| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When a link is being established, the two endpoints advertise their
respective interface MTU in the transmitted RESET and ACTIVATE messages.
If there is any difference, the lower of the two MTUs will be selected
for use by both endpoints.
However, as a remnant of earlier attempts to introduce TIPC level
routing. there also exists an MTU discovery mechanism. If an intermediate
node has a lower MTU than the two endpoints, they will discover this
through a bisectional approach, and finally adopt this MTU for common use.
Since there is no TIPC level routing, and probably never will be,
this mechanism doesn't make any sense, and only serves to make the
link level protocol unecessarily complex.
In this commit, we eliminate the MTU discovery algorithm,and fall back
to the simple MTU advertising approach. This change is fully backwards
compatible.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When a bearer is disabled manually, all its links have to be reset
and deleted. However, if there is a remaining, parallel link ready
to take over a deleted link's traffic, we currently delay the delete
of the removed link until the failover procedure is finished. This
is because the remaining link needs to access state from the reset
link, such as the last received packet number, and any partially
reassembled buffer, in order to perform a successful failover.
In this commit, we do instead move the state data over to the new
link, so that it can fulfill the procedure autonomously, without
accessing any data on the old link. This means that we can now
proceed and delete all pertaining links immediately when a bearer
is disabled. This saves us from some unnecessary complexity in such
situations.
We also choose to change the confusing definitions CHANGEOVER_PROTOCOL,
ORIGINAL_MSG and DUPLICATE_MSG to the more descriptive TUNNEL_PROTOCOL,
FAILOVER_MSG and SYNCH_MSG respectively.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TIPC node hash node table is protected with rcu lock on read side.
tipc_node_find() is used to look for a node object with node address
through iterating the hash node table. As the entire process of what
tipc_node_find() traverses the table is guarded with rcu read lock,
it's safe for us. However, when callers use the node object returned
by tipc_node_find(), there is no rcu read lock applied. Therefore,
this is absolutely unsafe for callers of tipc_node_find().
Now we introduce a reference counter for node structure. Before
tipc_node_find() returns node object to its caller, it first increases
the reference counter. Accordingly, after its caller used it up,
it decreases the counter again. This can prevent a node being used by
one thread from being freed by another thread.
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericson.com>
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ 60.988363] ======================================================
[ 60.988754] [ INFO: possible circular locking dependency detected ]
[ 60.989152] 3.19.0+ #194 Not tainted
[ 60.989377] -------------------------------------------------------
[ 60.989781] swapper/3/0 is trying to acquire lock:
[ 60.990079] (&(&n_ptr->lock)->rlock){+.-...}, at: [<ffffffffa0006dca>] tipc_link_retransmit+0x1aa/0x240 [tipc]
[ 60.990743]
[ 60.990743] but task is already holding lock:
[ 60.991106] (&(&bclink->lock)->rlock){+.-...}, at: [<ffffffffa00004be>] tipc_bclink_lock+0x8e/0xa0 [tipc]
[ 60.991738]
[ 60.991738] which lock already depends on the new lock.
