summaryrefslogtreecommitdiffstats
path: root/security/keys/process_keys.c
Commit message (Collapse)AuthorAgeFilesLines
* KEYS: Add a facility to restrict new links into a keyringDavid Howells2016-04-111-6/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a facility whereby proposed new links to be added to a keyring can be vetted, permitting them to be rejected if necessary. This can be used to block public keys from which the signature cannot be verified or for which the signature verification fails. It could also be used to provide blacklisting. This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE. To this end: (1) A function pointer is added to the key struct that, if set, points to the vetting function. This is called as: int (*restrict_link)(struct key *keyring, const struct key_type *key_type, unsigned long key_flags, const union key_payload *key_payload), where 'keyring' will be the keyring being added to, key_type and key_payload will describe the key being added and key_flags[*] can be AND'ed with KEY_FLAG_TRUSTED. [*] This parameter will be removed in a later patch when KEY_FLAG_TRUSTED is removed. The function should return 0 to allow the link to take place or an error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the link. The pointer should not be set directly, but rather should be set through keyring_alloc(). Note that if called during add_key(), preparse is called before this method, but a key isn't actually allocated until after this function is called. (2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to key_create_or_update() or key_instantiate_and_link() to bypass the restriction check. (3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring with this restriction emplaced can be considered 'trustworthy' by virtue of being in the keyring when that keyring is consulted. (4) key_alloc() and keyring_alloc() take an extra argument that will be used to set restrict_link in the new key. This ensures that the pointer is set before the key is published, thus preventing a window of unrestrictedness. Normally this argument will be NULL. (5) As a temporary affair, keyring_restrict_trusted_only() is added. It should be passed to keyring_alloc() as the extra argument instead of setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in a later patch with functions that look in the appropriate places for authoritative keys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
* KEYS: Fix keyring ref leak in join_session_keyring()Yevgeny Pats2016-01-201-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This fixes CVE-2016-0728. If a thread is asked to join as a session keyring the keyring that's already set as its session, we leak a keyring reference. This can be tested with the following program: #include <stddef.h> #include <stdio.h> #include <sys/types.h> #include <keyutils.h> int main(int argc, const char *argv[]) { int i = 0; key_serial_t serial; serial = keyctl(KEYCTL_JOIN_SESSION_KEYRING, "leaked-keyring"); if (serial < 0) { perror("keyctl"); return -1; } if (keyctl(KEYCTL_SETPERM, serial, KEY_POS_ALL | KEY_USR_ALL) < 0) { perror("keyctl"); return -1; } for (i = 0; i < 100; i++) { serial = keyctl(KEYCTL_JOIN_SESSION_KEYRING, "leaked-keyring"); if (serial < 0) { perror("keyctl"); return -1; } } return 0; } If, after the program has run, there something like the following line in /proc/keys: 3f3d898f I--Q--- 100 perm 3f3f0000 0 0 keyring leaked-keyring: empty with a usage count of 100 * the number of times the program has been run, then the kernel is malfunctioning. If leaked-keyring has zero usages or has been garbage collected, then the problem is fixed. Reported-by: Yevgeny Pats <yevgeny@perception-point.io> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Don Zickus <dzickus@redhat.com> Acked-by: Prarit Bhargava <prarit@redhat.com> Acked-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
* KEYS: Merge the type-specific data with the payload dataDavid Howells2015-10-211-2/+2
| | | | | | | | | | | | | | | | | Merge the type-specific data with the payload data into one four-word chunk as it seems pointless to keep them separate. Use user_key_payload() for accessing the payloads of overloaded user-defined keys. Signed-off-by: David Howells <dhowells@redhat.com> cc: linux-cifs@vger.kernel.org cc: ecryptfs@vger.kernel.org cc: linux-ext4@vger.kernel.org cc: linux-f2fs-devel@lists.sourceforge.net cc: linux-nfs@vger.kernel.org cc: ceph-devel@vger.kernel.org cc: linux-ima-devel@lists.sourceforge.net
* capabilities: ambient capabilitiesAndy Lutomirski2015-09-041-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Credit where credit is due: this idea comes from Christoph Lameter with a lot of valuable input from Serge Hallyn. This patch is heavily based on Christoph's patch. ===== The status quo ===== On Linux, there are a number of capabilities defined by the kernel. To perform various privileged tasks, processes can wield capabilities that they hold. Each task has four capability masks: effective (pE), permitted (pP), inheritable (pI), and a bounding set (X). When the kernel checks for a capability, it checks pE. The other capability masks serve to modify what capabilities can be in pE. Any task can remove capabilities from pE, pP, or pI at any time. If a task has a capability in pP, it can add that capability to pE and/or pI. If a task has CAP_SETPCAP, then it can add any capability to pI, and it can remove capabilities from X. Tasks are not the only things that can have capabilities; files can also have capabilities. A file can have no capabilty information at all [1]. If a file has capability information, then it has a permitted mask (fP) and an inheritable mask (fI) as well as a single effective bit (fE) [2]. File capabilities modify the capabilities of tasks that execve(2) them. A task that successfully calls execve has its capabilities modified for the file ultimately being excecuted (i.e. the binary itself if that binary is ELF or for the interpreter if the binary is a script.) [3] In the capability evolution rules, for each mask Z, pZ represents the old value and pZ' represents the new value. The rules are: pP' = (X & fP) | (pI & fI) pI' = pI pE' = (fE ? pP' : 0) X is unchanged For setuid binaries, fP, fI, and fE are modified by a moderately complicated set of rules that emulate POSIX behavior. Similarly, if euid == 0 or ruid == 0, then fP, fI, and fE are modified differently (primary, fP and fI usually end up being the full set). For nonroot users executing binaries with neither setuid nor file caps, fI and fP are empty and fE is false. As an extra complication, if you execute a process as nonroot