| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The slab shrinkers are currently invoked from the zonelist walkers in
kswapd, direct reclaim, and zone reclaim, all of which roughly gauge the
eligible LRU pages and assemble a nodemask to pass to NUMA-aware
shrinkers, which then again have to walk over the nodemask. This is
redundant code, extra runtime work, and fairly inaccurate when it comes to
the estimation of actually scannable LRU pages. The code duplication will
only get worse when making the shrinkers cgroup-aware and requiring them
to have out-of-band cgroup hierarchy walks as well.
Instead, invoke the shrinkers from shrink_zone(), which is where all
reclaimers end up, to avoid this duplication.
Take the count for eligible LRU pages out of get_scan_count(), which
considers many more factors than just the availability of swap space, like
zone_reclaimable_pages() currently does. Accumulate the number over all
visited lruvecs to get the per-zone value.
Some nodes have multiple zones due to memory addressing restrictions. To
avoid putting too much pressure on the shrinkers, only invoke them once
for each such node, using the class zone of the allocation as the pivot
zone.
For now, this integrates the slab shrinking better into the reclaim logic
and gets rid of duplicative invocations from kswapd, direct reclaim, and
zone reclaim. It also prepares for cgroup-awareness, allowing
memcg-capable shrinkers to be added at the lruvec level without much
duplication of both code and runtime work.
This changes kswapd behavior, which used to invoke the shrinkers for each
zone, but with scan ratios gathered from the entire node, resulting in
meaningless pressure quantities on multi-zone nodes.
Zone reclaim behavior also changes. It used to shrink slabs until the
same amount of pages were shrunk as were reclaimed from the LRUs. Now it
merely invokes the shrinkers once with the zone's scan ratio, which makes
the shrinkers go easier on caches that implement aging and would prefer
feeding back pressure from recently used slab objects to unused LRU pages.
[vdavydov@parallels.com: assure class zone is populated]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup update from Tejun Heo:
"cpuset got simplified a bit. cgroup core got a fix on unified
hierarchy and grew some effective css related interfaces which will be
used for blkio support for writeback IO traffic which is currently
being worked on"
* 'for-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: implement cgroup_get_e_css()
cgroup: add cgroup_subsys->css_e_css_changed()
cgroup: add cgroup_subsys->css_released()
cgroup: fix the async css offline wait logic in cgroup_subtree_control_write()
cgroup: restructure child_subsys_mask handling in cgroup_subtree_control_write()
cgroup: separate out cgroup_calc_child_subsys_mask() from cgroup_refresh_child_subsys_mask()
cpuset: lock vs unlock typo
cpuset: simplify cpuset_node_allowed API
cpuset: convert callback_mutex to a spinlock
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Current cpuset API for checking if a zone/node is allowed to allocate
from looks rather awkward. We have hardwall and softwall versions of
cpuset_node_allowed with the softwall version doing literally the same
as the hardwall version if __GFP_HARDWALL is passed to it in gfp flags.
If it isn't, the softwall version may check the given node against the
enclosing hardwall cpuset, which it needs to take the callback lock to
do.
Such a distinction was introduced by commit 02a0e53d8227 ("cpuset:
rework cpuset_zone_allowed api"). Before, we had the only version with
the __GFP_HARDWALL flag determining its behavior. The purpose of the
commit was to avoid sleep-in-atomic bugs when someone would mistakenly
call the function without the __GFP_HARDWALL flag for an atomic
allocation. The suffixes introduced were intended to make the callers
think before using the function.
However, since the callback lock was converted from mutex to spinlock by
the previous patch, the softwall check function cannot sleep, and these
precautions are no longer necessary.
So let's simplify the API back to the single check.
Suggested-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Compaction relies on zone watermark checks for decisions such as if it's
worth to start compacting in compaction_suitable() or whether compaction
should stop in compact_finished(). The watermark checks take
classzone_idx and alloc_flags parameters, which are related to the memory
allocation request. But from the context of compaction they are currently
passed as 0, including the direct compaction which is invoked to satisfy
the allocation request, and could therefore know the proper values.