[ 60.991738]
[ 60.992174]
[ 60.992174] the existing dependency chain (in reverse order) is:
[ 60.992174]
-> #1 (&(&bclink->lock)->rlock){+.-...}:
[ 60.992174] [<ffffffff810a9c0c>] lock_acquire+0x9c/0x140
[ 60.992174] [<ffffffff8179c41f>] _raw_spin_lock_bh+0x3f/0x50
[ 60.992174] [<ffffffffa00004be>] tipc_bclink_lock+0x8e/0xa0 [tipc]
[ 60.992174] [<ffffffffa0000f57>] tipc_bclink_add_node+0x97/0xf0 [tipc]
[ 60.992174] [<ffffffffa0011815>] tipc_node_link_up+0xf5/0x110 [tipc]
[ 60.992174] [<ffffffffa0007783>] link_state_event+0x2b3/0x4f0 [tipc]
[ 60.992174] [<ffffffffa00193c0>] tipc_link_proto_rcv+0x24c/0x418 [tipc]
[ 60.992174] [<ffffffffa0008857>] tipc_rcv+0x827/0xac0 [tipc]
[ 60.992174] [<ffffffffa0002ca3>] tipc_l2_rcv_msg+0x73/0xd0 [tipc]
[ 60.992174] [<ffffffff81646e66>] __netif_receive_skb_core+0x746/0x980
[ 60.992174] [<ffffffff816470c1>] __netif_receive_skb+0x21/0x70
[ 60.992174] [<ffffffff81647295>] netif_receive_skb_internal+0x35/0x130
[ 60.992174] [<ffffffff81648218>] napi_gro_receive+0x158/0x1d0
[ 60.992174] [<ffffffff81559e05>] e1000_clean_rx_irq+0x155/0x490
[ 60.992174] [<ffffffff8155c1b7>] e1000_clean+0x267/0x990
[ 60.992174] [<ffffffff81647b60>] net_rx_action+0x150/0x360
[ 60.992174] [<ffffffff8105ec43>] __do_softirq+0x123/0x360
[ 60.992174] [<ffffffff8105f12e>] irq_exit+0x8e/0xb0
[ 60.992174] [<ffffffff8179f9f5>] do_IRQ+0x65/0x110
[ 60.992174] [<ffffffff8179da6f>] ret_from_intr+0x0/0x13
[ 60.992174] [<ffffffff8100de9f>] arch_cpu_idle+0xf/0x20
[ 60.992174] [<ffffffff8109dfa6>] cpu_startup_entry+0x2f6/0x3f0
[ 60.992174] [<ffffffff81033cda>] start_secondary+0x13a/0x150
[ 60.992174]
-> #0 (&(&n_ptr->lock)->rlock){+.-...}:
[ 60.992174] [<ffffffff810a8f7d>] __lock_acquire+0x163d/0x1ca0
[ 60.992174] [<ffffffff810a9c0c>] lock_acquire+0x9c/0x140
[ 60.992174] [<ffffffff8179c41f>] _raw_spin_lock_bh+0x3f/0x50
[ 60.992174] [<ffffffffa0006dca>] tipc_link_retransmit+0x1aa/0x240 [tipc]
[ 60.992174] [<ffffffffa0001e11>] tipc_bclink_rcv+0x611/0x640 [tipc]
[ 60.992174] [<ffffffffa0008646>] tipc_rcv+0x616/0xac0 [tipc]
[ 60.992174] [<ffffffffa0002ca3>] tipc_l2_rcv_msg+0x73/0xd0 [tipc]
[ 60.992174] [<ffffffff81646e66>] __netif_receive_skb_core+0x746/0x980
[ 60.992174] [<ffffffff816470c1>] __netif_receive_skb+0x21/0x70
[ 60.992174] [<ffffffff81647295>] netif_receive_skb_internal+0x35/0x130
[ 60.992174] [<ffffffff81648218>] napi_gro_receive+0x158/0x1d0
[ 60.992174] [<ffffffff81559e05>] e1000_clean_rx_irq+0x155/0x490
[ 60.992174] [<ffffffff8155c1b7>] e1000_clean+0x267/0x990
[ 60.992174] [<ffffffff81647b60>] net_rx_action+0x150/0x360
[ 60.992174] [<ffffffff8105ec43>] __do_softirq+0x123/0x360
[ 60.992174] [<ffffffff8105f12e>] irq_exit+0x8e/0xb0
[ 60.992174] [<ffffffff8179f9f5>] do_IRQ+0x65/0x110
[ 60.992174] [<ffffffff8179da6f>] ret_from_intr+0x0/0x13
[ 60.992174] [<ffffffff8100de9f>] arch_cpu_idle+0xf/0x20
[ 60.992174] [<ffffffff8109dfa6>] cpu_startup_entry+0x2f6/0x3f0
[ 60.992174] [<ffffffff81033cda>] start_secondary+0x13a/0x150
[ 60.992174]
[ 60.992174] other info that might help us debug this:
[ 60.992174]
[ 60.992174] Possible unsafe locking scenario:
[ 60.992174]
[ 60.992174] CPU0 CPU1
[ 60.992174] ---- ----
[ 60.992174] lock(&(&bclink->lock)->rlock);
[ 60.992174] lock(&(&n_ptr->lock)->rlock);
[ 60.992174] lock(&(&bclink->lock)->rlock);
[ 60.992174] lock(&(&n_ptr->lock)->rlock);
[ 60.992174]
[ 60.992174] *** DEADLOCK ***
[ 60.992174]
[ 60.992174] 3 locks held by swapper/3/0:
[ 60.992174] #0: (rcu_read_lock){......}, at: [<ffffffff81646791>] __netif_receive_skb_core+0x71/0x980
[ 60.992174] #1: (rcu_read_lock){......}, at: [<ffffffffa0002c35>] tipc_l2_rcv_msg+0x5/0xd0 [tipc]
[ 60.992174] #2: (&(&bclink->lock)->rlock){+.-...}, at: [<ffffffffa00004be>] tipc_bclink_lock+0x8e/0xa0 [tipc]
[ 60.992174]
The correct the sequence of grabbing n_ptr->lock and bclink->lock
should be that the former is first held and the latter is then taken,