and fE is set, then the "secure exec" rules are in effect: AT_SECURE gets set, LD_PRELOAD doesn't work, etc. This is rather messy. We've learned that making any changes is dangerous, though: if a new kernel version allows an unprivileged program to change its security state in a way that persists cross execution of a setuid program or a program with file caps, this persistent state is surprisingly likely to allow setuid or file-capped programs to be exploited for privilege escalation. ===== The problem ===== Capability inheritance is basically useless. If you aren't root and you execute an ordinary binary, fI is zero, so your capabilities have no effect whatsoever on pP'. This means that you can't usefully execute a helper process or a shell command with elevated capabilities if you aren't root. On current kernels, you can sort of work around this by setting fI to the full set for most or all non-setuid executable files. This causes pP' = pI for nonroot, and inheritance works. No one does this because it's a PITA and it isn't even supported on most filesystems. If you try this, you'll discover that every nonroot program ends up with secure exec rules, breaking many things. This is a problem that has bitten many people who have tried to use capabilities for anything useful. ===== The proposed change ===== This patch adds a fifth capability mask called the ambient mask (pA). pA does what most people expect pI to do. pA obeys the invariant that no bit can ever be set in pA if it is not set in both pP and pI. Dropping a bit from pP or pI drops that bit from pA. This ensures that existing programs that try to drop capabilities still do so, with a complication. Because capability inheritance is so broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and then calling execve effectively drops capabilities. Therefore, setresuid from root to nonroot conditionally clears pA unless SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can re-add bits to pA afterwards. The capability evolution rules are changed: pA' = (file caps or setuid or setgid ? 0 : pA) pP' = (X & fP) | (pI & fI) | pA' pI' = pI pE' = (fE ? pP' : pA') X is unchanged If you are nonroot but you have a capability, you can add it to pA. If you do so, your children get that capability in pA, pP, and pE. For example, you can set pA = CAP_NET_BIND_SERVICE, and your children can automatically bind low-numbered ports. Hallelujah! Unprivileged users can create user namespaces, map themselves to a nonzero uid, and create both privileged (relative to their namespace) and unprivileged process trees. This is currently more or less impossible. Hallelujah! You cannot use pA to try to subvert a setuid, setgid, or file-capped program: if you execute any such program, pA gets cleared and the resulting evolution rules are unchanged by this patch. Users with nonzero pA are unlikely to unintentionally leak that capability. If they run programs that try to drop privileges, dropping privileges will still work. It's worth noting that the degree of paranoia in this patch could possibly be reduced without causing serious problems. Specifically, if we allowed pA to persist across executing non-pA-aware setuid binaries and across setresuid, then, naively, the only capabilities that could leak as a result would be the capabilities in pA, and any attacker *already* has those capabilities. This would make me nervous, though -- setuid binaries that tried to privilege-separate might fail to do so, and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have unexpected side effects. (Whether these unexpected side effects would be exploitable is an open question.) I've therefore taken the more paranoid route. We can revisit this later. An alternative would be to require PR_SET_NO_NEW_PRIVS before setting ambient capabilities. I think that this would be annoying and would make granting otherwise unprivileged users minor ambient capabilities (CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than it is with this patch. ===== Footnotes ===== [1] Files that are missing the "security.capability" xattr or that have unrecognized values for that xattr end up with has_cap set to false. The code that does that appears to be complicated for no good reason. [2] The libcap capability mask parsers and formatters are dangerously misleading and the documentation is flat-out wrong. fE is *not* a mask; it's a single bit. This has probably confused every single person who has tried to use file capabilities. [3] Linux very confusingly processes both the script and the interpreter if applicable, for reasons that elude me. The results from thinking about a script's file capabilities and/or setuid bits are mostly discarded. Preliminary userspace code is here, but it needs updating: https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2 Here is a test program that can be used to verify the functionality (from Christoph): /* * Test program for the ambient capabilities. This program spawns a shell * that allows running processes with a defined set of capabilities. * * (C) 2015 Christoph Lameter <cl@linux.com> * Released under: GPL v3 or later. * * * Compile using: * * gcc -o ambient_test ambient_test.o -lcap-ng * * This program must have the following capabilities to run properly: * Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE * * A command to equip the binary with the right caps is: * * setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test * * * To get a shell with additional caps that can be inherited by other processes: * * ./ambient_test /bin/bash * * * Verifying that it works: * * From the bash spawed by ambient_test run * * cat /proc/$$/status * * and have a look at the capabilities. */ #include <stdlib.h> #include <stdio.h> #include <errno.h> #include <cap-ng.h> #include <sys/prctl.h> #include <linux/capability.h> /* * Definitions from the kernel header files. These are going to be removed * when the /usr/include files have these defined. */ #define PR_CAP_AMBIENT 47 #define PR_CAP_AMBIENT_IS_SET 1 #define PR_CAP_AMBIENT_RAISE 2 #define PR_CAP_AMBIENT_LOWER 3 #define PR_CAP_AMBIENT_CLEAR_ALL 4 static void set_ambient_cap(int cap) { int rc; capng_get_caps_process(); rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap); if (rc) { printf("Cannot add inheritable cap\n"); exit(2); } capng_apply(CAPNG_SELECT_CAPS); /* Note the two 0s at the end. Kernel checks for these */ if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) { perror("Cannot set cap"); exit(1); } } int main(int argc, char **argv) { int rc; set_ambient_cap(CAP_NET_RAW); set_ambient_cap(CAP_NET_ADMIN); set_ambient_cap(CAP_SYS_NICE); printf("Ambient_test forking shell\n"); if (execv(argv[1], argv + 1)) perror("Cannot exec"); return 0; } Signed-off-by: Christoph Lameter <cl@linux.com> # Original author Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Aaron Jones <aaronmdjones@gmail.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Andrew G. Morgan <morgan@kernel.org> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: Markku Savela <msa@moth.iki.fi> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* KEYS: Make the key matching functions return boolDavid Howells2014-09-161-2/+2
