| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We have received a hard to explain oom report from a customer. The oom
triggered regardless there is a lot of free memory:
PoolThread invoked oom-killer: gfp_mask=0x280da, order=0, oom_adj=0, oom_score_adj=0
PoolThread cpuset=/ mems_allowed=0-7
Pid: 30055, comm: PoolThread Tainted: G E X 3.0.101-80-default #1
Call Trace:
dump_trace+0x75/0x300
dump_stack+0x69/0x6f
dump_header+0x8e/0x110
oom_kill_process+0xa6/0x350
out_of_memory+0x2b7/0x310
__alloc_pages_slowpath+0x7dd/0x820
__alloc_pages_nodemask+0x1e9/0x200
alloc_pages_vma+0xe1/0x290
do_anonymous_page+0x13e/0x300
do_page_fault+0x1fd/0x4c0
page_fault+0x25/0x30
[...]
active_anon:1135959151 inactive_anon:1051962 isolated_anon:0
active_file:13093 inactive_file:222506 isolated_file:0
unevictable:262144 dirty:2 writeback:0 unstable:0
free:432672819 slab_reclaimable:7917 slab_unreclaimable:95308
mapped:261139 shmem:166297 pagetables:2228282 bounce:0
[...]
Node 0 DMA free:15896kB min:0kB low:0kB high:0kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15672kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? yes
lowmem_reserve[]: 0 2892 775542 775542
Node 0 DMA32 free:2783784kB min:28kB low:32kB high:40kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:2961572kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? yes
lowmem_reserve[]: 0 0 772650 772650
Node 0 Normal free:8120kB min:8160kB low:10200kB high:12240kB active_anon:779334960kB inactive_anon:2198744kB active_file:0kB inactive_file:180kB unevictable:131072kB isolated(anon):0kB isolated(file):0kB present:791193600kB mlocked:131072kB dirty:0kB writeback:0kB mapped:372940kB shmem:361480kB slab_reclaimable:4536kB slab_unreclaimable:68472kB kernel_stack:10104kB pagetables:1414820kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:2280 all_unreclaimable? yes
lowmem_reserve[]: 0 0 0 0
Node 1 Normal free:476718144kB min:8192kB low:10240kB high:12288kB active_anon:307623696kB inactive_anon:283620kB active_file:10392kB inactive_file:69908kB unevictable:131072kB isolated(anon):0kB isolated(file):0kB present:794296320kB mlocked:131072kB dirty:4kB writeback:0kB mapped:257208kB shmem:189896kB slab_reclaimable:3868kB slab_unreclaimable:44756kB kernel_stack:1848kB pagetables:1369432kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
Node 2 Normal free:386002452kB min:8192kB low:10240kB high:12288kB active_anon:398563752kB inactive_anon:68184kB active_file:10292kB inactive_file:29936kB unevictable:131072kB isolated(anon):0kB isolated(file):0kB present:794296320kB mlocked:131072kB dirty:0kB writeback:0kB mapped:32084kB shmem:776kB slab_reclaimable:6888kB slab_unreclaimable:60056kB kernel_stack:8208kB pagetables:1282880kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
Node 3 Normal free:196406760kB min:8192kB low:10240kB high:12288kB active_anon:587445640kB inactive_anon:164396kB active_file:5716kB inactive_file:709844kB unevictable:131072kB isolated(anon):0kB isolated(file):0kB present:794296320kB mlocked:131072kB dirty:0kB writeback:0kB mapped:291776kB shmem:111416kB slab_reclaimable:5152kB slab_unreclaimable:44516kB kernel_stack:2168kB pagetables:1455956kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
Node 4 Normal free:425338880kB min:8192kB low:10240kB high:12288kB active_anon:359695204kB inactive_anon:43216kB active_file:5748kB inactive_file:14772kB unevictable:131072kB isolated(anon):0kB isolated(file):0kB present:794296320kB mlocked:131072kB dirty:0kB writeback:0kB mapped:24708kB shmem:1120kB slab_reclaimable:1884kB slab_unreclaimable:41060kB kernel_stack:1856kB pagetables:1100208kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
Node 5 Normal free:11140kB min:8192kB low:10240kB high:12288kB active_anon:784240872kB inactive_anon:1217164kB active_file:28kB inactive_file:48kB unevictable:131072kB isolated(anon):0kB isolated(file):0kB present:794296320kB mlocked:131072kB dirty:0kB writeback:0kB mapped:11408kB shmem:0kB slab_reclaimable:2008kB slab_unreclaimable:49220kB kernel_stack:1360kB pagetables:531600kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:1202 all_unreclaimable? yes
lowmem_reserve[]: 0 0 0 0
Node 6 Normal free:243395332kB min:8192kB low:10240kB high:12288kB active_anon:542015544kB inactive_anon:40208kB active_file:968kB inactive_file:8484kB unevictable:131072kB isolated(anon):0kB isolated(file):0kB present:794296320kB mlocked:131072kB dirty:0kB writeback:0kB mapped:19992kB shmem:496kB slab_reclaimable:1672kB slab_unreclaimable:37052kB kernel_stack:2088kB pagetables:750264kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
Node 7 Normal free:10768kB min:8192kB low:10240kB high:12288kB active_anon:784916936kB inactive_anon:192316kB active_file:19228kB inactive_file:56852kB unevictable:131072kB isolated(anon):0kB isolated(file):0kB present:794296320kB mlocked:131072kB dirty:4kB writeback:0kB mapped:34440kB shmem:4kB slab_reclaimable:5660kB slab_unreclaimable:36100kB kernel_stack:1328kB pagetables:1007968kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
So all nodes but Node 0 have a lot of free memory which should suggest
that there is an available memory especially when mems_allowed=0-7. One
could speculate that a massive process has managed to terminate and free
up a lot of memory while racing with the above allocation request.