which exactly happened on CPU1. But especially when the retransmission
of broadcast link is failed, bclink->lock is first held in
tipc_bclink_rcv(), and n_ptr->lock is taken in link_retransmit_failure()
called by tipc_link_retransmit() subsequently, which is demonstrated on
CPU0. As a result, deadlock occurs.
If the order of holding the two locks happening on CPU0 is reversed, the
deadlock risk will be relieved. Therefore, the node lock taken in
link_retransmit_failure() originally is moved to tipc_bclink_rcv()
so that it's obtained before bclink lock. But the precondition of
the adjustment of node lock is that responding to bclink reset event
must be moved from tipc_bclink_unlock() to tipc_node_unlock().
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
struct tipc_link contains one single queue for outgoing packets,
where both transmitted and waiting packets are queued.
This infrastructure is hard to maintain, because we need
to keep a number of fields to keep track of which packets are
sent or unsent, and the number of packets in each category.
A lot of code becomes simpler if we split this queue into a transmission
queue, where sent/unacknowledged packets are kept, and a backlog queue,
where we keep the not yet sent packets.
In this commit we do this separation.
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add TIPC_CMD_NOOP to compat layer and remove the old framework.
All legacy nl commands are now converted to the compat layer in
netlink_compat.c.
Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
| |
Convert TIPC_CMD_GET_NODES to compat dumpit and remove global node
counter solely used by the legacy API.
Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
| |
Convert TIPC_CMD_GET_LINKS to compat dumpit and remove global link
counter solely used by the legacy API.
Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The new netlink API is no longer "v2" but rather the standard API and
the legacy API is now "nl compat". We split them into separate
start/stop and put them in different files in order to further
distinguish them.
Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In a previous commit in this series we resolved a race problem during
unicast message reception.
Here, we resolve the same problem at multicast reception. We apply the
same technique: an input queue serializing the delivery of arriving
buffers. The main difference is that here we do it in two steps.
First, the broadcast link feeds arriving buffers into the tail of an
arrival queue, which head is consumed at the socket level, and where
destination lookup is performed. Second, if the lookup is successful,
the resulting buffer clones are fed into a second queue, the input
queue. This queue is consumed at reception in the socket just like
in the unicast case. Both queues are protected by the same lock, -the
one of the input queue.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The new input message queue in struct tipc_link can be used for
delivering connection abort messages to subscribing sockets. This
makes it possible to simplify the code for such cases.
This commit removes the temporary list in tipc_node_unlock()
used for transforming abort subscriptions to messages. Instead, the
abort messages are now created at the moment of lost contact, and
then added to the last failed link's generic input queue for delivery
to the sockets concerned.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TIPC handles message cardinality and sequencing at the link layer,
before passing messages upwards to the destination sockets. During the
upcall from link to socket no locks are held. It is therefore possible,
and we see it happen occasionally, that messages arriving in different
threads and delivered in sequence still bypass each other before they
reach the destination socket. This must not happen, since it violates
the sequentiality guarantee.