| | | | | | | | Make the key matching functions pointed to by key_match_data::cmp return bool rather than int. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
* KEYS: Preparse match dataDavid Howells2014-09-161-6/+7
| | | | | | | | | | | | | | | | | Preparse the match data. This provides several advantages: (1) The preparser can reject invalid criteria up front. (2) The preparser can convert the criteria to binary data if necessary (the asymmetric key type really wants to do binary comparison of the key IDs). (3) The preparser can set the type of search to be performed. This means that it's not then a one-off setting in the key type. (4) The preparser can set an appropriate comparator function. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
* KEYS: initialize root uid and session keyrings earlyMimi Zohar2013-09-251-0/+10
| | | | | | | | In order to create the integrity keyrings (eg. _evm, _ima), root's uid and session keyrings need to be initialized early. Signed-off-by: Mimi Zohar <zohar@us.ibm.com> Signed-off-by: David Howells <dhowells@redhat.com>
* KEYS: Define a __key_get() wrapper to use rather than atomic_inc()David Howells2013-09-241-8/+8
| | | | | | | Define a __key_get() wrapper to use rather than atomic_inc() on the key usage count as this makes it easier to hook in refcount error debugging. Signed-off-by: David Howells <dhowells@redhat.com>
* KEYS: Introduce a search context structureDavid Howells2013-09-241-59/+58
| | | | | | | | | | | | | | | | | | | Search functions pass around a bunch of arguments, each of which gets copied with each call. Introduce a search context structure to hold these. Whilst we're at it, create a search flag that indicates whether the search should be directly to the description or whether it should iterate through all keys looking for a non-description match. This will be useful when keyrings use a generic data struct with generic routines to manage their content as the search terms can just be passed through to the iterator callback function. Also, for future use, the data to be supplied to the match function is separated from the description pointer in the search context. This makes it clear which is being supplied. Signed-off-by: David Howells <dhowells@redhat.com>
* KEYS: Skip key state checks when checking for possessionDavid Howells2013-09-241-3/+5
| | | | | | | | | | | | | | | | | Skip key state checks (invalidation, revocation and expiration) when checking for possession. Without this, keys that have been marked invalid, revoked keys and expired keys are not given a possession attribute - which means the possessor is not granted any possession permits and cannot do anything with them unless they also have one a user, group or other permit. This causes failures in the keyutils test suite's revocation and expiration tests now that commit 96b5c8fea6c0861621051290d705ec2e971963f1 reduced the initial permissions granted to a key. The failures are due to accesses to revoked and expired keys being given EACCES instead of EKEYREVOKED or EKEYEXPIRED. Signed-off-by: David Howells <dhowells@redhat.com>
* keys: fix race with concurrent install_user_keyrings()David Howells2013-03-121-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This fixes CVE-2013-1792. There is a race in install_user_keyrings() that can cause a NULL pointer dereference when called concurrently for the same user if the uid and uid-session keyrings are not yet created. It might be possible for an unprivileged user to trigger this by calling keyctl() from userspace in parallel immediately after logging in. Assume that we have two threads both executing lookup_user_key(), both looking for KEY_SPEC_USER_SESSION_KEYRING. THREAD A THREAD B =============================== =============================== ==>call install_user_keyrings(); if (!cred->user->session_keyring) ==>call install_user_keyrings() ... user->uid_keyring = uid_keyring; if (user->uid_keyring) return 0; <== key = cred->user->session_keyring [== NULL] user->session_keyring = session_keyring; atomic_inc(&key->usage); [oops] At the point thread A dereferences cred->user->session_keyring, thread B hasn't updated user->session_keyring yet, but thread A assumes it is populated because install_user_keyrings() returned ok. The race window is really small but can be exploited if, for example, thread B is interrupted or preempted after initializing uid_keyring, but before doing setting session_keyring. This couldn't be reproduced on a stock kernel. However, after placing systemtap probe on 'user->session_keyring = session_keyring;' that introduced some delay, the kernel could be crashed reliably. Fix this by checking both pointers before deciding whether to return. Alternatively, the test could be done away with entirely as it is checked inside the mutex - but since the mutex is global, that may not be the best way. Signed-off-by: David Howells <dhowells@redhat.com> Reported-by: Mateusz Guzik <mguzik@redhat.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: James Morris <james.l.morris@oracle.com>
* userns: Stop oopsing in key_change_session_keyringEric W. Biederman2013-03-031-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Dave Jones <davej@redhat.com> writes: > Just hit this on Linus' current tree. > > [ 89.621770] BUG: unable to handle kernel NULL pointer dereference at 00000000000000c8 > [ 89.623111] IP: [<ffffffff810784b0>] commit_creds+0x250/0x2f0 > [ 89.624062] PGD 122bfd067 PUD 122bfe067 PMD 0 > [ 89.624901] Oops: 0000 [#1] PREEMPT SMP > [ 89.625678] Modules linked in: caif_socket caif netrom bridge hidp 8021q garp stp mrp rose llc2 af_rxrpc phonet af_key binfmt_misc bnep l2tp_ppp can_bcm l2tp_core pppoe pppox can_raw scsi_transport_iscsi ppp_generic slhc nfnetlink can ipt_ULOG ax25 decnet irda nfc rds x25 crc_ccitt appletalk atm ipx p8023 psnap p8022 llc lockd sunrpc ip6t_REJECT nf_conntrack_ipv6 nf_defrag_ipv6 xt_conntrack nf_conntrack ip6table_filter ip6_tables btusb bluetooth snd_hda_codec_realtek snd_hda_intel snd_hda_codec snd_pcm vhost_net snd_page_alloc snd_timer tun macvtap usb_debug snd rfkill