summaryrefslogtreecommitdiffstats
path: root/net/rxrpc/ar-key.c
Commit message (Collapse)AuthorAgeFilesLines
* Merge branch 'modules-next' of ↵Linus Torvalds2012-10-141-20/+20
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux Pull module signing support from Rusty Russell: "module signing is the highlight, but it's an all-over David Howells frenzy..." Hmm "Magrathea: Glacier signing key". Somebody has been reading too much HHGTTG. * 'modules-next' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (37 commits) X.509: Fix indefinite length element skip error handling X.509: Convert some printk calls to pr_devel asymmetric keys: fix printk format warning MODSIGN: Fix 32-bit overflow in X.509 certificate validity date checking MODSIGN: Make mrproper should remove generated files. MODSIGN: Use utf8 strings in signer's name in autogenerated X.509 certs MODSIGN: Use the same digest for the autogen key sig as for the module sig MODSIGN: Sign modules during the build process MODSIGN: Provide a script for generating a key ID from an X.509 cert MODSIGN: Implement module signature checking MODSIGN: Provide module signing public keys to the kernel MODSIGN: Automatically generate module signing keys if missing MODSIGN: Provide Kconfig options MODSIGN: Provide gitignore and make clean rules for extra files MODSIGN: Add FIPS policy module: signature checking hook X.509: Add a crypto key parser for binary (DER) X.509 certificates MPILIB: Provide a function to read raw data into an MPI X.509: Add an ASN.1 decoder X.509: Add simple ASN.1 grammar compiler ...
| * KEYS: Add payload preparsing opportunity prior to key instantiate or updateDavid Howells2012-10-081-20/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
* | userns: net: Call key_alloc with GLOBAL_ROOT_UID, GLOBAL_ROOT_GID instead of ↵Eric W. Biederman2012-09-131-2/+4
|/ | | | | | | | | | | | | | | | 0, 0 In net/dns_resolver/dns_key.c and net/rxrpc/ar-key.c make them work with user namespaces enabled where key_alloc takes kuids and kgids. Pass GLOBAL_ROOT_UID and GLOBAL_ROOT_GID instead of bare 0's. Cc: Sage Weil <sage@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: David Howells <dhowells@redhat.com> Cc: David Miller <davem@davemloft.net> Cc: linux-afs@lists.infradead.org Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
* net: cleanup unsigned to unsigned intEric Dumazet2012-04-151-11/+11
| | | | | | | Use of "unsigned int" is preferred to bare "unsigned" in net tree. Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* RxRPC: Fix kcalloc parameters swappedAxel Lin2012-02-141-2/+2
| | | | | | | | | The first parameter should be "number of elements" and the second parameter should be "element size". Signed-off-by: Axel Lin <axel.lin@gmail.com> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* RxRPC: Use kmemdup rather than duplicating its implementationThomas Meyer2011-11-211-4/+2
| | | | | | | | The semantic patch that makes this change is available in scripts/coccinelle/api/memdup.cocci. Signed-off-by: Thomas Meyer <thomas@m3y3r.de> Signed-off-by: David S. Miller <davem@davemloft.net>
* KEYS: Add a key type op to permit the key description to be vettedDavid Howells2011-03-081-0/+19
| | | | | | | | | | | Add a key type operation to permit the key type to vet the description of a new key that key_alloc() is about to allocate. The operation may reject the description if it wishes with an error of its choosing. If it does this, the key will not be allocated. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
* RxRPC: Allocate tokens with kzalloc to avoid oops in rxrpc_destroyAnton Blanchard2011-02-251-4/+4
| | | | | | | | | | | | | | | | | | | | | | | With slab poisoning enabled, I see the following oops: Unable to handle kernel paging request for data at address 0x6b6b6b6b6b6b6b73 ... NIP [c0000000006bc61c] .rxrpc_destroy+0x44/0x104 LR [c0000000006bc618] .rxrpc_destroy+0x40/0x104 Call Trace: [c0000000feb2bc00] [c0000000006bc618] .rxrpc_destroy+0x40/0x104 (unreliable) [c0000000feb2bc90] [c000000000349b2c] .key_cleanup+0x1a8/0x20c [c0000000feb2bd40] [c0000000000a2920] .process_one_work+0x2f4/0x4d0 [c0000000feb2be00] [c0000000000a2d50] .worker_thread+0x254/0x468 [c0000000feb2bec0] [c0000000000a868c] .kthread+0xbc/0xc8 [c0000000feb2bf90] [c000000000020e00] .kernel_thread+0x54/0x70 We aren't initialising token->next, but the code in destroy_context relies on the list being NULL terminated. Use kzalloc to zero out all the fields. Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* include cleanup: Update gfp.h and slab.h includes to prepare for breaking ↵Tejun Heo2010-03-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
* RxRPC: Use uX/sX rather than uintX_t/intX_t typesDavid Howells2009-09-161-1/+1
| | | | | | | Use uX rather than uintX_t types for consistency. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* RxRPC: Parse security index 5 keys (Kerberos 5)David Howells2009-09-151-40/+537
| | | | | | | Parse RxRPC security index 5 type keys (Kerberos 5 tokens). Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* RxRPC: Allow RxRPC keys to be readDavid Howells2009-09-151-0/+109
| | | | | | | | Allow RxRPC keys to be read. This is to allow pioctl() to be implemented in userspace. RxRPC keys are read out in XDR format. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* RxRPC: Allow key payloads to be passed in XDR formDavid Howells2009-09-151-38/+270
| | | | | | | | | | Allow add_key() and KEYCTL_INSTANTIATE to accept key payloads in XDR form as described by openafs-1.4.10/src/auth/afs_token.xg. This provides a way of passing kaserver, Kerberos 4, Kerberos 5 and GSSAPI keys from userspace, and allows for future expansion. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* RxRPC: Declare the security index constants symbolicallyDavid Howells2009-09-151-2/+2
| | | | | | | | Declare the security index constants symbolically rather than just referring to them numerically. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* CRED: Inaugurate COW credentialsDavid Howells2008-11-141-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
* KEYS: Make request_key() and co fundamentally asynchronousDavid Howells2007-10-171-3/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make request_key() and co fundamentally asynchronous to make it easier for NFS to make use of them. There are now accessor functions that do asynchronous constructions, a wait function to wait for construction to complete, and a completion function for the key type to indicate completion of construction. Note that the construction queue is now gone. Instead, keys under construction are linked in to the appropriate keyring in advance, and that anyone encountering one must wait for it to be complete before they can use it. This is done automatically for userspace. The following auxiliary changes are also made: (1) Key type implementation stuff is split from linux/key.h into linux/key-type.h. (2) AF_RXRPC provides a way to allocate null rxrpc-type keys so that AFS does not need to call key_instantiate_and_link() directly. (3) Adjust the debugging macros so that they're -Wformat checked even if they are disabled, and make it so they can be enabled simply by defining __KDEBUG to be consistent with other code of mine. (3) Documentation. [alan@lxorguk.ukuu.org.uk: keys: missing word in documentation] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel bothDavid Howells2007-04-261-0/+334
Provide AF_RXRPC sockets that can be used to talk to AFS servers, or serve answers to AFS clients. KerberosIV security is fully supported. The patches and some example test programs can be found in: http://people.redhat.com/~dhowells/rxrpc/ This will eventually replace the old implementation of kernel-only RxRPC currently resident in net/rxrpc/. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
OpenPOWER on IntegriCloud