We solve this by adding a new input buffer queue to the link structure.
Arriving messages are added safely to the tail of that queue by the
link, while the head of the queue is consumed, also safely, by the
receiving socket. Sequentiality is secured per socket by only allowing
buffers to be dequeued inside the socket lock. Since there may be multiple
simultaneous readers of the queue, we use a 'filter' parameter to reduce
the risk that they peek the same buffer from the queue, hence also
reducing the risk of contention on the receiving socket locks.
This solves the sequentiality problem, and seems to cause no measurable
performance degradation.
A nice side effect of this change is that lock handling in the functions
tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that
will enable future simplifications of those functions.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The most common usage of namespace information is when we fetch the
own node addess from the net structure. This leads to a lot of
passing around of a parameter of type 'struct net *' between
functions just to make them able to obtain this address.
However, in many cases this is unnecessary. The own node address
is readily available as a member of both struct tipc_sock and
tipc_link, and can be fetched from there instead.
The fact that the vast majority of functions in socket.c and link.c
anyway are maintaining a pointer to their respective base structures
makes this option even more compelling.
In this commit, we introduce the inline functions tsk_own_node()
and link_own_node() to make it easy for functions to fetch the node
address from those structs instead of having to pass along and
dereference the namespace struct.
In particular, we make calls to the msg_xx() functions in msg.{h,c}
context independent by directly passing them the own node address
as parameter when needed. Those functions should be regarded as
leaves in the code dependency tree, and it is hence desirable to
keep them namspace unaware.
Apart from a potential positive effect on cache behavior, these
changes make it easier to introduce the changes that will follow
later in this series.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instances of struct node are created in the function tipc_disc_rcv()
under the assumption that there is no race between received discovery
messages arriving from the same node. This assumption is wrong.
When we use more than one bearer, it is possible that discovery
messages from the same node arrive at the same moment, resulting in
creation of two instances of struct tipc_node. This may later cause
confusion during link establishment, and may result in one of the links
never becoming activated.
We fix this by making lookup and potential creation of nodes atomic.
Instead of first looking up the node, and in case of failure, create it,
we now start with looking up the node inside node_link_create(), and
return a reference to that one if found. Otherwise, we go ahead and
create the node as we did before.
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During link failover it may happen that the remaining link goes
down while it is still in the process of taking over traffic
from a previously failed link. When this happens, we currently
abort the failover procedure and reset the first failed link to
non-failover mode, so that it will be ready to re-establish
contact with its peer when it comes available.
However, if the first link goes down because its bearer was manually
disabled, it is not enough to reset it; it must also be deleted;
which is supposed to happen when the failover procedure is finished.
Otherwise it will remain a zombie link: attached to the owner node
structure, in mode LINK_STOPPED, and permanently blocking any re-
establishing of the link to the peer via the interface in question.
We fix this by amending the failover abort procedure. Apart from
resetting the link to non-failover state, we test if the link is
also in LINK_STOPPED mode. If so, we delete it, using the conditional
tipc_link_delete() function introduced in the previous commit.
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
| |
If a large number of namespaces is spawned on a node and TIPC is
enabled in each of these, the excessive printk tracing of network
events will cause the system to grind down to a near halt.
The traces are still of debug value, so instead of removing them
completely we fix it by changing the link state and node availability
logging debug traces.
