip are driven by the timer signals
and at the vcpu load/put boundaries, instead of recomputing the timer
state at every entry/exit to/from the guest, we can get entirely rid of
the flush hwstate function.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is no need to schedule and cancel a hrtimer when entering and
exiting the guest, because we know when the physical timer is going to
fire when the guest programs it, and we can simply program the hrtimer
at that point.
Now when the register modifications from the guest go through the
kvm_arm_timer_set/get_reg functions, which always call
kvm_timer_update_state(), we can simply consider the timer state in this
function and schedule and cancel the timers as needed.
This avoids looking at the physical timer emulation state when entering
and exiting the VCPU, allowing for faster servicing of the VM when
needed.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
We are about to call phys_timer_emulate() from kvm_timer_update_state()
and modify phys_timer_emulate() at the same time. Moving the function
and modifying it in a single patch makes the diff hard to read, so do
this separately first.
No functional change.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add suport for the physical timer registers in kvm_arm_timer_set_reg and
kvm_arm_timer_get_reg so that these functions can be reused to interact
with the rest of the system.
Note that this paves part of the way for the physical timer state
save/restore, but we still need to add those registers to
KVM_GET_REG_LIST before we support migrating the physical timer state.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We don't need to save and restore the hardware timer state and examine
if it generates interrupts on on every entry/exit to the guest. The
timer hardware is perfectly capable of telling us when it has expired
by signaling interrupts.
When taking a vtimer interrupt in the host, we don't want to mess with
the timer configuration, we just want to forward the physical interrupt
to the guest as a virtual interrupt. We can use the split priority drop
and deactivate feature of the GIC to do this, which leaves an EOI'ed
interrupt active on the physical distributor, making sure we don't keep
taking timer interrupts which would prevent the guest from running. We
can then forward the physical interrupt to the VM using the HW bit in
the LR of the GIC, like we do already, which lets the guest directly
deactivate both the physical and virtual timer simultaneously, allowing
the timer hardware to exit the VM and generate a new physical interrupt
when the timer output is again asserted later on.
We do need to capture this state when migrating VCPUs between physical
CPUs, however, which we use the vcpu put/load functions for, which are
called through preempt notifiers whenever the thread is scheduled away
from the CPU or called directly if we return from the ioctl to
userspace.
One caveat is that we have to save and restore the timer state in both
kvm_timer_vcpu_[put/load] and kvm_timer_[schedule/unschedule], because
we can have the following flows:
1. kvm_vcpu_block
2. kvm_timer_schedule
3. schedule
4. kvm_timer_vcpu_put (preempt notifier)
5. schedule (vcpu thread gets scheduled back)
6. kvm_timer_vcpu_load (preempt notifier)
7. kvm_timer_unschedule
And a version where we don't actually call schedule:
1. kvm_vcpu_block
2. kvm_timer_schedule
7. kvm_timer_unschedule
Since kvm_timer_[schedule/unschedule] may not be followed by put/load,
but put/load also may be called independently, we call the timer
save/restore functions from both paths. Since they rely on the loaded
flag to never save/restore when unnecessary, this doesn't cause any
harm, and we ensure that all invokations of either set of functions work
as intended.
An added benefit beyond not having to read and write the timer sysregs
on every entry and exit is that we no longer have to actively write the
active state to the physical distributor, because we configured the
irq for the vtimer to only get a priority drop when handling the
interrupt in the GIC driver (we called irq_set_vcpu_affinity()), and
the interrupt stays active after firing on the host.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
|
|
|
|
|
|
|
| |
As we are about to take physical interrupts for the virtual timer on the
host but want to leave those active while running the VM (and let the VM
deactivate them), we need to set the vtimer PPI affinity accordingly.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As we are about to be lazy with saving and restoring the timer
registers, we prepare by moving all possible timer configuration logic
out of the hyp code. All virtual timer registers can be programmed from
EL1 and since the arch timer is always a level triggered interrupt we
can safely do this with interrupts disabled in the host kernel on the
way to the guest without taking vtimer interrupts in the host kernel
(yet).
The downside is that the cntvoff register can only be programmed from
hyp mode, so we jump into hyp mode and back to program it. This is also
safe, because the host kernel doesn't use the virtual timer in the KVM
code. It may add a little performance performance penalty, but only
until following commits where we move this operation to vcpu load/put.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We were using the same hrtimer for emulating the physical timer and for
making sure a blocking VCPU thread would be eventually woken up. That
worked fine in the previous arch timer design, but as we are about to
actually use the soft timer expire function for the physical timer
emulation, change the logic to use a dedicated hrtimer.