microcode macvlan edac_core pcspkr serio_raw kvm_amd soundcore kvm r8169 mii > [ 89.637846] CPU 2 > [ 89.638175] Pid: 782, comm: trinity-main Not tainted 3.8.0+ #63 Gigabyte Technology Co., Ltd. GA-MA78GM-S2H/GA-MA78GM-S2H > [ 89.639850] RIP: 0010:[<ffffffff810784b0>] [<ffffffff810784b0>] commit_creds+0x250/0x2f0 > [ 89.641161] RSP: 0018:ffff880115657eb8 EFLAGS: 00010207 > [ 89.641984] RAX: 00000000000003e8 RBX: ffff88012688b000 RCX: 0000000000000000 > [ 89.643069] RDX: 0000000000000000 RSI: ffffffff81c32960 RDI: ffff880105839600 > [ 89.644167] RBP: ffff880115657ed8 R08: 0000000000000000 R09: 0000000000000000 > [ 89.645254] R10: 0000000000000001 R11: 0000000000000246 R12: ffff880105839600 > [ 89.646340] R13: ffff88011beea490 R14: ffff88011beea490 R15: 0000000000000000 > [ 89.647431] FS: 00007f3ac063b740(0000) GS:ffff88012b200000(0000) knlGS:0000000000000000 > [ 89.648660] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b > [ 89.649548] CR2: 00000000000000c8 CR3: 0000000122bfc000 CR4: 00000000000007e0 > [ 89.650635] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 > [ 89.651723] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 > [ 89.652812] Process trinity-main (pid: 782, threadinfo ffff880115656000, task ffff88011beea490) > [ 89.654128] Stack: > [ 89.654433] 0000000000000000 ffff8801058396a0 ffff880105839600 ffff88011beeaa78 > [ 89.655769] ffff880115657ef8 ffffffff812c7d9b ffffffff82079be0 0000000000000000 > [ 89.657073] ffff880115657f28 ffffffff8106c665 0000000000000002 ffff880115657f58 > [ 89.658399] Call Trace: > [ 89.658822] [<ffffffff812c7d9b>] key_change_session_keyring+0xfb/0x140 > [ 89.659845] [<ffffffff8106c665>] task_work_run+0xa5/0xd0 > [ 89.660698] [<ffffffff81002911>] do_notify_resume+0x71/0xb0 > [ 89.661581] [<ffffffff816c9a4a>] int_signal+0x12/0x17 > [ 89.662385] Code: 24 90 00 00 00 48 8b b3 90 00 00 00 49 8b 4c 24 40 48 39 f2 75 08 e9 83 00 00 00 48 89 ca 48 81 fa 60 29 c3 81 0f 84 41 fe ff ff <48> 8b 8a c8 00 00 00 48 39 ce 75 e4 3b 82 d0 00 00 00 0f 84 4b > [ 89.667778] RIP [<ffffffff810784b0>] commit_creds+0x250/0x2f0 > [ 89.668733] RSP <ffff880115657eb8> > [ 89.669301] CR2: 00000000000000c8 > > My fastest trinity induced oops yet! > > > Appears to be.. > > if ((set_ns == subset_ns->parent) && > 850: 48 8b 8a c8 00 00 00 mov 0xc8(%rdx),%rcx > > from the inlined cred_cap_issubset By historical accident we have been reading trying to set new->user_ns from new->user_ns. Which is totally silly as new->user_ns is NULL (as is every other field in new except session_keyring at that point). The intent is clearly to copy all of the fields from old to new so copy old->user_ns into into new->user_ns. Cc: stable@vger.kernel.org Reported-by: Dave Jones <davej@redhat.com> Tested-by: Dave Jones <davej@redhat.com> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
* KEYS: Revert one application of "Fix unreachable code" patchDavid Howells2013-02-211-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | A patch to fix some unreachable code in search_my_process_keyrings() got applied twice by two different routes upstream as commits e67eab39bee2 and b010520ab3d2 (both "fix unreachable code"). Unfortunately, the second application removed something it shouldn't have and this wasn't detected by GIT. This is due to the patch not having sufficient lines of context to distinguish the two places of application. The effect of this is relatively minor: inside the kernel, the keyring search routines may search multiple keyrings and then prioritise the errors if no keys or negative keys are found in any of them. With the extra deletion, the presence of a negative key in the thread keyring (causing ENOKEY) is incorrectly overridden by an error searching the process keyring. So revert the second application of the patch. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* keys: fix unreachable codeAlan Cox2012-12-201-2/+0
| | | | | | | | | We set ret to NULL then test it. Remove the bogus test Signed-off-by: Alan Cox <alan@linux.intel.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'for-linus' of ↵Linus Torvalds2012-12-161-53/+39
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security Pull security subsystem updates from James Morris: "A quiet cycle for the security subsystem with just a few maintenance updates." * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: Smack: create a sysfs mount point for smackfs Smack: use select not depends in Kconfig Yama: remove locking from delete path Yama: add RCU to drop read locking drivers/char/tpm: remove tasklet and cleanup KEYS: Use keyring_alloc() to create special keyrings KEYS: Reduce initial permissions on keys KEYS: Make the session and process keyrings per-thread seccomp: Make syscall skipping and nr changes more consistent key: Fix resource leak keys: Fix unreachable code KEYS: Add payload preparsing opportunity prior to key instantiate or update
| * KEYS: Reduce initial permissions on keysDavid Howells2012-10-021-9/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Reduce the initial permissions on new keys to grant the possessor everything, view permission only to the user (so the keys can be seen in /proc/keys) and nothing else. This gives the creator a chance to adjust the permissions mask before other processes can access the new key or create a link to it. To aid with this, keyring_alloc() now takes a permission argument rather than setting the permissions itself. The following permissions are now set: (1) The user and user-session keyrings grant the user that owns them full permissions and grant a possessor everything bar SETATTR. (2) The process and thread keyrings grant the possessor full permissions but only grant the user VIEW. This permits the user to see them in /proc/keys, but not to do anything with them. (3) Anonymous session keyrings grant the possessor full permissions, but only grant the user VIEW and READ. This means that the user can see them in /proc/keys and can list them, but nothing else. Possibly READ shouldn't be provided either. (4) Named session keyrings grant everything an anonymous session keyring does, plus they grant the user LINK permission. The whole point of named session keyrings is that others can also subscribe to them. Possibly this should be a separate permission to LINK. (5) The temporary session keyring created by call_sbin_request_key() gets the same permissions as an anonymous session keyring. (6) Keys created by add_key() get VIEW, SEARCH, LINK and SETATTR for the possessor, plus READ and/or WRITE if the key type supports them. The used only gets VIEW now. (7) Keys created by request_key() now get the same as those created by add_key(). Reported-by: Lennart Poettering <lennart@poettering.net> Reported-by: Stef Walter <stefw@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com>