Although this is highly unlikely it cannot be ruled out.
A further debugging, however shown that the faulting process had
mempolicy (not cpuset) to bind to Node 0. We cannot see that
information from the report though. mems_allowed turned out to be more
confusing than really helpful.
Fix this by always priting the nodemask. It is either mempolicy mask
(and non-null) or the one defined by the cpusets. The new output for
the above oom report would be
PoolThread invoked oom-killer: gfp_mask=0x280da(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), nodemask=0, order=0, oom_adj=0, oom_score_adj=0
This patch doesn't touch show_mem and the node filtering based on the
cpuset node mask because mempolicy is always a subset of cpusets and
seeing the full cpuset oom context might be helpful for tunning more
specific mempolicies inside cpusets (e.g. when they turn out to be too
restrictive). To prevent from ugly ifdefs the mask is printed even for
!NUMA configurations but this should be OK (a single node will be
printed).
Link: http://lkml.kernel.org/r/20160930214146.28600-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Sellami Abdelkader <abdelkader.sellami@sap.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Sellami Abdelkader <abdelkader.sellami@sap.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
| |
Let's add comment on why we skip page_mapcount() for sl[aou]b pages.
Link: http://lkml.kernel.org/r/20160922105532.GB24593@node
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The old code was always doing:
vma->vm_end = next->vm_end
vma_rb_erase(next) // in __vma_unlink
vma->vm_next = next->vm_next // in __vma_unlink
next = vma->vm_next
vma_gap_update(next)
The new code still does the above for remove_next == 1 and 2, but for
remove_next == 3 it has been changed and it does:
next->vm_start = vma->vm_start
vma_rb_erase(vma) // in __vma_unlink
vma_gap_update(next)
In the latter case, while unlinking "vma", validate_mm_rb() is told to
ignore "vma" that is being removed, but next->vm_start was reduced
instead. So for the new case, to avoid the false positive from
validate_mm_rb, it should be "next" that is ignored when "vma" is
being unlinked.
"vma" and "next" in the above comment, considered pre-swap().
Link: http://lkml.kernel.org/r/1474492522-2261-4-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Shaun Tancheff <shaun.tancheff@seagate.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Vorlicek <janvorli@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The cases are three not two.
Link: http://lkml.kernel.org/r/1474492522-2261-3-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Vorlicek <janvorli@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If next would be NULL we couldn't reach such code path.
Link: http://lkml.kernel.org/r/1474309513-20313-2-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Vorlicek <janvorli@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The rmap_walk can access vm_page_prot (and potentially vm_flags in the
pte/pmd manipulations). So it's not safe to wait the caller to update
the vm_page_prot/vm_flags after vma_merge returned potentially removing
the "next" vma and extending the "current" vma over the
next->vm_start,vm_end range, but still with the "current" vma
vm_page_prot, after releasing the rmap locks.
The vm_page_prot/vm_flags must be transferred from the "next" vma to the
current vma while vma_merge still holds the rmap locks.
The side effect of this race condition is pte corruption during migrate
as remove_migration_ptes when run on a address of the "next" vma that
got removed, used the vm_page_prot of the current vma.
migrate mprotect
------------ -------------
migrating in "next" vma
vma_merge() # removes "next" vma and
# extends "current" vma
# current vma is not with
# vm_page_prot updated
remove_migration_ptes
read vm_page_prot of current "vma"
establish pte with wrong permissions
vm_set_page_prot(vma) # too late!
change_protection in the old vma range
only, next range is not updated
This caused segmentation faults and potentially memory corruption in
heavy mprotect loads with some light page migration caused by compaction
in the background.
Hugh Dickins pointed out the comment about the Odd case 8 in vma_merge
which confirms the case 8 is only buggy one where the race can trigger,
in all other vma_merge cases the above cannot happen.
This fix removes the oddness factor from case 8 and it converts it from:
AAAA
PPPPNNNNXXXX -> PPPPNNNNNNNN
to:
AAAA
PPPPNNNNXXXX -> PPPPXXXXXXXX
XXXX has the right vma properties for the whole merged vma returned by
vma_adjust, so it solves the problem fully. It has the added benefits
that the callers could stop updating vma properties when vma_merge
succeeds however the callers are not updated by this patch (there are
bits like VM_SOFTDIRTY that still need special care for the whole range,
as the vma merging ignores them, but as long as they're not processed by
rmap walks and instead they're accessed with the mmap_sem at least for
reading, they are fine not to be updated within vma_adjust before
releasing the rmap_locks).
Link: http://lkml.kernel.org/r/1474309513-20313-1-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Aditya Mandaleeka <adityam@microsoft.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Vorlicek <janvorli@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mm->highest_vm_end doesn't need any update.