Signed-off-by: Erik Hugne <erik.hugne@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If net namespace is supported in tipc, each namespace will be treated
as a separate tipc node. Therefore, every namespace must own its
private tipc node address. This means the "tipc_own_addr" global
variable of node address must be moved to tipc_net structure to
satisfy the requirement. It's turned out that users also can assign
node address for every namespace.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Tested-by: Tero Aho <Tero.Aho@coriant.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TIPC broadcast link is statically established and its relevant states
are maintained with the global variables: "bcbearer", "bclink" and
"bcl". Allowing different namespace to own different broadcast link
instances, these variables must be moved to tipc_net structure and
broadcast link instances would be allocated and initialized when
namespace is created.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Tested-by: Tero Aho <Tero.Aho@coriant.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Global variables associated with node table are below:
- node table list (node_htable)
- node hash table list (tipc_node_list)
- node table lock (node_list_lock)
- node number counter (tipc_num_nodes)
- node link number counter (tipc_num_links)
To make node table support namespace, above global variables must be
moved to tipc_net structure in order to keep secret for different
namespaces. As a consequence, these variables are allocated and
initialized when namespace is created, and deallocated when namespace
is destroyed. After the change, functions associated with these
variables have to utilize a namespace pointer to access them. So
adding namespace pointer as a parameter of these functions is the
major change made in the commit.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Tested-by: Tero Aho <Tero.Aho@coriant.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 908344cdda80 ("tipc: fix bug in multicast congestion handling")
introduced a race in the broadcast link wakeup functionality.
This patch eliminates this broadcast link wakeup race caused by
operation on the wakeup list without proper locking. If this race
hit and corrupted the list all subsequent wakeup messages would be
lost, resulting in a considerable memory leak.
Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Signed-off-by: Erik Hugne <erik.hugne@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
| |
Use standard SKB list APIs associated with struct sk_buff_head to
manage link's deferred queue, simplifying relevant code.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The node subscribe infrastructure represents a virtual base class, so
its users, such as struct tipc_port and struct publication, can derive
its implemented functionalities. However, after the removal of struct
tipc_port, struct publication is left as its only single user now. So
defining an abstract infrastructure for one user becomes no longer
reasonable. If corresponding new functions associated with the
infrastructure are moved to name_table.c file, the node subscription
infrastructure can be removed as well.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
| |
Fix sparse warnings about non-static declaration of static functions
in the new tipc netlink API.
Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add TIPC_NL_NODE_GET to the new tipc netlink API.
This command can dump the address and node status of all nodes in the
tipc cluster.
Netlink logical layout of returned node/address data:
-> node
-> address
-> up flag
Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Locking dependency detected below possible unsafe locking scenario:
CPU0 CPU1
T0: tipc_named_rcv() tipc_rcv()
T1: [grab nametble write lock]* [grab node lock]*
T2: tipc_update_nametbl() tipc_node_link_up()
T3: tipc_nodesub_subscribe() tipc_nametbl_publish()
T4: [grab node lock]* [grab nametble write lock]*
The opposite order of holding nametbl write lock and node lock on
above two different paths may result in a deadlock. If we move the
the updating of the name table after link state named out of node
lock, the reverse order of holding locks will be eliminated, and
as a result, the deadlock risk.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
One aim of commit 50100a5e39461b2a61d6040e73c384766c29975d ("tipc:
use pseudo message to wake up sockets after link congestion") was
to handle link congestion abatement in a uniform way for both unicast
and multicast transmit. However, the latter doesn't work correctly,
and has been broken since the referenced commit was applied.
If a user now sends a burst of multicast messages that is big
enough to cause broadcast link congestion, it will be put to sleep,
and not be waked up when the congestion abates as it should be.
This has two reasons. First, the flag that is used, TIPC_WAKEUP_USERS,
is set correctly, but in the wrong field. Instead of setting it in the
'action_flags' field of the arrival node struct, it is by mistake set
in the dummy node struct that is owned by the broadcast link, where it
will never tested for. Second, we cannot use the same flag for waking
up unicast and multicast users, since the function tipc_node_unlock()
needs to pick the wakeup pseudo messages to deliver from different
queues. It must hence be able to distinguish between the two cases.
This commit solves this problem by adding a new flag
TIPC_WAKEUP_BCAST_USERS, and a new function tipc_bclink_wakeup_user().
The latter is to be called by tipc_node_unlock() when the named flag,
now set in the correct field, is encountered.
v2: using explicit 'unsigned int' declaration instead of 'uint', as
per comment from David Miller.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the current implementation, each 'struct tipc_node' instance keeps
a linked list of those ports/sockets that are connected to the node
represented by that struct. The purpose of this is to let the node
object know which sockets to alert when it loses contact with its peer
node, i.e., which sockets need to have their connections aborted.