This has the added benefit of not having to cancel any work in the sync
path, which in turn allows us to run the flush and sync with IRQs
disabled.
Note that the hrtimer used to program the host kernel's timer to
generate an exit from the guest when the emulated physical timer fires
never has to inject any work, and to share the soft_timer_cancel()
function with the bg_timer, we change the function to only cancel any
pending work if the pointer to the work struct is not null.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
|
|
|
|
|
|
|
| |
As we are about to introduce a separate hrtimer for the physical timer,
call this timer bg_timer, because we refer to this timer as the
background timer in the code and comments elsewhere.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We are about to add an additional soft timer to the arch timer state for
a VCPU and would like to be able to reuse the functions to program and
cancel a timer, so we make them slightly more generic and rename to make
it more clear that these functions work on soft timers and not the
hardware resource that this code is managing.
The armed flag on the timer state is only used to assert a condition,
and we don't rely on this assertion in any meaningful way, so we can
simply get rid of this flack and slightly reduce complexity.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When injecting an IRQ to the VGIC, you now have to present an owner
token for that IRQ line to show that you are the owner of that line.
IRQ lines driven from userspace or via an irqfd do not have an owner and
will simply pass a NULL pointer.
Also get rid of the unused kvm_vgic_inject_mapped_irq prototype.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We check if other in-kernel devices have already been connected to the
GIC for a particular interrupt line when possible.
For the PMU, we can do this whenever setting the PMU interrupt number
from userspace.
For the timers, we have to wait until we try to enable the timer,
because we have a concept of default IRQ numbers that userspace
shouldn't have to work around in the initialization phase.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
First we define an ABI using the vcpu devices that lets userspace set
the interrupt numbers for the various timers on both the 32-bit and
64-bit KVM/ARM implementations.
Second, we add the definitions for the groups and attributes introduced
by the above ABI. (We add the PMU define on the 32-bit side as well for
symmetry and it may get used some day.)
Third, we set up the arch-specific vcpu device operation handlers to
call into the timer code for anything related to the
KVM_ARM_VCPU_TIMER_CTRL group.
Fourth, we implement support for getting and setting the timer interrupt
numbers using the above defined ABI in the arch timer code.
Fifth, we introduce error checking upon enabling the arch timer (which
is called when first running a VCPU) to check that all VCPUs are
configured to use the same PPI for the timer (as mandated by the
architecture) and that the virtual and physical timers are not
configured to use the same IRQ number.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We currently initialize the arch timer IRQ numbers from the reset code,
presumably because we once intended to model multiple CPU or SoC types
from within the kernel and have hard-coded reset values in the reset
code.
As we are moving towards userspace being in charge of more fine-grained
CPU emulation and stitching together the pieces needed to emulate a
particular type of CPU, we should no longer have a tight coupling
between resetting a VCPU and setting IRQ numbers.
Therefore, move the logic to define and use the default IRQ numbers to
the timer code and set the IRQ number immediately when creating the
VCPU.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The timer work is only scheduled for a VCPU when that VCPU is
blocked. This means we only need to wake it up, not kick (IPI)
it. While calling kvm_vcpu_kick() would just do the wake up,
and not kick, anyway, let's change this to avoid request-less
vcpu kicks, as they're generally not a good idea (see
"Request-less VCPU Kicks" in
Documentation/virtual/kvm/vcpu-requests.rst)
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
| |
When not using an in-kernel VGIC, but instead emulating an interrupt
controller in userspace, we should report the PMU overflow status to
that userspace interrupt controller using the KVM_CAP_ARM_USER_IRQ
feature.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If you're running with a userspace gic or other interrupt controller
(that is no vgic in the kernel), then you have so far not been able to
use the architected timers, because the output of the architected
timers, which are driven inside the kernel, was a kernel-only construct
between the arch timer code and the vgic.
This patch implements the new KVM_CAP_ARM_USER_IRQ feature, where we use a
side channel on the kvm_run structure, run->s.regs.device_irq_level, to
always notify userspace of the timer output levels when using a userspace
irqchip.