After finally removing the oddness from vma_merge case 8 that was
causing:
1) constant risk of trouble whenever anybody would check vma fields
from rmap_walks, like it happened when page migration was
introduced and it read the vma->vm_page_prot from a rmap_walk
2) the callers of vma_merge to re-initialize any value different from
the current vma, instead of vma_merge() more reliably returning a
vma that already matches all fields passed as parameter
.. it is also worth to take the opportunity of cleaning up superfluous
code in vma_adjust(), that if not removed adds up to the hard
readability of the function.
Link: http://lkml.kernel.org/r/1474492522-2261-5-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Vorlicek <janvorli@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
vma->vm_page_prot is read lockless from the rmap_walk, it may be updated
concurrently and this prevents the risk of reading intermediate values.
Link: http://lkml.kernel.org/r/1474660305-19222-1-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Vorlicek <janvorli@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
According to Hugh's suggestion, alloc_stable_node() with GFP_KERNEL can
in rare cases cause a hung task warning.
At present, if alloc_stable_node() allocation fails, two break_cows may
want to allocate a couple of pages, and the issue will come up when free
memory is under pressure.
We fix it by adding __GFP_HIGH to GFP, to grant access to memory
reserves, increasing the likelihood of allocation success.
[akpm@linux-foundation.org: tweak comment]
Link: http://lkml.kernel.org/r/1474354484-58233-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Suggested-by: Hugh Dickins <hughd@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
| |
Fix typo in comment.
Link: http://lkml.kernel.org/r/1474788764-5774-1-git-send-email-ysxie@foxmail.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For every pfn aligned to minimum_order, dissolve_free_huge_pages() will
call dissolve_free_huge_page() which takes the hugetlb spinlock, even if
the page is not huge at all or a hugepage that is in-use.
Improve this by doing the PageHuge() and page_count() checks already in
dissolve_free_huge_pages() before calling dissolve_free_huge_page(). In
dissolve_free_huge_page(), when holding the spinlock, those checks need
to be revalidated.
Link: http://lkml.kernel.org/r/20160926172811.94033-4-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In dissolve_free_huge_pages(), free hugepages will be dissolved without
making sure that there are enough of them left to satisfy hugepage
reservations.
Fix this by adding a return value to dissolve_free_huge_pages() and
checking h->free_huge_pages vs. h->resv_huge_pages. Note that this may
lead to the situation where dissolve_free_huge_page() returns an error
and all free hugepages that were dissolved before that error are lost,
while the memory block still cannot be set offline.
Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Link: http://lkml.kernel.org/r/20160926172811.94033-3-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "mm/hugetlb: memory offline issues with hugepages", v4.
This addresses several issues with hugepages and memory offline. While
the first patch fixes a panic, and is therefore rather important, the
last patch is just a performance optimization.
The second patch fixes a theoretical issue with reserved hugepages,
while still leaving some ugly usability issue, see description.
This patch (of 3):
dissolve_free_huge_pages() will either run into the VM_BUG_ON() or a
list corruption and addressing exception when trying to set a memory
block offline that is part (but not the first part) of a "gigantic"
hugetlb page with a size > memory block size.
When no other smaller hugetlb page sizes are present, the VM_BUG_ON()
will trigger directly. In the other case we will run into an addressing
exception later, because dissolve_free_huge_page() will not work on the
head page of the compound hugetlb page which will result in a NULL
hstate from page_hstate().
To fix this, first remove the VM_BUG_ON() because it is wrong, and then
use the compound head page in dissolve_free_huge_page(). This means
that an unused pre-allocated gigantic page that has any part of itself
inside the memory block that is going offline will be dissolved
completely. Losing an unused gigantic hugepage is preferable to failing
the memory offline, for example in the situation where a (possibly
faulty) memory DIMM needs to go offline.
Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Link: http://lkml.kernel.org/r/20160926172811.94033-2-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit b4def3509d18 ("mm, nobootmem: clean-up of free_low_memory_core_early()")
removed the unnecessary nodeid argument, after that, this comment
becomes more confused. We should move it to the right place.
Fixes: b4def3509d18c1db9 ("mm, nobootmem: clean-up of free_low_memory_core_early()")
Link: http://lkml.kernel.org/r/1473996082-14603-1-git-send-email-wanlong.gao@gmail.com
Signed-off-by: Wanlong Gao <wanlong.gao@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Every other dentry_operations instance is const, and this one might as
well be.
Link: http://lkml.kernel.org/r/1473890528-7009-1-git-send-email-linux@rasmusvillemoes.dk
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The cgroup core and the memory controller need to track socket ownership
for different purposes, but the tracking sites being entirely different
is kind of ugly.
Be a better citizen and rename the memory controller callbacks to match
the cgroup core callbacks, then move them to the same place.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20160914194846.11153-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
So they are CONFIG_DEBUG_VM-only and more informative.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: David S. Miller <davem@davemloft.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Joe Perches <joe@perches.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rik van Riel <riel@redhat.com>
Cc: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit c32b3cbe0d06 ("oom, PM: make OOM detection in the freezer path
raceless") inserted a WARN_ON() into pagefault_out_of_memory() in order
to warn when we raced with disabling the OOM killer.
Now, patch "oom, suspend: fix oom_killer_disable vs. pm suspend
properly" introduced a timeout for oom_killer_disable(). Even if we
raced with disabling the OOM killer and the system is OOM livelocked,
the OOM killer will be enabled eventually (in 20 seconds by default) and
the OOM livelock will be solved. Therefore, we no longer need to warn
when we raced with disabling the OOM killer.