This entails an unwanted direct reference from the node structure
back to the port/socket structure, and a need to grab port_lock
when we have to make an upcall to the port. We want to get rid of
this unecessary BH entry point into the socket, and also eliminate
its use of port_lock.
In this commit, we instead let the node struct keep list of "connected
socket" structs, which each represents a connected socket, but is
allocated independently by the node at the moment of connection. If
the node loses contact with its peer node, the list is traversed, and
a "connection abort" message is created for each entry in the list. The
message is sent to it respective connected socket using the ordinary
data path, and the receiving socket aborts its connections upon reception
of the message.
This enables us to get rid of the direct reference from 'struct node' to
´struct port', and another unwanted BH access point to the latter.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The current link implementation keeps a linked list of blocked ports/
sockets that is populated when there is link congestion. The purpose
of this is to let the link know which users to wake up when the
congestion abates.
This adds unnecessary complexity to the data structure and the code,
since it forces us to involve the link each time we want to delete
a socket. It also forces us to grab the spinlock port_lock within
the scope of node_lock. We want to get rid of this direct dependence,
as well as the deadlock hazard resulting from the usage of port_lock.
In this commit, we instead let the link keep list of a "wakeup" pseudo
messages for use in such situations. Those messages are sent to the
pending sockets via the ordinary message reception path, and wake up
the socket's owner when they are received.
This enables us to get rid of the 'waiting_ports' linked lists in struct
tipc_port that manifest this direct reference. As a consequence, we can
eliminate another BH entry into the socket, and hence the need to grab
port_lock. This is a further step in our effort to remove port_lock
altogether.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In a previous commit series ("tipc: new unicast transmission code")
we introduced a new message sending function, tipc_link_xmit2(),
and moved the unicast data users over to use that function. We now
let the internal name table distributor do the same.
The interaction between the name distributor and the node/link
layer also becomes significantly simpler, so we can eliminate
the function tipc_link_names_xmit().
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Message fragmentation is currently performed at link level, inside
the protection of node_lock. This potentially binds up the sending
link structure for a long time, instead of letting it do other tasks,
such as handle reception of new packets.
In this commit, we make the MTUs of each active link become easily
accessible from the socket level, i.e., without taking any spinlock
or dereferencing the target link pointer. This way, we make it possible
to perform fragmentation in the sending socket, before sending the
whole fragment chain to the link for transport.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The function tipc_link_frag_rcv() is in reality a re-entrant generic
message reassemby function that has nothing in particular to do with
the link, where it is defined now. This becomes obvious when we see
the need to call the function from other places in the code.
In this commit rename it to tipc_buf_append() and move it to the file
msg.c. We also simplify its signature by moving the tail pointer to
the control block of the head buffer, hence making the head buffer
self-contained.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Each node action flag should be set or cleared separately, instead
we now set the whole flags variable in one shot, and it's turned
out to be hard to see which other flags are affected. Therefore,
for instance, we explicitly clear TIPC_WAIT_OWN_LINKS_DOWN bit in
node_lost_contact().
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
| |
Rename node flags to action_flags as well as its enum names so
that they can reflect its real meanings.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
| |
Postpone the actions of delivering name tables until after node
lock is released, avoiding to do it under asynchronous context.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since previously what all publications pertaining to the lost node
were removed from name table was finished in tasklet context
asynchronously, we need to TIPC_NAMES_GONE flag indicating whether
the node cleanup work is finished or not. But now as the cleanup work
has been finished when node lock is released, the flag becomes
meaningless for us.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
| |
Postpone the actions of notifying subscriptions until after node lock
is released, avoiding to asynchronously execute registered handlers
when node is lost.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
| |
Rename setup_blocked variable of node struct to a more common
name called "flags", which will be used to represent kinds of
node states.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 78acb1f9b898e85fa2c1e28e700b54b66b288e8d ("tipc: add
ioctl to fetch link names") introduced a buffer overflow bug where
specially crafted ioctl requests could cause out-of-bounds indexing
of the node->links array. This was caused by an incorrect check vs
MAX_BEARERS, and the static code checker complaint is:
net/tipc/node.c:459 tipc_node_get_linkname() error: buffer overflow 'node->links' 2 <= 2
Signed-off-by: Erik Hugne <erik.hugne@ericsson.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We add a new ioctl for AF_TIPC that can be used to fetch the
logical name for a link to a remote node on a given bearer. This
should be used in combination with link state subscriptions.
