summaryrefslogtreecommitdiffstats
path: root/tools/testing/nvdimm/Kbuild
Commit message (Collapse)AuthorAgeFilesLines
* tools/testing/nvdimm: unit test acpi_nfit_ctl()Dan Williams2016-12-061-0/+1
| | | | | | | | | | | | | | | A recent flurry of bug discoveries in the nfit driver's DSM marshalling routine has highlighted the fact that we do not have unit test coverage for this routine. Add a self-test of acpi_nfit_ctl() routine before probing the "nfit_test.0" device. This mocks stimulus to acpi_nfit_ctl() and if any of the tests fail "nfit_test.0" will be unavailable causing the rest of the tests to not run / fail. This unit test will also be a place to land reproductions of quirky BIOS behavior discovered in the field and ensure the kernel does not regress against implementations it has seen in practice. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* tools/testing/nvdimm: unit test for acpi_nfit_notify()Dan Williams2016-08-231-0/+1
| | | | | | | | | | | | | | | We have had a couple bugs in this implementation in the past and before we add another ->notify() implementation for nvdimm devices, lets allow this routine to be exercised via nfit_test. Rewrite acpi_nfit_notify() in terms of a generic struct device and acpi_handle parameter, and then implement a mock acpi_evaluate_object() that returns a _FIT payload. Cc: Vishal Verma <vishal.l.verma@intel.com> Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Acked-by: Rafael J. Wysocki <rafael@kernel.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* nfit: do an ARS scrub on hitting a latent media errorVishal Verma2016-07-241-0/+1
| | | | | | | | | | | | | | | | | | | When a latent (unknown to 'badblocks') error is encountered, it will trigger a machine check exception. On a system with machine check recovery, this will only SIGBUS the process(es) which had the bad page mapped (as opposed to a kernel panic on platforms without machine check recovery features). In the former case, we want to trigger a full rescan of that nvdimm bus. This will allow any additional, new errors to be captured in the block devices' badblocks lists, and offending operations on them can be trapped early, avoiding machine checks. This is done by registering a callback function with the x86_mce_decoder_chain and calling the new ars_rescan functionality with the address in the mce notificatiion. Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* nfit: move to nfit/ sub-directoryDan Williams2016-07-241-2/+2
| | | | | | | | | With the arrival of x86-machine-check support the nfit driver will add a (conditionally-compiled) source file. Prepare for this by moving all nfit source to drivers/acpi/nfit/. This is pure code movement, no functional changes. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* tools/testing/nvdimm: replace CONFIG_DMA_CMA dependency with vmalloc()Dan Williams2016-06-271-0/+2
| | | | | | | | DMA_CMA is incompatible with SWIOTLB used in enterprise distro configurations. Switch to vmalloc() allocations for all resources. Acked-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm, pmem: allow nfit_test to override pmem_direct_access()Dan Williams2016-06-241-1/+2
| | | | | | | | | | | | | | Currently phys_to_pfn_t() is an exported symbol to allow nfit_test to override it and indicate that nfit_test-pmem is not device-mapped. Now, we want to enable nfit_test to operate without DMA_CMA and the pmem it provides will no longer be physically contiguous, i.e. won't be capable of supporting direct_access requests larger than a page. Make pmem_direct_access() a weak symbol so that it can be replaced by the tools/testing/nvdimm/ version, and move phys_to_pfn_t() to a static inline now that it no longer needs to be overridden. Acked-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* /dev/dax, pmem: direct access to persistent memoryDan Williams2016-05-201-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device DAX is the device-centric analogue of Filesystem DAX (CONFIG_FS_DAX). It allows memory ranges to be allocated and mapped without need of an intervening file system. Device DAX is strict, precise and predictable. Specifically this interface: 1/ Guarantees fault granularity with respect to a given page size (pte, pmd, or pud) set at configuration time. 2/ Enforces deterministic behavior by being strict about what fault scenarios are supported. For example, by forcing MADV_DONTFORK semantics and omitting MAP_PRIVATE support device-dax guarantees that a mapping always behaves/performs the same once established. It is the "what you see is what you get" access mechanism to differentiated memory vs filesystem DAX which has filesystem specific implementation semantics. Persistent memory is the first target, but the mechanism is also targeted for exclusive allocations of performance differentiated memory ranges. This commit is limited to the base device driver infrastructure to associate a dax device with pmem range. Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm, dax: introduce device-dax infrastructureDan Williams2016-05-091-0/+1