Link: http://lkml.kernel.org/r/1473442120-7246-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fragmentation index and the vm.extfrag_threshold sysctl is meant as a
heuristic to prevent excessive compaction for costly orders (i.e. THP).
It's unlikely to make any difference for non-costly orders, especially
with the default threshold. But we cannot afford any uncertainty for
the non-costly orders where the only alternative to successful
reclaim/compaction is OOM. After the recent patches we are guaranteed
maximum effort without heuristics from compaction before deciding OOM,
and fragindex is the last remaining heuristic. Therefore skip fragindex
altogether for non-costly orders.
Suggested-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20160926162025.21555-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The compaction_zonelist_suitable() function tries to determine if
compaction will be able to proceed after sufficient reclaim, i.e.
whether there are enough reclaimable pages to provide enough order-0
freepages for compaction.
This addition of reclaimable pages to the free pages works well for the
order-0 watermark check, but in the fragmentation index check we only
consider truly free pages. Thus we can get fragindex value close to 0
which indicates failure do to lack of memory, and wrongly decide that
compaction won't be suitable even after reclaim.
Instead of trying to somehow adjust fragindex for reclaimable pages,
let's just skip it from compaction_zonelist_suitable().
Link: http://lkml.kernel.org/r/20160926162025.21555-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The should_reclaim_retry() makes decisions based on no_progress_loops,
so it makes sense to also update the counter there. It will be also
consistent with should_compact_retry() and compaction_retries. No
functional change.
[hillf.zj@alibaba-inc.com: fix missing pointer dereferences]
Link: http://lkml.kernel.org/r/20160926162025.21555-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Several people have reported premature OOMs for order-2 allocations
(stack) due to OOM rework in 4.7. In the scenario (parallel kernel
build and dd writing to two drives) many pageblocks get marked as
Unmovable and compaction free scanner struggles to isolate free pages.
Joonsoo Kim pointed out that the free scanner skips pageblocks that are
not movable to prevent filling them and forcing non-movable allocations
to fallback to other pageblocks. Such heuristic makes sense to help
prevent long-term fragmentation, but premature OOMs are relatively more
urgent problem. As a compromise, this patch disables the heuristic only
for the ultimate compaction priority.
Link: http://lkml.kernel.org/r/20160906135258.18335-5-vbabka@suse.cz
Reported-by: Ralf-Peter Rohbeck <Ralf-Peter.Rohbeck@quantum.com>
Reported-by: Arkadiusz Miskiewicz <a.miskiewicz@gmail.com>
Reported-by: Olaf Hering <olaf@aepfle.de>
Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The new ultimate compaction priority disables some heuristics, which may
result in excessive cost. This is fine for non-costly orders where we
want to try hard before resulting for OOM, but might be disruptive for
costly orders which do not trigger OOM and should generally have some
fallback. Thus, we disable the full priority for costly orders.
Suggested-by: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20160906135258.18335-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During reclaim/compaction loop, compaction priority can be increased by
the should_compact_retry() function, but the current code is not
optimal. Priority is only increased when compaction_failed() is true,
which means that compaction has scanned the whole zone. This may not
happen even after multiple attempts with a lower priority due to
parallel activity, so we might needlessly struggle on the lower
priorities and possibly run out of compaction retry attempts in the
process.
After this patch we are guaranteed at least one attempt at the highest
compaction priority even if we exhaust all retries at the lower
priorities.
Link: http://lkml.kernel.org/r/20160906135258.18335-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "reintroduce compaction feedback for OOM decisions".
After several people reported OOM's for order-2 allocations in 4.7 due
to Michal Hocko's OOM rework, he reverted the part that considered
compaction feedback [1] in the decisions to retry reclaim/compaction.
This was to provide a fix quickly for 4.8 rc and 4.7 stable series,
while mmotm had an almost complete solution that instead improved
compaction reliability.
This series completes the mmotm solution and reintroduces the compaction
feedback into OOM decisions. The first two patches restore the state of
mmotm before the temporary solution was merged, the last patch should be
the missing piece for reliability. The third patch restricts the
hardened compaction to non-costly orders, since costly orders don't
result in OOMs in the first place.
[1] http://marc.info/?i=20160822093249.GA14916%40dhcp22.suse.cz%3E
This patch (of 4):
Commit 6b4e3181d7bd ("mm, oom: prevent premature OOM killer invocation
for high order request") was intended as a quick fix of OOM regressions
for 4.8 and stable 4.7.x kernels. For a better long-term solution, we
still want to consider compaction feedback, which should be possible
after some more improvements in the following patches.
This reverts commit 6b4e3181d7bd5ca5ab6f45929e4a5ffa7ab4ab7f.
Link: http://lkml.kernel.org/r/20160906135258.18335-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch is to improve the performance of swap cache operations when
the type of the swap device is not 0. Originally, the whole swap entry
value is used as the key of the swap cache, even though there is one
radix tree for each swap device. If the type of the swap device is not
0, the height of the radix tree of the swap cache will be increased
unnecessary, especially on 64bit architecture. For example, for a 1GB
swap device on the x86_64 architecture, the height of the radix tree of
the swap cache is 11. But if the offset of the swap entry is used as
the key of the swap cache, the height of the radix tree of the swap
cache is 4. The increased height causes unnecessary radix tree
descending and increased cache footprint.