The logical name size limit definitions are moved to tipc.h, as
they are now also needed by the new ioctl.
Signed-off-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When links are established over a bearer plane, we create a node
local publication containing information about the peer node and
bearer plane. This allows TIPC applications to use the standard
TIPC topology server subscription mechanism to get notifications
when a link goes up or down.
Signed-off-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now tipc routing hierarchy comprises the structures 'node', 'link'and
'bearer'. The whole hierarchy is protected by a big read/write lock,
tipc_net_lock, to ensure that nothing is added or removed while code
is accessing any of these structures. Obviously the locking policy
makes node, link and bearer components closely bound together so that
their relationship becomes unnecessarily complex. In the worst case,
such locking policy not only has a negative influence on performance,
but also it's prone to lead to deadlock occasionally.
In order o decouple the complex relationship between bearer and node
as well as link, the locking policy is adjusted as follows:
- Bearer level
RTNL lock is used on update side, and RCU is used on read side.
Meanwhile, all bearer instances including broadcast bearer are
saved into bearer_list array.
- Node and link level
All node instances are saved into two tipc_node_list and node_htable
lists. The two lists are protected by node_list_lock on write side,
and they are guarded with RCU lock on read side. All members in node
structure including link instances are protected by node spin lock.
- The relationship between bearer and node
When link accesses bearer, it first needs to find the bearer with
its bearer identity from the bearer_list array. When bearer accesses
node, it can iterate the node_htable hash list with the node
address to find the corresponding node.
In the new locking policy, every component has its private locking
solution and the relationship between bearer and node is very simple,
that is, they can find each other with node address or bearer identity
from node_htable hash list or bearer_list array.
Until now above all changes have been done, so tipc_net_lock can be
removed safely.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Tested-by: Erik Hugne <erik.hugne@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently on both paths of message transmission and reception, the
read lock of tipc_net_lock must be held before bearer is accessed,
while the write lock of tipc_net_lock has to be taken before bearer
is configured. Although it can ensure that bearer is always valid on
the two data paths, link and bearer is closely bound together.
So as the part of effort of removing tipc_net_lock, the locking
policy of bearer protection will be adjusted as below: on the two
data paths, RCU is used, and on the configuration path of bearer,
RTNL lock is applied.
Now RCU just covers the path of message reception. To make it possible
to protect the path of message transmission with RCU, link should not
use its stored bearer pointer to access bearer, but it should use the
bearer identity of its attached bearer as index to get bearer instance
from bearer_list array, which can help us decouple the relationship
between bearer and link. As a result, bearer on the path of message
transmission can be safely protected by RCU when we access bearer_list
array within RCU lock protection.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Tested-by: Erik Hugne <erik.hugne@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Without properly implicit or explicit read memory barrier, it's
unsafe to read an atomic variable with atomic_read() from another
thread which is different with the thread of changing the atomic
variable with atomic_inc() or atomic_dec(). So a stale tipc_num_links
may be got with atomic_read() in tipc_node_get_links(). If the
tipc_num_links variable type is converted from atomic to unsigned
integer and node list lock is used to protect it, the issue would
be avoided.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
| |
As tipc_node_list is protected by rcu read lock on read side, it's
unnecessary to hold node_list_lock to protect tipc_node_list in
tipc_node_get_links(). Instead, node_list_lock should just protects
tipc_num_nodes in the function.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
| |
Convert tipc_node_list list and node_htable hash list to RCU lists.
On read side, the two lists are protected with RCU read lock, and
on update side, node_list_lock is applied to them.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When a node is created, tipc_net_lock read lock is first held and
then node_create_lock is grabbed in order to prevent the same node
from being created and inserted into both node list and hlist twice.