| | | | | | | | | | | Device DAX is the device-centric analogue of Filesystem DAX (CONFIG_FS_DAX). It allows persistent memory ranges to be allocated and mapped without need of an intervening file system. This initial infrastructure arranges for a libnvdimm pfn-device to be represented as a different device-type so that it can be attached to a driver other than the pmem driver. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm, pmem, pfn: make pmem_rw_bytes generic and refactor pfn setupDan Williams2016-04-221-0/+1
| | | | | | | | | | | | | | | | | In preparation for providing an alternative (to block device) access mechanism to persistent memory, convert pmem_rw_bytes() to nsio_rw_bytes(). This allows ->rw_bytes() functionality without requiring a 'struct pmem_device' to be instantiated. In other words, when ->rw_bytes() is in use i/o is driven through 'struct nd_namespace_io', otherwise it is driven through 'struct pmem_device' and the block layer. This consolidates the disjoint calls to devm_exit_badblocks() and devm_memunmap() into a common devm_nsio_disable() and cleans up the init path to use a unified pmem_attach_disk() implementation. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm, pfn: enable pfn sysfs interface unit testingDan Williams2015-12-151-0/+2
| | | | | | | | The unit test infrastructure uses CMA and real memory to emulate nvdimm resources. The call to devm_memremap_pages() can simply be mocked in the same manner as memremap and we mock phys_to_pfn_t() to clear PFN_MAP since these resources are not registered with in the pgmap_radix. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm, pmem: 'struct page' for pmemDan Williams2015-08-281-0/+1
| | | | | | | | | | | | | | Enable the pmem driver to handle PFN device instances. Attaching a pmem namespace to a pfn device triggers the driver to allocate and initialize struct page entries for pmem. Memory capacity for this allocation comes exclusively from RAM for now which is suitable for low PMEM to RAM ratios. This mechanism will be expanded later for setting an "allocate from PMEM" policy. Cc: Boaz Harrosh <boaz@plexistor.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm, pfn: 'struct page' provider infrastructureDan Williams2015-08-281-0/+2
| | | | | | | | | | | | | | | | Implement the base infrastructure for libnvdimm PFN devices. Similar to BTT devices they take a namespace as a backing device and layer functionality on top. In this case the functionality is reserving space for an array of 'struct page' entries to be handed out through pfn_to_page(). For now this is just the basic libnvdimm-device-model for configuring the base PFN device. As the namespace claiming mechanism for PFN devices is mostly identical to BTT devices drivers/nvdimm/claim.c is created to house the common bits. Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* Merge branch 'pmem-api' into libnvdimm-for-nextDan Williams2015-08-271-2/+4
|\
| * nd_blk: change aperture mapping from WC to WBRoss Zwisler2015-08-271-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This should result in a pretty sizeable performance gain for reads. For rough comparison I did some simple read testing using PMEM to compare reads of write combining (WC) mappings vs write-back (WB). This was done on a random lab machine. PMEM reads from a write combining mapping: # dd of=/dev/null if=/dev/pmem0 bs=4096 count=100000 100000+0 records in 100000+0 records out 409600000 bytes (410 MB) copied, 9.2855 s, 44.1 MB/s PMEM reads from a write-back mapping: # dd of=/dev/null if=/dev/pmem0 bs=4096 count=1000000 1000000+0 records in 1000000+0 records out 4096000000 bytes (4.1 GB) copied, 3.44034 s, 1.2 GB/s To be able to safely support a write-back aperture I needed to add support for the "read flush" _DSM flag, as outlined in the DSM spec: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf This flag tells the ND BLK driver that it needs to flush the cache lines associated with the aperture after the aperture is moved but before any new data is read. This ensures that any stale cache lines from the previous contents of the aperture will be discarded from the processor cache, and the new data will be read properly from the DIMM. We know that the cache lines are clean and will be discarded without any writeback because either a) the previous aperture operation was a read, and we never modified the contents of the aperture, or b) the previous aperture operation was a write and we must have written back the dirtied contents of the aperture to the DIMM before the I/O was completed. In order to add support for the "read flush" flag I needed to add a generic routine to invalidate cache lines, mmio_flush_range(). This is protected by the ARCH_HAS_MMIO_FLUSH Kconfig variable, and is currently only supported on x86. Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