The lack of proper values can lead to mismatch between decisions taken
during compaction and decisions related to the allocation request. Lack
of proper classzone_idx value means that lowmem_reserve is not taken into
account. This has manifested (during recent changes to deferred
compaction) when DMA zone was used as fallback for preferred Normal zone.
compaction_suitable() without proper classzone_idx would think that the
watermarks are already satisfied, but watermark check in
get_page_from_freelist() would fail. Because of this problem, deferring
compaction has extra complexity that can be removed in the following
patch.
The issue (not confirmed in practice) with missing alloc_flags is opposite
in nature. For allocations that include ALLOC_HIGH, ALLOC_HIGHER or
ALLOC_CMA in alloc_flags (the last includes all MOVABLE allocations on
CMA-enabled systems) the watermark checking in compaction with 0 passed
will be stricter than in get_page_from_freelist(). In these cases
compaction might be running for a longer time than is really needed.
Another issue compaction_suitable() is that the check for "does the zone
need compaction at all?" comes only after the check "does the zone have
enough free free pages to succeed compaction". The latter considers extra
pages for migration and can therefore in some situations fail and return
COMPACT_SKIPPED, although the high-order allocation would succeed and we
should return COMPACT_PARTIAL.
This patch fixes these problems by adding alloc_flags and classzone_idx to
struct compact_control and related functions involved in direct compaction
and watermark checking. Where possible, all other callers of
compaction_suitable() pass proper values where those are known. This is
currently limited to classzone_idx, which is sometimes known in kswapd
context. However, the direct reclaim callers should_continue_reclaim()
and compaction_ready() do not currently know the proper values, so the
coordination between reclaim and compaction may still not be as accurate
as it could. This can be fixed later, if it's shown to be an issue.
Additionaly the checks in compact_suitable() are reordered to address the
second issue described above.
The effect of this patch should be slightly better high-order allocation
success rates and/or less compaction overhead, depending on the type of
allocations and presence of CMA. It allows simplifying deferred
compaction code in a followup patch.
When testing with stress-highalloc, there was some slight improvement
(which might be just due to variance) in success rates of non-THP-like
allocations.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
shrink_page_list() counts all pages with a mapping, including clean pages,
toward nr_congested if they're on a write-congested BDI.
shrink_inactive_list() then sets ZONE_CONGESTED if nr_dirty ==
nr_congested. Fix this apples-to-oranges comparison by only counting
pages for nr_congested if they count for nr_dirty.
Signed-off-by: Jamie Liu <jamieliu@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|/
|
|
|
|
|
|
|
| |
This patch replaces printk(KERN_ERR..) with pr_err found under
shrink_slab. Thus it also reduces one line extra because of formatting.
Signed-off-by: Pintu Kumar <pintu.k@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In a memcg with even just moderate cache pressure, success rates for
transparent huge page allocations drop to zero, wasting a lot of effort
that the allocator puts into assembling these pages.
The reason for this is that the memcg reclaim code was never designed for
higher-order charges. It reclaims in small batches until there is room
for at least one page. Huge page charges only succeed when these batches
add up over a series of huge faults, which is unlikely under any
significant load involving order-0 allocations in the group.
Remove that loop on the memcg side in favor of passing the actual reclaim
goal to direct reclaim, which is already set up and optimized to meet
higher-order goals efficiently.
This brings memcg's THP policy in line with the system policy: if the
allocator painstakingly assembles a hugepage, memcg will at least make an
honest effort to charge it. As a result, transparent hugepage allocation
rates amid cache activity are drastically improved:
vanilla patched
pgalloc 4717530.80 ( +0.00%) 4451376.40 ( -5.64%)
pgfault 491370.60 ( +0.00%) 225477.40 ( -54.11%)
pgmajfault 2.00 ( +0.00%) 1.80 ( -6.67%)
thp_fault_alloc 0.00 ( +0.00%) 531.60 (+100.00%)
thp_fault_fallback 749.00 ( +0.00%) 217.40 ( -70.88%)
[ Note: this may in turn increase memory consumption from internal
fragmentation, which is an inherent risk of transparent hugepages.
Some setups may have to adjust the memcg limits accordingly to
accomodate this - or, if the machine is already packed to capacity,
disable the transparent huge page feature. ]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Dave Hansen <dave@sr71.net>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Page reclaim tests zone_is_reclaim_dirty(), but the site that actually
sets this state does zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY), sending the
reader through layers indirection just to track down a simple bit.
Remove all zone flag wrappers and just use bitops against zone->flags
directly. It's just as readable and the lines are barely any longer.