| * KEYS: Make the session and process keyrings per-threadDavid Howells2012-10-021-44/+22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make the session keyring per-thread rather than per-process, but still inherited from the parent thread to solve a problem with PAM and gdm. The problem is that join_session_keyring() will reject attempts to change the session keyring of a multithreaded program but gdm is now multithreaded before it gets to the point of starting PAM and running pam_keyinit to create the session keyring. See: https://bugs.freedesktop.org/show_bug.cgi?id=49211 The reason that join_session_keyring() will only change the session keyring under a single-threaded environment is that it's hard to alter the other thread's credentials to effect the change in a multi-threaded program. The problems are such as: (1) How to prevent two threads both running join_session_keyring() from racing. (2) Another thread's credentials may not be modified directly by this process. (3) The number of threads is uncertain whilst we're not holding the appropriate spinlock, making preallocation slightly tricky. (4) We could use TIF_NOTIFY_RESUME and key_replace_session_keyring() to get another thread to replace its keyring, but that means preallocating for each thread. A reasonable way around this is to make the session keyring per-thread rather than per-process and just document that if you want a common session keyring, you must get it before you spawn any threads - which is the current situation anyway. Whilst we're at it, we can the process keyring behave in the same way. This means we can clean up some of the ickyness in the creds code. Basically, after this patch, the session, process and thread keyrings are about inheritance rules only and not about sharing changes of keyring. Reported-by: Mantas M. <grawity@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Ray Strode <rstrode@redhat.com>
| * keys: Fix unreachable codeAlan Cox2012-09-281-2/+0
| | | | | | | | | | | | | | We set ret to NULL then test it. Remove the bogus test Signed-off-by: Alan Cox <alan@linux.intel.com> Signed-off-by: David Howells <dhowells@redhat.com>
* | Merge branch 'master' into for-nextJiri Kosina2012-10-281-7/+8
|\ \ | | | | | | | | | | | | | | | | | | Sync up with Linus' tree to be able to apply Cesar's patch against newer version of the code. Signed-off-by: Jiri Kosina <jkosina@suse.cz>
| * | userns: Convert security/keys to the new userns infrastructureEric W. Biederman2012-09-131-7/+8
| |/ | | | | | | | | | | | | | | | | | | | | | | | | - Replace key_user ->user_ns equality checks with kuid_has_mapping checks. - Use from_kuid to generate key descriptions - Use kuid_t and kgid_t and the associated helpers instead of uid_t and gid_t - Avoid potential problems with file descriptor passing by displaying keys in the user namespace of the opener of key status proc files. Cc: linux-security-module@vger.kernel.org Cc: keyrings@linux-nfs.org Cc: David Howells <dhowells@redhat.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
* | keys: Fix unreachable codeAlan Cox2012-10-251-2/+0
|/ | | | | | | We set ret to NULL then test it. Remove the bogus test Signed-off-by: Alan Cox <alan@linux.intel.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
* merge task_work and rcu_head, get rid of separate allocation for keyring caseAl Viro2012-07-221-4/+2
| | | | | | | | task_work and rcu_head are identical now; merge them (calling the result struct callback_head, rcu_head #define'd to it), kill separate allocation in security/keys since we can just use cred->rcu now. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* trimming task_work: kill ->dataAl Viro2012-07-221-2/+3
| | | | | | | | get rid of the only user of ->data; this is _not_ the final variant - in the end we'll have task_work and rcu_head identical and just use cred->rcu, at which point the separate allocation will be gone completely. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* keys: change keyctl_session_to_parent() to use task_work_add()Oleg Nesterov2012-05-231-13/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Change keyctl_session_to_parent() to use task_work_add() and move key_replace_session_keyring() logic into task_work->func(). Note that we do task_work_cancel() before task_work_add() to ensure that only one work can be pending at any time. This is important, we must not allow user-space to abuse the parent's ->task_works list. The callback, replace_session_keyring(), checks PF_EXITING. I guess this is not really needed but looks better. As a side effect, this fixes the (unlikely) race. The callers of key_replace_session_keyring() and keyctl_session_to_parent() lack the necessary barriers, the parent can miss the request. Now we can remove task_struct->replacement_session_keyring and related code. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: David Howells <dhowells@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Alexander Gordeev <agordeev@redhat.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Smith <dsmith@redhat.com> Cc: "Frank Ch. Eigler" <fche@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* Merge branch 'for-linus' of ↵Linus Torvalds2012-05-231-1/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull user namespace enhancements from Eric Biederman: "This is a course correction for the user namespace, so that we can reach an inexpensive, maintainable, and reasonably complete implementation. Highlights: - Config guards make it impossible to enable the user namespace and code that has not been converted to be user namespace safe. - Use of the new kuid_t type ensures the if you somehow get past the config guards the kernel will encounter type errors if you enable user namespaces and attempt to compile in code whose permission checks have not been updated to be user namespace safe. - All uids from child user namespaces are mapped into the initial user namespace before they are processed. Removing the need to add an additional check to see if the user namespace of the compared uids remains the same. - With the user namespaces compiled out the performance is as good or better than it is today. - For most operations absolutely nothing changes performance or operationally with the user namespace enabled. - The worst case performance I could come up with was timing 1 billion cache cold stat operations with the user namespace code enabled. This went from 156s to 164s on my laptop (or 156ns to 164ns per stat