This patch reduces the height of the radix tree of the swap cache via
using the offset of the swap entry instead of the whole swap entry value
as the key of the swap cache. In 32 processes sequential swap out test
case on a Xeon E5 v3 system with RAM disk as swap, the lock contention
for the spinlock of the swap cache is reduced from 20.15% to 12.19%,
when the type of the swap device is 1.
Use the whole swap entry as key,
perf-profile.calltrace.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list: 10.37,
perf-profile.calltrace.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_node_memcg: 9.78,
Use the swap offset as key,
perf-profile.calltrace.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list: 6.25,
perf-profile.calltrace.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_node_memcg: 5.94,
Link: http://lkml.kernel.org/r/1473270649-27229-1-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
vm_insert_mixed() unlike vm_insert_pfn_prot() and vmf_insert_pfn_pmd(),
fails to check the pgprot_t it uses for the mapping against the one
recorded in the memtype tracking tree. Add the missing call to
track_pfn_insert() to preclude cases where incompatible aliased mappings
are established for a given physical address range.
Link: http://lkml.kernel.org/r/147328717909.35069.14256589123570653697.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mem_cgroup_count_precharge() and mem_cgroup_move_charge() both call
walk_page_range() on the range 0 to ~0UL, neither provide a pte_hole
callback, which causes the current implementation to skip non-vma
regions. This is all fine but follow up changes would like to make
walk_page_range more generic so it is better to be explicit about which
range to traverse so let's use highest_vm_end to explicitly traverse
only user mmaped memory.
[mhocko@kernel.org: rewrote changelog]
Link: http://lkml.kernel.org/r/1472655897-22532-1-git-send-email-james.morse@arm.com
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The global zero page is used to satisfy an anonymous read fault. If
THP(Transparent HugePage) is enabled then the global huge zero page is
used. The global huge zero page uses an atomic counter for reference
counting and is allocated/freed dynamically according to its counter
value.
CPU time spent on that counter will greatly increase if there are a lot
of processes doing anonymous read faults. This patch proposes a way to
reduce the access to the global counter so that the CPU load can be
reduced accordingly.
To do this, a new flag of the mm_struct is introduced:
MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch
the global counter in two cases:
1 The first time it uses the global huge zero page;
2 The time when mm_user of its mm_struct reaches zero.
Note that right now, the huge zero page is eligible to be freed as soon
as its last use goes away. With this patch, the page will not be
eligible to be freed until the exit of the last process from which it
was ever used.
And with the use of mm_user, the kthread is not eligible to use huge
zero page either. Since no kthread is using huge zero page today, there
is no difference after applying this patch. But if that is not desired,
I can change it to when mm_count reaches zero.
Case used for test on Haswell EP:
usemem -n 72 --readonly -j 0x200000 100G
Which spawns 72 processes and each will mmap 100G anonymous space and
then do read only access to that space sequentially with a step of 2MB.
CPU cycles from perf report for base commit:
54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page
CPU cycles from perf report for this commit:
0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page
Performance(throughput) of the workload for base commit: 1784430792
Performance(throughput) of the workload for this commit: 4726928591
164% increase.
Runtime of the workload for base commit: 707592 us
Runtime of the workload for this commit: 303970 us
50% drop.
Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In current kernel code, we only call node_set_state(cpu_to_node(cpu),
N_CPU) when a cpu is hot plugged. But we do not set the node state for
N_CPU when the cpus are brought online during boot.
So this could lead to failure when we check to see if a node contains
cpu with node_state(node_id, N_CPU).
One use case is in the node_reclaime function:
/*
* Only run node reclaim on the local node or on nodes that do
* not
* have associated processors. This will favor the local
* processor
* over remote processors and spread off node memory allocations
* as wide as possible.
*/
if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id !=
numa_node_id())
return NODE_RECLAIM_NOSCAN;
I instrumented the kernel to call this function after boot and it always
returns 0 on a x86 desktop machine until I apply the attached patch.
int num_cpu_node(void)
{
int i, nr_cpu_nodes = 0;
for_each_node(i) {
if (node_state(i, N_CPU))
++ nr_cpu_nodes;
}
return nr_cpu_nodes;
}
Fix this by checking each node for online CPU when we initialize
vmstat that's responsible for maintaining node state.
Link: http://lkml.kernel.org/r/20160829175922.GA21775@linux.intel.com
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: <Huang@linux.intel.com>
Cc: Ying <ying.huang@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When CONFIG_FS_DAX_PMD is set, DAX supports mmap() using pmd page size.
This feature relies on both mmap virtual address and FS block (i.e.
physical address) to be aligned by the pmd page size. Users can use
mkfs options to specify FS to align block allocations. However,
aligning mmap address requires code changes to existing applications for
providing a pmd-aligned address to mmap().
For instance, fio with "ioengine=mmap" performs I/Os with mmap() [1].
It calls mmap() with a NULL address, which needs to be changed to
provide a pmd-aligned address for testing with DAX pmd mappings.
Changing all applications that call mmap() with NULL is undesirable.
Add thp_get_unmapped_area(), which can be called by filesystem's
get_unmapped_area to align an mmap address by the pmd size for a DAX
file. It calls the default handler, mm->get_unmapped_area(), to find a
range and then aligns it for a DAX file.