Also rename ZONE_TAIL_LRU_DIRTY to ZONE_DIRTY to match ZONE_WRITEBACK, and
remove the zone_flags_t typedef.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The deprecation warnings for the scan_unevictable interface triggers by
scripts doing `sysctl -a | grep something else'. This is annoying and not
helpful.
The interface has been defunct since 264e56d8247e ("mm: disable user
interface to manually rescue unevictable pages"), which was in 2011, and
there haven't been any reports of usecases for it, only reports that the
deprecation warnings are annying. It's unlikely that anybody is using
this interface specifically at this point, so remove it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When direct sync compaction is often unsuccessful, it may become deferred
for some time to avoid further useless attempts, both sync and async.
Successful high-order allocations un-defer compaction, while further
unsuccessful compaction attempts prolong the compaction deferred period.
Currently the checking and setting deferred status is performed only on
the preferred zone of the allocation that invoked direct compaction. But
compaction itself is attempted on all eligible zones in the zonelist, so
the behavior is suboptimal and may lead both to scenarios where 1)
compaction is attempted uselessly, or 2) where it's not attempted despite
good chances of succeeding, as shown on the examples below:
1) A direct compaction with Normal preferred zone failed and set
deferred compaction for the Normal zone. Another unrelated direct
compaction with DMA32 as preferred zone will attempt to compact DMA32
zone even though the first compaction attempt also included DMA32 zone.
In another scenario, compaction with Normal preferred zone failed to
compact Normal zone, but succeeded in the DMA32 zone, so it will not
defer compaction. In the next attempt, it will try Normal zone which
will fail again, instead of skipping Normal zone and trying DMA32
directly.
2) Kswapd will balance DMA32 zone and reset defer status based on
watermarks looking good. A direct compaction with preferred Normal
zone will skip compaction of all zones including DMA32 because Normal
was still deferred. The allocation might have succeeded in DMA32, but
won't.
This patch makes compaction deferring work on individual zone basis
instead of preferred zone. For each zone, it checks compaction_deferred()
to decide if the zone should be skipped. If watermarks fail after
compacting the zone, defer_compaction() is called. The zone where
watermarks passed can still be deferred when the allocation attempt is
unsuccessful. When allocation is successful, compaction_defer_reset() is
called for the zone containing the allocated page. This approach should
approximate calling defer_compaction() only on zones where compaction was
attempted and did not yield allocated page. There might be corner cases
but that is inevitable as long as the decision to stop compacting dues not
guarantee that a page will be allocated.
Due to a new COMPACT_DEFERRED return value, some functions relying
implicitly on COMPACT_SKIPPED = 0 had to be updated, with comments made
more accurate. The did_some_progress output parameter of
__alloc_pages_direct_compact() is removed completely, as the caller
actually does not use it after compaction sets it - it is only considered
when direct reclaim sets it.
During testing on a two-node machine with a single very small Normal zone
on node 1, this patch has improved success rates in stress-highalloc
mmtests benchmark. The success here were previously made worse by commit
3a025760fc15 ("mm: page_alloc: spill to remote nodes before waking
kswapd") as kswapd was no longer resetting often enough the deferred
compaction for the Normal zone, and DMA32 zones on both nodes were thus
not considered for compaction. On different machine, success rates were
improved with __GFP_NO_KSWAPD allocations.
[akpm@linux-foundation.org: fix CONFIG_COMPACTION=n build]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Pages are now uncharged at release time, and all sources of batched
uncharges operate on lists of pages. Directly use those lists, and
get rid of the per-task batching state.
This also batches statistics accounting, in addition to the res
counter charges, to reduce IRQ-disabling and re-enabling.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The memcg uncharging code that is involved towards the end of a page's
lifetime - truncation, reclaim, swapout, migration - is impressively
complicated and fragile.
Because anonymous and file pages were always charged before they had their
page->mapping established, uncharges had to happen when the page type
could still be known from the context; as in unmap for anonymous, page
cache removal for file and shmem pages, and swap cache truncation for swap
pages. However, these operations happen well before the page is actually
freed, and so a lot of synchronization is necessary:
- Charging, uncharging, page migration, and charge migration all need
to take a per-page bit spinlock as they could race with uncharging.