operation). - (uid_t)-1 and (gid_t)-1 are reserved as an internal error value. Most uid/gid setting system calls treat these value specially anyway so attempting to use -1 as a uid would likely cause entertaining failures in userspace. - If setuid is called with a uid that can not be mapped setuid fails. I have looked at sendmail, login, ssh and every other program I could think of that would call setuid and they all check for and handle the case where setuid fails. - If stat or a similar system call is called from a context in which we can not map a uid we lie and return overflowuid. The LFS experience suggests not lying and returning an error code might be better, but the historical precedent with uids is different and I can not think of anything that would break by lying about a uid we can't map. - Capabilities are localized to the current user namespace making it safe to give the initial user in a user namespace all capabilities. My git tree covers all of the modifications needed to convert the core kernel and enough changes to make a system bootable to runlevel 1." Fix up trivial conflicts due to nearby independent changes in fs/stat.c * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (46 commits) userns: Silence silly gcc warning. cred: use correct cred accessor with regards to rcu read lock userns: Convert the move_pages, and migrate_pages permission checks to use uid_eq userns: Convert cgroup permission checks to use uid_eq userns: Convert tmpfs to use kuid and kgid where appropriate userns: Convert sysfs to use kgid/kuid where appropriate userns: Convert sysctl permission checks to use kuid and kgids. userns: Convert proc to use kuid/kgid where appropriate userns: Convert ext4 to user kuid/kgid where appropriate userns: Convert ext3 to use kuid/kgid where appropriate userns: Convert ext2 to use kuid/kgid where appropriate. userns: Convert devpts to use kuid/kgid where appropriate userns: Convert binary formats to use kuid/kgid where appropriate userns: Add negative depends on entries to avoid building code that is userns unsafe userns: signal remove unnecessary map_cred_ns userns: Teach inode_capable to understand inodes whose uids map to other namespaces. userns: Fail exec for suid and sgid binaries with ids outside our user namespace. userns: Convert stat to return values mapped from kuids and kgids userns: Convert user specfied uids and gids in chown into kuids and kgid userns: Use uid_eq gid_eq helpers when comparing kuids and kgids in the vfs ...
| * cred: Refcount the user_ns pointed to by the cred.Eric W. Biederman2012-04-071-1/+1
| | | | | | | | | | | | | | | | | | struct user_struct will shortly loose it's user_ns reference so make the cred user_ns reference a proper reference complete with reference counting. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
| * userns: Use cred->user_ns instead of cred->user->user_nsEric W. Biederman2012-04-071-1/+1
| | | | | | | | | | | | | | | | | | Optimize performance and prepare for the removal of the user_ns reference from user_struct. Remove the slow long walk through cred->user->user_ns and instead go straight to cred->user_ns. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
* | KEYS: Do LRU discard in full keyringsDavid Howells2012-05-111-0/+2
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Do an LRU discard in keyrings that are full rather than returning ENFILE. To perform this, a time_t is added to the key struct and updated by the creation of a link to a key and by a key being found as the result of a search. At the completion of a successful search, the keyrings in the path between the root of the search and the first found link to it also have their last-used times updated. Note that discarding a link to a key from a keyring does not necessarily destroy the key as there may be references held by other places. An alternate discard method that might suffice is to perform FIFO discard from the keyring, using the spare 2-byte hole in the keylist header as the index of the next link to be discarded. This is useful when using a keyring as a cache for DNS results or foreign filesystem IDs. This can be tested by the following. As root do: echo 1000 >/proc/sys/kernel/keys/root_maxkeys kr=`keyctl newring foo @s` for ((i=0; i<2000; i++)); do keyctl add user a$i a $kr; done Without this patch ENFILE should be reported when the keyring fills up. With this patch, the keyring discards keys in an LRU fashion. Note that the stored LRU time has a granularity of 1s. After doing this, /proc/key-users can be observed and should show that most of the 2000 keys have been discarded: [root@andromeda ~]# cat /proc/key-users 0: 517 516/516 513/1000 5249/20000 The "513/1000" here is the number of quota-accounted keys present for this user out of the maximum permitted. In /proc/keys, the keyring shows the number of keys it has and the number of slots it has allocated: [root@andromeda ~]# grep foo /proc/keys 200c64c4 I--Q-- 1 perm 3b3f0000 0 0 keyring foo: 509/509 The maximum is (PAGE_SIZE - header) / key pointer size. That's typically 509 on a 64-bit system and 1020 on a 32-bit system. Signed-off-by: David Howells <dhowells@redhat.com>
* KEYS: testing wrong bit for KEY_FLAG_REVOKEDDan Carpenter2012-03-071-1/+2
| | | | | | | | | | The test for "if (cred->request_key_auth->flags & KEY_FLAG_REVOKED) {" should actually testing that the (1 << KEY_FLAG_REVOKED) bit is set. The current code actually checks for KEY_FLAG_DEAD. Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
* KEYS: keyctl_get_keyring_ID() should create a session keyring if create flag setDavid Howells2011-08-231-2/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The keyctl call: keyctl_get_keyring_ID(KEY_SPEC_SESSION_KEYRING, 1) should create a session keyring if the process doesn't have one of its own because the create flag argument is set - rather than subscribing to and returning the user-session keyring as: keyctl_get_keyring_ID(KEY_SPEC_SESSION_KEYRING, 0) will do. This can be tested by commenting out pam_keyinit in the /etc/pam.d files and running the following program a couple of times in a row: #include <stdio.h> #include <stdlib.h> #include <keyutils.h> int main(int argc, char *argv[]) { key_serial_t uk, usk, sk, nsk; uk = keyctl_get_keyring_ID(KEY_SPEC_USER_KEYRING, 0); usk = keyctl_get_keyring_ID(KEY_SPEC_USER_SESSION_KEYRING, 0); sk = keyctl_get_keyring_ID(KEY_SPEC_SESSION_KEYRING, 0); nsk = keyctl_get_keyring_ID(KEY_SPEC_SESSION_KEYRING, 1); printf("keys: %08x %08x %08x %08x\n", uk, usk, sk, nsk); return 0; } Without this patch, I see: keys: 3975ddc7 119c0c66 119c0c66 119c0c66 keys: 3975ddc7 119c0c66 119c0c66 119c0c66 With this patch, I see: keys: 2cb4997b 34112878 34112878 17db2ce3 keys: 2cb4997b 34112878 34112878 39f3c73e As can be seen, the session keyring starts off the same as the user-session keyring each time, but with the patch a new session keyring is created when the create flag is set. Reported-by: Greg Wettstein <greg@enjellic.com> Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Greg Wettstein <greg@enjellic.com> Signed-off-by: James Morris <jmorris@namei.org>