The patch is based on Matthew Wilcox's change that allows adding support
of the pud page size easily.
[1]: https://github.com/axboe/fio/blob/master/engines/mmap.c
Link: http://lkml.kernel.org/r/1472497881-9323-2-git-send-email-toshi.kani@hpe.com
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mlock2(,MLOCK_ONFAULT)
When one vma was with flag VM_LOCKED|VM_LOCKONFAULT (by invoking
mlock2(,MLOCK_ONFAULT)), it can again be populated with mlock() with
VM_LOCKED flag only.
There is a hole in mlock_fixup() which increase mm->locked_vm twice even
the two operations are on the same vma and both with VM_LOCKED flags.
The issue can be reproduced by following code:
mlock2(p, 1024 * 64, MLOCK_ONFAULT); //VM_LOCKED|VM_LOCKONFAULT
mlock(p, 1024 * 64); //VM_LOCKED
Then check the increase VmLck field in /proc/pid/status(to 128k).
When vma is set with different vm_flags, and the new vm_flags is with
VM_LOCKED, it is not necessarily be a "new locked" vma. This patch
corrects this bug by prevent mm->locked_vm from increment when old
vm_flags is already VM_LOCKED.
Link: http://lkml.kernel.org/r/1472554781-9835-3-git-send-email-wei.guo.simon@gmail.com
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alexey Klimov <klimov.linux@gmail.com>
Cc: Eric B Munson <emunson@akamai.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Simon Guo <wei.guo.simon@gmail.com>
Cc: Thierry Reding <treding@nvidia.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In do_mlock(), the check against locked memory limitation has a hole
which will fail following cases at step 3):
1) User has a memory chunk from addressA with 50k, and user mem lock
rlimit is 64k.
2) mlock(addressA, 30k)
3) mlock(addressA, 40k)
The 3rd step should have been allowed since the 40k request is
intersected with the previous 30k at step 2), and the 3rd step is
actually for mlock on the extra 10k memory.
This patch checks vma to caculate the actual "new" mlock size, if
necessary, and ajust the logic to fix this issue.
[akpm@linux-foundation.org: clean up comment layout]
[wei.guo.simon@gmail.com: correct a typo in count_mm_mlocked_page_nr()]
Link: http://lkml.kernel.org/r/1473325970-11393-2-git-send-email-wei.guo.simon@gmail.com
Link: http://lkml.kernel.org/r/1472554781-9835-2-git-send-email-wei.guo.simon@gmail.com
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Cc: Alexey Klimov <klimov.linux@gmail.com>
Cc: Eric B Munson <emunson@akamai.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Simon Guo <wei.guo.simon@gmail.com>
Cc: Thierry Reding <treding@nvidia.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since the lumpy reclaim is gone there is no source of higher order pages
if CONFIG_COMPACTION=n except for the order-0 pages reclaim which is
unreliable for that purpose to say the least. Hitting an OOM for
!costly higher order requests is therefore all not that hard to imagine.
We are trying hard to not invoke OOM killer as much as possible but
there is simply no reliable way to detect whether more reclaim retries
make sense.
Disabling COMPACTION is not widespread but it seems that some users
might have disable the feature without realizing full consequences
(mostly along with disabling THP because compaction used to be THP
mainly thing). This patch just adds a note if the OOM killer was
triggered by higher order request with compaction disabled. This will
help us identifying possible misconfiguration right from the oom report
which is easier than to always keep in mind that somebody might have
disabled COMPACTION without a good reason.
Link: http://lkml.kernel.org/r/20160830111632.GD23963@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
File pages use a set of radix tree tags (DIRTY, TOWRITE, WRITEBACK,
etc.) to accelerate finding the pages with a specific tag in the radix
tree during inode writeback. But for anonymous pages in the swap cache,
there is no inode writeback. So there is no need to find the pages with
some writeback tags in the radix tree. It is not necessary to touch
radix tree writeback tags for pages in the swap cache.
Per Rik van Riel's suggestion, a new flag AS_NO_WRITEBACK_TAGS is
introduced for address spaces which don't need to update the writeback
tags. The flag is set for swap caches. It may be used for DAX file
systems, etc.
With this patch, the swap out bandwidth improved 22.3% (from ~1.2GB/s to
~1.48GBps) in the vm-scalability swap-w-seq test case with 8 processes.
The test is done on a Xeon E5 v3 system. The swap device used is a RAM
simulated PMEM (persistent memory) device. The improvement comes from
the reduced contention on the swap cache radix tree lock. To test
sequential swapping out, the test case uses 8 processes, which
sequentially allocate and write to the anonymous pages until RAM and
part of the swap device is used up.