- Swap cache truncation happens during both swap-in and swap-out, and
possibly repeatedly before the page is actually freed. This means
that the memcg swapout code is called from many contexts that make
no sense and it has to figure out the direction from page state to
make sure memory and memory+swap are always correctly charged.
- On page migration, the old page might be unmapped but then reused,
so memcg code has to prevent untimely uncharging in that case.
Because this code - which should be a simple charge transfer - is so
special-cased, it is not reusable for replace_page_cache().
But now that charged pages always have a page->mapping, introduce
mem_cgroup_uncharge(), which is called after the final put_page(), when we
know for sure that nobody is looking at the page anymore.
For page migration, introduce mem_cgroup_migrate(), which is called after
the migration is successful and the new page is fully rmapped. Because
the old page is no longer uncharged after migration, prevent double
charges by decoupling the page's memcg association (PCG_USED and
pc->mem_cgroup) from the page holding an actual charge. The new bits
PCG_MEM and PCG_MEMSW represent the respective charges and are transferred
to the new page during migration.
mem_cgroup_migrate() is suitable for replace_page_cache() as well,
which gets rid of mem_cgroup_replace_page_cache(). However, care
needs to be taken because both the source and the target page can
already be charged and on the LRU when fuse is splicing: grab the page
lock on the charge moving side to prevent changing pc->mem_cgroup of a
page under migration. Also, the lruvecs of both pages change as we
uncharge the old and charge the new during migration, and putback may
race with us, so grab the lru lock and isolate the pages iff on LRU to
prevent races and ensure the pages are on the right lruvec afterward.
Swap accounting is massively simplified: because the page is no longer
uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can
transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry
before the final put_page() in page reclaim.
Finally, page_cgroup changes are now protected by whatever protection the
page itself offers: anonymous pages are charged under the page table lock,
whereas page cache insertions, swapin, and migration hold the page lock.
Uncharging happens under full exclusion with no outstanding references.
Charging and uncharging also ensure that the page is off-LRU, which
serializes against charge migration. Remove the very costly page_cgroup
lock and set pc->flags non-atomically.
[mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable]
[vdavydov@parallels.com: fix flags definition]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Tested-by: Jet Chen <jet.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When memory cgoups are enabled, the code that decides to force to scan
anonymous pages in get_scan_count() compares global values (free,
high_watermark) to a value that is restricted to a memory cgroup (file).
It make the code over-eager to force anon scan.
For instance, it will force anon scan when scanning a memcg that is
mainly populated by anonymous page, even when there is plenty of file
pages to get rid of in others memcgs, even when swappiness == 0. It
breaks user's expectation about swappiness and hurts performance.
This patch makes sure that forced anon scan only happens when there not
enough file pages for the all zone, not just in one random memcg.
[hannes@cmpxchg.org: cleanups]
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Quite a while ago, get_scan_ratio() has been renamed get_scan_count(),
however a comment in shrink_active_list() still mention it. This patch
fixes the outdated comment.
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
zone->pages_scanned is a write-intensive cache line during page reclaim
and it's also updated during page free. Move the counter into vmstat to
take advantage of the per-cpu updates and do not update it in the free
paths unless necessary.
On a small UMA machine running tiobench the difference is marginal. On
a 4-node machine the overhead is more noticable. Note that automatic
NUMA balancing was disabled for this test as otherwise the system CPU
overhead is unpredictable.
3.16.0-rc3 3.16.0-rc3 3.16.0-rc3
vanillarearrange-v5 vmstat-v5
User 746.94 759.78 774.56
System 65336.22 58350.98 32847.27
Elapsed 27553.52 27282.02 27415.04
Note that the overhead reduction will vary depending on where exactly
pages are allocated and freed.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
vm_total_pages is calculated by nr_free_pagecache_pages(), which counts
the number of pages which are beyond the high watermark within all
zones. So vm_total_pages is not equal to total number of pages which
the VM controls.