* KEYS: If install_session_keyring() is given a keyring, it should install itDavid Howells2011-08-231-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If install_session_keyring() is given a keyring, it should install it rather than just creating a new one anyway. This was accidentally broken in: commit d84f4f992cbd76e8f39c488cf0c5d123843923b1 Author: David Howells <dhowells@redhat.com> Date: Fri Nov 14 10:39:23 2008 +1100 Subject: CRED: Inaugurate COW credentials The impact of that commit is that pam_keyinit no longer works correctly if 'force' isn't specified against a login process. This is because: keyctl_get_keyring_ID(KEY_SPEC_SESSION_KEYRING, 0) now always creates a new session keyring and thus the check whether the session keyring and the user-session keyring are the same is always false. This leads pam_keyinit to conclude that a session keyring is installed and it shouldn't be revoked by pam_keyinit here if 'revoke' is specified. Any system that specifies 'force' against pam_keyinit in the PAM configuration files for login methods (login, ssh, su -l, kdm, etc.) is not affected since that bypasses the broken check and forces the creation of a new session keyring anyway (for which the revoke flag is not cleared) - and any subsequent call to pam_keyinit really does have a session keyring already installed, and so the check works correctly there. Reverting to the previous behaviour will cause the kernel to subscribe the process to the user-session keyring as its session keyring if it doesn't have a session keyring of its own. pam_keyinit will detect this and install a new session keyring anyway (and won't clear the revert flag). This can be tested by commenting out pam_keyinit in the /etc/pam.d files and running the following program a couple of times in a row: #include <stdio.h> #include <stdlib.h> #include <keyutils.h> int main(int argc, char *argv[]) { key_serial_t uk, usk, sk; uk = keyctl_get_keyring_ID(KEY_SPEC_USER_KEYRING, 0); usk = keyctl_get_keyring_ID(KEY_SPEC_USER_SESSION_KEYRING, 0); sk = keyctl_get_keyring_ID(KEY_SPEC_SESSION_KEYRING, 0); printf("keys: %08x %08x %08x\n", uk, usk, sk); return 0; } Without the patch, I see: keys: 3884e281 24c4dfcf 22825f8e keys: 3884e281 24c4dfcf 068772be With the patch, I see: keys: 26be9c83 0e755ce0 0e755ce0 keys: 26be9c83 0e755ce0 0e755ce0 As can be seen, with the patch, the session keyring is the same as the user-session keyring each time; without the patch a new session keyring is generated each time. Reported-by: Greg Wettstein <greg@enjellic.com> Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Greg Wettstein <greg@enjellic.com> Signed-off-by: James Morris <jmorris@namei.org>
* Set cred->user_ns in key_replace_session_keyringSerge E. Hallyn2011-05-261-0/+1
| | | | | | | | | | | | | | Since this cred was not created with copy_creds(), it needs to get initialized. Otherwise use of syscall(__NR_keyctl, KEYCTL_SESSION_TO_PARENT); can lead to a NULL deref. Thanks to Robert for finding this. But introduced by commit 47a150edc2a ("Cache user_ns in struct cred"). Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Reported-by: Robert Święcki <robert@swiecki.net> Cc: David Howells <dhowells@redhat.com> Cc: stable@kernel.org (2.6.39) Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* KEYS: Improve /proc/keysDavid Howells2011-03-171-5/+7
| | | | | | | | | | | | | | | | | | | | | | | | | Improve /proc/keys by: (1) Don't attempt to summarise the payload of a negated key. It won't have one. To this end, a helper function - key_is_instantiated() has been added that allows the caller to find out whether the key is positively instantiated (as opposed to being uninstantiated or negatively instantiated). (2) Do show keys that are negative, expired or revoked rather than hiding them. This requires an override flag (no_state_check) to be passed to search_my_process_keyrings() and keyring_search_aux() to suppress this check. Without this, keys that are possessed by the caller, but only grant permissions to the caller if possessed are skipped as the possession check fails. Keys that are visible due to user, group or other checks are visible with or without this patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
* KEYS: Fix up comments in key management codeDavid Howells2011-01-211-37/+75
| | | | | | | Fix up comments in the key management code. No functional changes. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* KEYS: Do some style cleanup in the key management code.David Howells2011-01-211-18/+5
| | | | | | | | | | | | | | | | | | Do a bit of a style clean up in the key management code. No functional changes. Done using: perl -p -i -e 's!^/[*]*/\n!!' security/keys/*.c perl -p -i -e 's!} /[*] end [a-z0-9_]*[(][)] [*]/\n!}\n!' security/keys/*.c sed -i -s -e ": next" -e N -e 's/^\n[}]$/}/' -e t -e P -e 's/^.*\n//' -e "b next" security/keys/*.c To remove /*****/ lines, remove comments on the closing brace of a function to name the function and remove blank lines before the closing brace of a function. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Fix install_process_keyring error handlingAndi Kleen2010-10-281-1/+1
| | | | | | | | | Fix an incorrect error check that returns 1 for error instead of the expected error code. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* KEYS: Make /proc/keys check to see if a key is possessed before security checkDavid Howells2010-08-021-21/+43
| | | | | | | | | | | | Make /proc/keys check to see if the calling process possesses each key before performing the security check. The possession check can be skipped if the key doesn't have the possessor-view permission bit set. This causes the keys a process possesses to show up in /proc/keys, even if they don't have matching user/group/other view permissions. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
* umh: creds: convert call_usermodehelper_keys() to use subprocess_info->init()Oleg Nesterov2010-05-271-2/+1