This works by ensuring that before we enter the guest, if the timer
output level has changed compared to what we last told userspace, we
don't enter the guest, but instead return to userspace to notify it of
the new level. If we are exiting, because of an MMIO for example, and
the level changed at the same time, the value is also updated and
userspace can sample the line as it needs. This is nicely achieved
simply always updating the timer_irq_level field after the main run
loop.
Note that the kvm_timer_update_irq trace event is changed to show the
host IRQ number for the timer instead of the guest IRQ number, because
the kernel no longer know which IRQ userspace wires up the timer signal
to.
Also note that this patch implements all required functionality but does
not yet advertise the capability.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently we check if we have an in-kernel irqchip and if the vgic was
properly implemented several places in the arch timer code. But, we
already predicate our enablement of the arm timers on having a valid
and initialized gic, so we can simply check if the timers are enabled or
not.
This also gets rid of the ugly "error that's not an error but used to
signal that the timer shouldn't poke the gic" construct we have.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
|
|
|
|
|
|
|
| |
Emulate read and write operations to CNTP_TVAL, CNTP_CVAL and CNTP_CTL.
Now VMs are able to use the EL1 physical timer.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Set a background timer for the EL1 physical timer emulation while VMs
are running, so that VMs get the physical timer interrupts in a timely
manner.
Schedule the background timer on entry to the VM and cancel it on exit.
This would not have any performance impact to the guest OSes that
currently use the virtual timer since the physical timer is always not
enabled.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
| |
When scheduling a background timer, consider both of the virtual and
physical timer and pick the earliest expiration time.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
| |
Now that we maintain the EL1 physical timer register states of VMs,
update the physical timer interrupt level along with the virtual one.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
| |
Initialize the emulated EL1 physical timer with the default irq number.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that we have a separate structure for timer context, make functions
generic so that they can work with any timer context, not just the
virtual timer context. This does not change the virtual timer
functionality.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Make cntvoff per each timer context. This is helpful to abstract kvm
timer functions to work with timer context without considering timer
types (e.g. physical timer or virtual timer).
This also would pave the way for ever doing adjustments of the cntvoff
on a per-CPU basis if that should ever make sense.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Abstract virtual timer context into a separate structure and change all
callers referring to timer registers, irq state and so on. No change in
functionality.
This is about to become very handy when adding the EL1 physical timer.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The only benefit of having kvm_vgic_inject_mapped_irq separate from
kvm_vgic_inject_irq is that we pass a boolean that we use for error
checking on the injection path.
While this could potentially help in some aspect of robustness, it's
also a little bit of a defensive move, and arguably callers into the
vgic should have make sure they have marked their virtual IRQs as mapped
if required.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Current KVM world switch code is unintentionally setting wrong bits to
CNTHCTL_EL2 when E2H == 1, which may allow guest OS to access physical
timer. Bit positions of CNTHCTL_EL2 are changing depending on
HCR_EL2.E2H bit. EL1PCEN and EL1PCTEN are 1st and 0th bits when E2H is
not set, but they are 11th and 10th bits respectively when E2H is set.
In fact, on VHE we only need to set those bits once, not for every world
switch. This is because the host kernel runs in EL2 with HCR_EL2.TGE ==
1, which makes those bits have no effect for the host kernel execution.
So we just set those bits once for guests, and that's it.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When a VCPU blocks (WFI) and has programmed the vtimer, we program a
soft timer to expire in the future to wake up the vcpu thread when
appropriate. Because such as wake up involves a vcpu kick, and the
timer expire function can get called from interrupt context, and the
kick may sleep, we have to schedule the kick in the work function.
The work function currently has a warning that gets raised if it turns
out that the timer shouldn't fire when it's run, which was added because
the idea was that in that case the work should never have been cancelled.
However, it turns out that this whole thing is racy and we can get
spurious warnings. The problem is that we clear the armed flag in the
work function, which may run in parallel with the
kvm_timer_unschedule->timer_disarm() call. This results in a possible
situation where the timer_disarm() call does not call
cancel_work_sync(), which effectively synchronizes the completion of the
work function with running the VCPU. As a result, the VCPU thread
proceeds before the work function completees, causing changes to the
timer state such that kvm_timer_should_fire(vcpu) returns false in the
work function.
All we do in the work function is to kick the VCPU, and an occasional
rare extra kick never harmed anyone. Since the race above is extremely
rare, we don't bother checking if the race happens but simply remove the
check and the clearing of the armed flag from the work function.
Reported-by: Matthias Brugger <mbrugger@suse.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|