Details of comparison is as follow,
base base+patch
---------------- --------------------------
%stddev %change %stddev
\ | \
2506952 ± 2% +28.1% 3212076 ± 7% vm-scalability.throughput
1207402 ± 7% +22.3% 1476578 ± 6% vmstat.swap.so
10.86 ± 12% -23.4% 8.31 ± 16% perf-profile.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list
10.82 ± 13% -33.1% 7.24 ± 14% perf-profile.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_zone_memcg
10.36 ± 11% -100.0% 0.00 ± -1% perf-profile.cycles-pp._raw_spin_lock_irqsave.__test_set_page_writeback.bdev_write_page.__swap_writepage.swap_writepage
10.52 ± 12% -100.0% 0.00 ± -1% perf-profile.cycles-pp._raw_spin_lock_irqsave.test_clear_page_writeback.end_page_writeback.page_endio.pmem_rw_page
Link: http://lkml.kernel.org/r/1472578089-5560-1-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
In ___alloc_bootmem_node_nopanic(), replace kzalloc() by kzalloc_node()
in order to allocate memory within given node preferentially when slab
is available
Link: http://lkml.kernel.org/r/1f487f12-6af4-5e4f-a28c-1de2361cdcd8@zoho.com
Signed-off-by: zijun_hu <zijun_hu@htc.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix the following bugs:
- the same ARCH_LOW_ADDRESS_LIMIT statements are duplicated between
header and relevant source
- don't ensure ARCH_LOW_ADDRESS_LIMIT perhaps defined by ARCH in
asm/processor.h is preferred over default in linux/bootmem.h
completely since the former header isn't included by the latter
Link: http://lkml.kernel.org/r/e046aeaa-e160-6d9e-dc1b-e084c2fd999f@zoho.com
Signed-off-by: zijun_hu <zijun_hu@htc.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The total reserved memory in a system is accounted but not available for
use use outside mm/memblock.c. By exposing the total reserved memory,
systems can better calculate the size of large hashes.
Link: http://lkml.kernel.org/r/1472476010-4709-3-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Suggested-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Hari Bathini <hbathini@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently arch specific code can reserve memory blocks but
alloc_large_system_hash() may not take it into consideration when sizing
the hashes. This can lead to bigger hash than required and lead to no
available memory for other purposes. This is specifically true for
systems with CONFIG_DEFERRED_STRUCT_PAGE_INIT enabled.
One approach to solve this problem would be to walk through the memblock
regions and calculate the available memory and base the size of hash
system on the available memory.
The other approach would be to depend on the architecture to provide the
number of pages that are reserved. This change provides hooks to allow
the architecture to provide the required info.
Link: http://lkml.kernel.org/r/1472476010-4709-2-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Suggested-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Hari Bathini <hbathini@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use the existing enums instead of hardcoded index when looking at the
zonelist. This makes it more readable. No functionality change by this
patch.
Link: http://lkml.kernel.org/r/1472227078-24852-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
oom reaper was skipped for an mm which is shared with the kernel thread
(aka use_mm()). The primary concern was that such a kthread might want
to read from the userspace memory and see zero page as a result of the
oom reaper action. This is no longer a problem after "mm: make sure
that kthreads will not refault oom reaped memory" because any attempt to
fault in when the MMF_UNSTABLE is set will result in SIGBUS and so the
target user should see an error. This means that we can finally allow
oom reaper also to tasks which share their mm with kthreads.
Link: http://lkml.kernel.org/r/1472119394-11342-10-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are only few use_mm() users in the kernel right now. Most of them
write to the target memory but vhost driver relies on
copy_from_user/get_user from a kernel thread context. This makes it
impossible to reap the memory of an oom victim which shares the mm with
the vhost kernel thread because it could see a zero page unexpectedly
and theoretically make an incorrect decision visible outside of the
killed task context.
To quote Michael S. Tsirkin:
: Getting an error from __get_user and friends is handled gracefully.
: Getting zero instead of a real value will cause userspace
: memory corruption.
The vhost kernel thread is bound to an open fd of the vhost device which
is not tight to the mm owner life cycle in general. The device fd can
be inherited or passed over to another process which means that we
really have to be careful about unexpected memory corruption because
unlike for normal oom victims the result will be visible outside of the
oom victim context.
Make sure that no kthread context (users of use_mm) can ever see
corrupted data because of the oom reaper and hook into the page fault
path by checking MMF_UNSTABLE mm flag. __oom_reap_task_mm will set the
flag before it starts unmapping the address space while the flag is
checked after the page fault has been handled. If the flag is set then
SIGBUS is triggered so any g-u-p user will get a error code.
Regular tasks do not need this protection because all which share the mm
are killed when the mm is reaped and so the corruption will not outlive
them.
This patch shouldn't have any visible effect at this moment because the
OOM killer doesn't invoke oom reaper for tasks with mm shared with
kthreads yet.
Link: http://lkml.kernel.org/r/1472119394-11342-9-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are no users of exit_oom_victim on !current task anymore so enforce
the API to always work on the current.
Link: http://lkml.kernel.org/r/1472119394-11342-8-git-send-email-mhocko@kernel.org
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 74070542099c ("oom, suspend: fix oom_reaper vs.
oom_killer_disable race") has workaround an existing race between
oom_killer_disable and oom_reaper by adding another round of
try_to_freeze_tasks after the oom killer was disabled. This was the
easiest thing to do for a late 4.7 fix. Let's fix it properly now.
After "oom: keep mm of the killed task available" we no longer have to
call exit_oom_victim from the oom reaper because we have stable mm
available and hide the oom_reaped mm by MMF_OOM_SKIP flag. So let's
remove exit_oom_victim and the race described in the above commit
doesn't exist anymore if.