But when we query node from the two node lists, we only hold
tipc_net_lock read lock without grabbing node_create_lock. Obviously
this locking policy is unable to guarantee that the two node lists
are always synchronized especially when the operation of changing
and accessing them occurs in different contexts like currently doing.
Therefore, rename node_create_lock to node_list_lock to protect the
two node lists, that is, whenever node is inserted into them or node
is queried from them, the node_list_lock should be always held. As a
result, tipc_net_lock read lock becomes redundant and then can be
removed from the node query functions.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
| |
tipc_node_create routine doesn't need to check whether a node
object specified with a node address exists or not because its
caller(ie, tipc_disc_recv_msg routine) has checked this before
calling it.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rename the following functions, which are shorter and more in line
with common naming practice in the network subsystem.
tipc_bclink_send_msg->tipc_bclink_xmit
tipc_bclink_recv_pkt->tipc_bclink_rcv
tipc_disc_recv_msg->tipc_disc_rcv
tipc_link_send_proto_msg->tipc_link_proto_xmit
link_recv_proto_msg->tipc_link_proto_rcv
link_send_sections_long->tipc_link_iovec_long_xmit
tipc_link_send_sections_fast->tipc_link_iovec_xmit_fast
tipc_link_send_sync->tipc_link_sync_xmit
tipc_link_recv_sync->tipc_link_sync_rcv
tipc_link_send_buf->__tipc_link_xmit
tipc_link_send->tipc_link_xmit
tipc_link_send_names->tipc_link_names_xmit
tipc_named_recv->tipc_named_rcv
tipc_link_recv_bundle->tipc_link_bundle_rcv
tipc_link_dup_send_queue->tipc_link_dup_queue_xmit
link_send_long_buf->tipc_link_frag_xmit
tipc_multicast->tipc_port_mcast_xmit
tipc_port_recv_mcast->tipc_port_mcast_rcv
tipc_port_reject_sections->tipc_port_iovec_reject
tipc_port_recv_proto_msg->tipc_port_proto_rcv
tipc_connect->tipc_port_connect
__tipc_connect->__tipc_port_connect
__tipc_disconnect->__tipc_port_disconnect
tipc_disconnect->tipc_port_disconnect
tipc_shutdown->tipc_port_shutdown
tipc_port_recv_msg->tipc_port_rcv
tipc_port_recv_sections->tipc_port_iovec_rcv
release->tipc_release
accept->tipc_accept
bind->tipc_bind
get_name->tipc_getname
poll->tipc_poll
send_msg->tipc_sendmsg
send_packet->tipc_send_packet
send_stream->tipc_send_stream
recv_msg->tipc_recvmsg
recv_stream->tipc_recv_stream
connect->tipc_connect
listen->tipc_listen
shutdown->tipc_shutdown
setsockopt->tipc_setsockopt
getsockopt->tipc_getsockopt
Above changes have no impact on current users of the functions.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In commit 7d33939f475d403e79124e3143d7951dcfe8629f
("tipc: delay delete of link when failover is needed") we
introduced a loop for finding and removing a link pointer
in an array. The removal is done after we have left the loop,
giving the impression that one may remove the wrong pointer
if no matching element is found.
This is not really a bug, since we know that there will always
be a matching element, but it looks wrong, and causes a smatch
warning.
We fix this loop with this commit.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When a bearer is disabled, all its attached links are deleted.
Ideally, we should do link failover to redundant links on other bearers,
if there are any, in such cases. This would be consistent with current
behavior when a link is reset, but not deleted. However, due to the
complexity involved, and the (wrongly) perceived low demand for this
feature, it was never implemented until now.
We mark the doomed link for deletion with a new flag, but wait until the
failover process is finished before we actually delete it. With the
improved link tunnelling/failover code introduced earlier in this commit
series, it is now easy to identify a spot in the code where the failover
is finished and it is safe to delete the marked link. Moreover, the test
for the flag and the deletion can be done synchronously, and outside the
most time critical data path.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|