Signed-off-by: Wang Sheng-Hui <shhuiw@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reorder the members by input and output, then turn the individual
integers for may_writepage, may_unmap, may_swap, compaction_ready,
hibernation_mode into bit fields to save stack space:
+72/-296 -224
kswapd 104 176 +72
try_to_free_pages 80 56 -24
try_to_free_mem_cgroup_pages 80 56 -24
shrink_all_memory 88 64 -24
reclaim_clean_pages_from_list 168 144 -24
mem_cgroup_shrink_node_zone 104 80 -24
__zone_reclaim 176 152 -24
balance_pgdat 152 - -152
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Mel Gorman <mgorman@suse.de>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Swappiness is determined for each scanned memcg individually in
shrink_zone() and is not a parameter that applies throughout the reclaim
scan. Move it out of struct scan_control to prevent accidental use of a
stale value.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Direct reclaim currently calls shrink_zones() to reclaim all members of
a zonelist, and if that wasn't successful it does another pass through
the same zonelist to check overall reclaimability.
Just check reclaimability in shrink_zones() directly and propagate the
result through the return value. Then remove all_unreclaimable().
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Page reclaim for a higher-order page runs until compaction is ready,
then aborts and signals this situation through the return value of
shrink_zones(). This is an oddly specific signal to encode in the
return value of shrink_zones(), though, and can be quite confusing.
Introduce sc->compaction_ready and signal the compactability of the
zones out-of-band to free up the return value of shrink_zones() for
actual zone reclaimability.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
shrink_zones() has a special branch to skip the all_unreclaimable()
check during hibernation, because a frozen kswapd can't mark a zone
unreclaimable.
But ever since commit 6e543d5780e3 ("mm: vmscan: fix
do_try_to_free_pages() livelock"), determining a zone to be
unreclaimable is done by directly looking at its scan history and no
longer relies on kswapd setting the per-zone flag.
Remove this branch and let shrink_zones() check the reclaimability of
the target zones regardless of hibernation state.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: KOSAKI Motohiro <Kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs updates from Al Viro:
"This the bunch that sat in -next + lock_parent() fix. This is the
minimal set; there's more pending stuff.
In particular, I really hope to get acct.c fixes merged this cycle -
we need that to deal sanely with delayed-mntput stuff. In the next
pile, hopefully - that series is fairly short and localized
(kernel/acct.c, fs/super.c and fs/namespace.c). In this pile: more
iov_iter work. Most of prereqs for ->splice_write with sane locking
order are there and Kent's dio rewrite would also fit nicely on top of
this pile"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (70 commits)
lock_parent: don't step on stale ->d_parent of all-but-freed one
kill generic_file_splice_write()
ceph: switch to iter_file_splice_write()
shmem: switch to iter_file_splice_write()
nfs: switch to iter_splice_write_file()
fs/splice.c: remove unneeded exports
ocfs2: switch to iter_file_splice_write()
->splice_write() via ->write_iter()
bio_vec-backed iov_iter
optimize copy_page_{to,from}_iter()
bury generic_file_aio_{read,write}
lustre: get rid of messing with iovecs
ceph: switch to ->write_iter()
ceph_sync_direct_write: stop poking into iov_iter guts
ceph_sync_read: stop poking into iov_iter guts
new helper: copy_page_from_iter()
fuse: switch to ->write_iter()
btrfs: switch to ->write_iter()
ocfs2: switch to ->write_iter()
xfs: switch to ->write_iter()
...
|
| |
| |
| |
| | |
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
shrink_inactive_list() used to wait 0.1s to avoid congestion when all
the pages that were isolated from the inactive list were dirty but not
under active writeback. That makes no real sense, and apparently causes
major interactivity issues under some loads since 3.11.
The ostensible reason for it was to wait for kswapd to start writing
pages, but that seems questionable as well, since the congestion wait
code seems to trigger for kswapd itself as well. Also, the logic behind
delaying anything when we haven't actually started writeback is not
clear - it only delays actually starting that writeback.
We'll still trigger the congestion waiting if
(a) the process is kswapd, and we hit pages flagged for immediate
reclaim
(b) the process is not kswapd, and the zone backing dev writeback is
actually congested.
This probably needs to be revisited, but as it is this fixes a reported
regression.
Reported-by: Felipe Contreras <felipe.contreras@gmail.com>
Pinpointed-by: Hillf Danton <dhillf@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
printk is meant to be used with an associated log level. There are some
instances of printk scattered around the mm code where the log level is
missing. Add a log level and adhere to suggestions by
scripts/checkpatch.pl by moving to the pr_* macros.
Also add the typical pr_fmt definition so that print statements can be
easily traced back to the modules where they occur, correlated one with
another, etc. This will require the removal of some (now redundant)
prefixes on a few print statements.