| * pmem: switch to devm_ allocationsChristoph Hellwig2015-08-141-2/+2
| | | | | | | | | | | | | | Signed-off-by: Christoph Hellwig <hch@lst.de> [djbw: tools/testing/nvdimm/ and memunmap_pmem support] Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
| * pmem: convert to generic memremapDan Williams2015-08-141-2/+2
| | | | | | | | | | | | | | | | | | | | Kill arch_memremap_pmem() and just let the architecture specify the flags to be passed to memremap(). Default to writethrough by default. Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate optionDan Williams2015-08-191-0/+4
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | We currently register a platform device for e820 type-12 memory and register a nvdimm bus beneath it. Registering the platform device triggers the device-core machinery to probe for a driver, but that search currently comes up empty. Building the nvdimm-bus registration into the e820_pmem platform device registration in this way forces libnvdimm to be built-in. Instead, convert the built-in portion of CONFIG_X86_PMEM_LEGACY to simply register a platform device and move the rest of the logic to the driver for e820_pmem, for the following reasons: 1/ Letting e820_pmem support be a module allows building and testing libnvdimm.ko changes without rebooting 2/ All the normal policy around modules can be applied to e820_pmem (unbind to disable and/or blacklisting the module from loading by default) 3/ Moving the driver to a generic location and converting it to scan "iomem_resource" rather than "e820.map" means any other architecture can take advantage of this simple nvdimm resource discovery mechanism by registering a resource named "Persistent Memory (legacy)" Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* tools/testing/nvdimm: add mock acpi_nfit_flush_address entries to nfit_testDan Williams2015-07-101-0/+2
| | | | | | | | | | In preparation for fixing the BLK path to properly use "directed pcommit" enable the unit test infrastructure to emit mock "flush" tables. Writes to these flush addresses trigger a memory controller to flush its internal buffers to persistent media, similar to the x86 "pcommit" instruction. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* tools/testing/nvdimm: mock ioremap_wtDan Williams2015-07-101-0/+1
| | | | | | | | In the 4.2-rc1 merge the default_memremap_pmem() implementation switched from ioremap_nocache() to ioremap_wt(). Add it to the list of mocked routines to restore the ability to run the unit tests. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* tools/testing/nvdimm: libnvdimm unit test infrastructureDan Williams2015-06-261-0/+40
'libnvdimm' is the first driver sub-system in the kernel to implement mocking for unit test coverage. The nfit_test module gets built as an external module and arranges for external module replacements of nfit, libnvdimm, nd_pmem, and nd_blk. These replacements use the linker --wrap option to redirect calls to ioremap() + request_mem_region() to custom defined unit test resources. The end result is a fully functional nvdimm_bus, as far as userspace is concerned, but with the capability to perform otherwise destructive tests on emulated resources. Q: Why not use QEMU for this emulation? QEMU is not suitable for unit testing. QEMU's role is to faithfully emulate the platform. A unit test's role is to unfaithfully implement the platform with the goal of triggering bugs in the corners of the sub-system implementation. As bugs are discovered in platforms, or the sub-system itself, the unit tests are extended to backstop a fix with a reproducer unit test. Another problem with QEMU is that it would require coordination of 3 software projects instead of 2 (kernel + libndctl [1]) to maintain and execute the tests. The chances for bit rot and the difficulty of getting the tests running goes up non-linearly the more components involved. Q: Why submit this to the kernel tree instead of external modules in libndctl? Simple, to alleviate the same risk that out-of-tree external modules face. Updates to drivers/nvdimm/ can be immediately evaluated to see if they have any impact on tools/testing/nvdimm/. Q: What are the negative implications of merging this? It is a unique maintenance burden because the purpose of mocking an interface to enable a unit test is to purposefully short circuit the semantics of a routine to enable testing. For example __wrap_ioremap_cache() fakes the pmem driver into "ioremap()'ing" a test resource buffer allocated by dma_alloc_coherent(). The future maintenance burden hits when someone changes the semantics of ioremap_cache() and wonders what the implications are for the unit test. [1]: https://github.com/pmem/ndctl Cc: <linux-acpi@vger.kernel.org> Cc: Lv Zheng <lv.zheng@intel.com> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
OpenPOWER on IntegriCloud