| | | | | | | | | | | | | | | | | | call_usermodehelper_keys() uses call_usermodehelper_setkeys() to change subprocess_info->cred in advance. Now that we have info->init() we can change this code to set tgcred->session_keyring in context of execing kernel thread. Note: since currently call_usermodehelper_keys() is never called with UMH_NO_WAIT, call_usermodehelper_keys()->key_get() and umh_keys_cleanup() are not really needed, we could rely on install_session_keyring_to_cred() which does key_get() on success. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* KEYS: Return more accurate error codesDan Carpenter2010-05-181-3/+3
| | | | | | | | | We were using the wrong variable here so the error codes weren't being returned properly. The original code returns -ENOKEY. Signed-off-by: Dan Carpenter <error27@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
* include cleanup: Update gfp.h and slab.h includes to prepare for breaking ↵Tejun Heo2010-03-301-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
* KEYS: Add a keyctl to install a process's session keyring on its parent [try #6]David Howells2009-09-021-0/+49
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a keyctl to install a process's session keyring onto its parent. This replaces the parent's session keyring. Because the COW credential code does not permit one process to change another process's credentials directly, the change is deferred until userspace next starts executing again. Normally this will be after a wait*() syscall. To support this, three new security hooks have been provided: cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in the blank security creds and key_session_to_parent() - which asks the LSM if the process may replace its parent's session keyring. The replacement may only happen if the process has the same ownership details as its parent, and the process has LINK permission on the session keyring, and the session keyring is owned by the process, and the LSM permits it. Note that this requires alteration to each architecture's notify_resume path. This has been done for all arches barring blackfin, m68k* and xtensa, all of which need assembly alteration to support TIF_NOTIFY_RESUME. This allows the replacement to be performed at the point the parent process resumes userspace execution. This allows the userspace AFS pioctl emulation to fully emulate newpag() and the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to alter the parent process's PAG membership. However, since kAFS doesn't use PAGs per se, but rather dumps the keys into the session keyring, the session keyring of the parent must be replaced if, for example, VIOCSETTOK is passed the newpag flag. This can be tested with the following program: #include <stdio.h> #include <stdlib.h> #include <keyutils.h> #define KEYCTL_SESSION_TO_PARENT 18 #define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0) int main(int argc, char **argv) { key_serial_t keyring, key; long ret; keyring = keyctl_join_session_keyring(argv[1]); OSERROR(keyring, "keyctl_join_session_keyring"); key = add_key("user", "a", "b", 1, keyring); OSERROR(key, "add_key"); ret = keyctl(KEYCTL_SESSION_TO_PARENT); OSERROR(ret, "KEYCTL_SESSION_TO_PARENT"); return 0; } Compiled and linked with -lkeyutils, you should see something like: [dhowells@andromeda ~]$ keyctl show Session Keyring -3 --alswrv 4043 4043 keyring: _ses 355907932 --alswrv 4043 -1 \_ keyring: _uid.4043 [dhowells@andromeda ~]$ /tmp/newpag [dhowells@andromeda ~]$ keyctl show Session Keyring -3 --alswrv 4043 4043 keyring: _ses 1055658746 --alswrv 4043 4043 \_ user: a [dhowells@andromeda ~]$ /tmp/newpag hello [dhowells@andromeda ~]$ keyctl show Session Keyring -3 --alswrv 4043 4043 keyring: hello 340417692 --alswrv 4043 4043 \_ user: a Where the test program creates a new session keyring, sticks a user key named 'a' into it and then installs it on its parent. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
* KEYS: Deal with dead-type keys appropriately [try #6]David Howells2009-09-021-5/+13
| | | | | | | | | | Allow keys for which the key type has been removed to be unlinked. Currently dead-type keys can only be disposed of by completely clearing the keyrings that point to them. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
* kernel: rename is_single_threaded(task) to current_is_single_threaded(void)Oleg Nesterov2009-07-171-1/+1
| | | | | | | | | | | | | | - is_single_threaded(task) is not safe unless task == current, we can't use task->signal or task->mm. - it doesn't make sense unless task == current, the task can fork right after the check. Rename it to current_is_single_threaded() and kill the argument. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
* keys: distinguish per-uid keys in different namespacesSerge E. Hallyn2009-02-271-0/+2
| | | | | | | | | | | | | per-uid keys were looked by uid only. Use the user namespace to distinguish the same uid in different namespaces. This does not address key_permission. So a task can for instance try to join a keyring owned by the same uid in another namespace. That will be handled by a separate patch. Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
* CRED: Make execve() take advantage of copy-on-write credentialsDavid Howells2008-11-141-42/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
* CRED: Inaugurate COW credentialsDavid Howells2008-11-141-169/+164
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
* CRED: Separate per-task-group keyrings from signal_structDavid Howells2008-11-141-60/+40
| | | | | | | | | Separate per-task-group keyrings from signal_struct and dangle their anchor from the cred struct rather than the signal_struct. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
* CRED: Use RCU to access another task's creds and to release a task's own credsDavid Howells2008-11-141-10/+14
| | | | | | | | | | | | Use RCU to access another task's creds and to release a task's own creds. This means that it will be possible for the credentials of a task to be replaced without another task (a) requiring a full lock to read them, and (b) seeing deallocated memory. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
* CRED: Wrap current->cred and a few other accessorsDavid Howells2008-11-141-1/+1
| | | | | | | | | | Wrap current->cred and a few other accessors to hide their actual implementation. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
* CRED: Separate task security context from task_structDavid Howells2008-11-141-47/+51
| | | | | | | | | | | | | | | | Separate the task security context from task_struct. At this point, the security data is temporarily embedded in the task_struct with two pointers pointing to it. Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in entry.S via asm-offsets. With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
OpenPOWER on IntegriCloud