Unfortunately this alone is not sufficient for the oom_killer_disable
usecase because now we do not have any reliable way to reach
exit_oom_victim (the victim might get stuck on a way to exit for an
unbounded amount of time). OOM killer can cope with that by checking mm
flags and move on to another victim but we cannot do the same for
oom_killer_disable as we would lose the guarantee of no further
interference of the victim with the rest of the system. What we can do
instead is to cap the maximum time the oom_killer_disable waits for
victims. The only current user of this function (pm suspend) already
has a concept of timeout for back off so we can reuse the same value
there.
Let's drop set_freezable for the oom_reaper kthread because it is no
longer needed as the reaper doesn't wake or thaw any processes.
Link: http://lkml.kernel.org/r/1472119394-11342-7-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
After "oom: keep mm of the killed task available" we can safely detect
an oom victim by checking task->signal->oom_mm so we do not need the
signal_struct counter anymore so let's get rid of it.
This alone wouldn't be sufficient for nommu archs because
exit_oom_victim doesn't hide the process from the oom killer anymore.
We can, however, mark the mm with a MMF flag in __mmput. We can reuse
MMF_OOM_REAPED and rename it to a more generic MMF_OOM_SKIP.
Link: http://lkml.kernel.org/r/1472119394-11342-6-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
oom_reap_task has to call exit_oom_victim in order to make sure that the
oom vicim will not block the oom killer for ever. This is, however,
opening new problems (e.g oom_killer_disable exclusion - see commit
74070542099c ("oom, suspend: fix oom_reaper vs. oom_killer_disable
race")). exit_oom_victim should be only called from the victim's
context ideally.
One way to achieve this would be to rely on per mm_struct flags. We
already have MMF_OOM_REAPED to hide a task from the oom killer since
"mm, oom: hide mm which is shared with kthread or global init". The
problem is that the exit path:
do_exit
exit_mm
tsk->mm = NULL;
mmput
__mmput
exit_oom_victim
doesn't guarantee that exit_oom_victim will get called in a bounded
amount of time. At least exit_aio depends on IO which might get blocked
due to lack of memory and who knows what else is lurking there.
This patch takes a different approach. We remember tsk->mm into the
signal_struct and bind it to the signal struct life time for all oom
victims. __oom_reap_task_mm as well as oom_scan_process_thread do not
have to rely on find_lock_task_mm anymore and they will have a reliable
reference to the mm struct. As a result all the oom specific
communication inside the OOM killer can be done via tsk->signal->oom_mm.
Increasing the signal_struct for something as unlikely as the oom killer
is far from ideal but this approach will make the code much more
reasonable and long term we even might want to move task->mm into the
signal_struct anyway. In the next step we might want to make the oom
killer exclusion and access to memory reserves completely independent
which would be also nice.
Link: http://lkml.kernel.org/r/1472119394-11342-4-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
"mm, oom_reaper: do not attempt to reap a task twice" tried to give the
OOM reaper one more chance to retry using MMF_OOM_NOT_REAPABLE flag.
But the usefulness of the flag is rather limited and actually never
shown in practice. If the flag is set, it means that the holder of
mm->mmap_sem cannot call up_write() due to presumably being blocked at
unkillable wait waiting for other thread's memory allocation. But since
one of threads sharing that mm will queue that mm immediately via
task_will_free_mem() shortcut (otherwise, oom_badness() will select the
same mm again due to oom_score_adj value unchanged), retrying
MMF_OOM_NOT_REAPABLE mm is unlikely helpful.
Let's always set MMF_OOM_REAPED.
Link: http://lkml.kernel.org/r/1472119394-11342-3-git-send-email-mhocko@kernel.org
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "fortify oom killer even more", v2.
This patch (of 9):
__oom_reap_task() can be simplified a bit if it receives a valid mm from
oom_reap_task() which also uses that mm when __oom_reap_task() failed.
We can drop one find_lock_task_mm() call and also make the
__oom_reap_task() code flow easier to follow. Moreover, this will make
later patch in the series easier to review. Pinning mm's mm_count for
longer time is not really harmful because this will not pin much memory.
This patch doesn't introduce any functional change.
Link: http://lkml.kernel.org/r/1472119394-11342-2-git-send-email-mhocko@kernel.org
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a code clean up patch without functionality changes. The
swap_cluster_list data structure and its operations are introduced to
provide some better encapsulation for the free cluster and discard
cluster list operations. This avoid some code duplication, improved the
code readability, and reduced the total line number.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1472067356-16004-1-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Current code doesn't count first FIND operation after VMA cache flush
(which happen surprisingly often) artificially increasing cache hit ratio.
On my regular setup the difference is:
Before After
==========================================================
* boot, login into KDE
vmacache_find_calls 446216 vmacache_find_calls 492741
vmacache_find_hits 277596 vmacache_find_hits 276096
~62.2% ~56.0%
* rebuild kernel (no changes to code, usual config)
vmacache_find_calls 1943007 vmacache_find_calls 2083718
vmacache_find_hits 1246123 vmacache_find_hits 1244146
~64.1% ~59.7%
* rebuild kernel (full rebuild, usual config)
vmacache_find_calls 32163155 vmacache_find_calls 33677183
vmacache_find_hits 27889956 vmacache_find_hits 27877591
~88.2% ~84.3%
Total: ~4% cache hit ratio.
If someone is counting _relative_ cache _miss_ ratio, misreporting is much
higher.
Link: http://lkml.kernel.org/r/20160822225009.GA3934@p183.telecom.by
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|