summaryrefslogtreecommitdiffstats
path: root/security/integrity/ima/ima_mok.c
Commit message (Collapse)AuthorAgeFilesLines
* KEYS: Use structure to capture key restriction function and dataMat Martineau2017-04-041-1/+10
| | | | | | | | | | | | | | Replace struct key's restrict_link function pointer with a pointer to the new struct key_restriction. The structure contains pointers to the restriction function as well as relevant data for evaluating the restriction. The garbage collector checks restrict_link->keytype when key types are unregistered. Restrictions involving a removed key type are converted to use restrict_link_reject so that restrictions cannot be removed by unregistering key types. Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
* IMA: Use the the system trusted keyrings instead of .ima_mokDavid Howells2016-04-111-13/+4
| | | | | | | | | | | | | | | | | | | | | | | Add a config option (IMA_KEYRINGS_PERMIT_SIGNED_BY_BUILTIN_OR_SECONDARY) that, when enabled, allows keys to be added to the IMA keyrings by userspace - with the restriction that each must be signed by a key in the system trusted keyrings. EPERM will be returned if this option is disabled, ENOKEY will be returned if no authoritative key can be found and EKEYREJECTED will be returned if the signature doesn't match. Other errors such as ENOPKG may also be returned. If this new option is enabled, the builtin system keyring is searched, as is the secondary system keyring if that is also enabled. Intermediate keys between the builtin system keyring and the key being added can be added to the secondary keyring (which replaces .ima_mok) to form a trust chain - provided they are also validly signed by a key in one of the trusted keyrings. The .ima_mok keyring is then removed and the IMA blacklist keyring gets its own config option (IMA_BLACKLIST_KEYRING). Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
* KEYS: Move the point of trust determination to __key_link()David Howells2016-04-111-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
* KEYS: Add a facility to restrict new links into a keyringDavid Howells2016-04-111-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a facility whereby proposed new links to be added to a keyring can be vetted, permitting them to be rejected if necessary. This can be used to block public keys from which the signature cannot be verified or for which the signature verification fails. It could also be used to provide blacklisting. This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE. To this end: (1) A function pointer is added to the key struct that, if set, points to the vetting function. This is called as: int (*restrict_link)(struct key *keyring, const struct key_type *key_type, unsigned long key_flags, const union key_payload *key_payload), where 'keyring' will be the keyring being added to, key_type and key_payload will describe the key being added and key_flags[*] can be AND'ed with KEY_FLAG_TRUSTED. [*] This parameter will be removed in a later patch when KEY_FLAG_TRUSTED is removed. The function should return 0 to allow the link to take place or an error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the link. The pointer should not be set directly, but rather should be set through keyring_alloc(). Note that if called during add_key(), preparse is called before this method, but a key isn't actually allocated until after this function is called. (2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to key_create_or_update() or key_instantiate_and_link() to bypass the restriction check. (3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring with this restriction emplaced can be considered 'trustworthy' by virtue of being in the keyring when that keyring is consulted. (4) key_alloc() and keyring_alloc() take an extra argument that will be used to set restrict_link in the new key. This ensures that the pointer is set before the key is published, thus preventing a window of unrestrictedness. Normally this argument will be NULL. (5) As a temporary affair, keyring_restrict_trusted_only() is added. It should be passed to keyring_alloc() as the extra argument instead of setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in a later patch with functions that look in the appropriate places for authoritative keys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
* security/integrity: make ima/ima_mok.c explicitly non-modularPaul Gortmaker2015-12-151-3/+2
| | | | | | | | | | | | | | | | | | | | | | | | | The Kconfig currently controlling compilation of this code is: ima/Kconfig:config IMA_MOK_KEYRING ima/Kconfig: bool "Create IMA machine owner keys (MOK) and blacklist keyrings" ...meaning that it currently is not being built as a module by anyone. Lets remove the couple of traces of modularity so that when reading the driver there is no doubt it really is builtin-only. Since module_init translates to device_initcall in the non-modular case, the init ordering remains unchanged with this commit. Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Dmitry Kasatkin <dmitry.kasatkin@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: linux-ima-devel@lists.sourceforge.net Cc: linux-ima-user@lists.sourceforge.net Cc: linux-security-module@vger.kernel.org Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
* IMA: prevent keys on the .ima_blacklist from being removedMimi Zohar2015-12-151-0/+2
| | | | | | | Set the KEY_FLAGS_KEEP on the .ima_blacklist to prevent userspace from removing keys from the keyring. Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
* IMA: create machine owner and blacklist keyringsPetko Manolov2015-12-151-0/+54
This option creates IMA MOK and blacklist keyrings. IMA MOK is an intermediate keyring that sits between .system and .ima keyrings, effectively forming a simple CA hierarchy. To successfully import a key into .ima_mok it must be signed by a key which CA is in .system keyring. On turn any key that needs to go in .ima keyring must be signed by CA in either .system or .ima_mok keyrings. IMA MOK is empty at kernel boot. IMA blacklist keyring contains all revoked IMA keys. It is consulted before any other keyring. If the search is successful the requested operation is rejected and error is returned to the caller. Signed-off-by: Petko Manolov <petkan@mip-labs.com> Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
OpenPOWER on IntegriCloud