Signed-off-by: Mitchel Humpherys <mitchelh@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Memory reclaim always uses swappiness of the reclaim target memcg
(origin of the memory pressure) or vm_swappiness for global memory
reclaim. This behavior was consistent (except for difference between
global and hard limit reclaim) because swappiness was enforced to be
consistent within each memcg hierarchy.
After "mm: memcontrol: remove hierarchy restrictions for swappiness and
oom_control" each memcg can have its own swappiness independent of
hierarchical parents, though, so the consistency guarantee is gone.
This can lead to an unexpected behavior. Say that a group is explicitly
configured to not swapout by memory.swappiness=0 but its memory gets
swapped out anyway when the memory pressure comes from its parent with a
It is also unexpected that the knob is meaningless without setting the
hard limit which would trigger the reclaim and enforce the swappiness.
There are setups where the hard limit is configured higher in the
hierarchy by an administrator and children groups are under control of
somebody else who is interested in the swapout behavior but not
necessarily about the memory limit.
From a semantic point of view swappiness is an attribute defining anon
vs.
file proportional scanning of LRU which is memcg specific (unlike
charges which are propagated up the hierarchy) so it should be applied
to the particular memcg's LRU regardless where the memory pressure comes
from.
This patch removes vmscan_swappiness() and stores the swappiness into
the scan_control structure. mem_cgroup_swappiness is then used to
provide the correct value before shrink_lruvec is called. The global
vm_swappiness is used for the root memcg.
[hughd@google.com: oopses immediately when booted with cgroup_disable=memory]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When kswapd exits, it can end up taking locks that were previously held
by allocating tasks while they waited for reclaim. Lockdep currently
warns about this:
On Wed, May 28, 2014 at 06:06:34PM +0800, Gu Zheng wrote:
> inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-R} usage.
> kswapd2/1151 [HC0[0]:SC0[0]:HE1:SE1] takes:
> (&sig->group_rwsem){+++++?}, at: exit_signals+0x24/0x130
> {RECLAIM_FS-ON-W} state was registered at:
> mark_held_locks+0xb9/0x140
> lockdep_trace_alloc+0x7a/0xe0
> kmem_cache_alloc_trace+0x37/0x240
> flex_array_alloc+0x99/0x1a0
> cgroup_attach_task+0x63/0x430
> attach_task_by_pid+0x210/0x280
> cgroup_procs_write+0x16/0x20
> cgroup_file_write+0x120/0x2c0
> vfs_write+0xc0/0x1f0
> SyS_write+0x4c/0xa0
> tracesys+0xdd/0xe2
> irq event stamp: 49
> hardirqs last enabled at (49): _raw_spin_unlock_irqrestore+0x36/0x70
> hardirqs last disabled at (48): _raw_spin_lock_irqsave+0x2b/0xa0
> softirqs last enabled at (0): copy_process.part.24+0x627/0x15f0
> softirqs last disabled at (0): (null)
>
> other info that might help us debug this:
> Possible unsafe locking scenario:
>
> CPU0
> ----
> lock(&sig->group_rwsem);
> <Interrupt>
> lock(&sig->group_rwsem);
>
> *** DEADLOCK ***
>
> no locks held by kswapd2/1151.
>
> stack backtrace:
> CPU: 30 PID: 1151 Comm: kswapd2 Not tainted 3.10.39+ #4
> Call Trace:
> dump_stack+0x19/0x1b
> print_usage_bug+0x1f7/0x208
> mark_lock+0x21d/0x2a0
> __lock_acquire+0x52a/0xb60
> lock_acquire+0xa2/0x140
> down_read+0x51/0xa0
> exit_signals+0x24/0x130
> do_exit+0xb5/0xa50
> kthread+0xdb/0x100
> ret_from_fork+0x7c/0xb0
This is because the kswapd thread is still marked as a reclaimer at the
time of exit. But because it is exiting, nobody is actually waiting on
it to make reclaim progress anymore, and it's nothing but a regular
thread at this point. Be tidy and strip it of all its powers
(PF_MEMALLOC, PF_SWAPWRITE, PF_KSWAPD, and the lockdep reclaim state)
before returning from the thread function.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
DEF_PRIORITY
Commit "mm: vmscan: obey proportional scanning requirements for kswapd"
ensured that file/anon lists were scanned proportionally for reclaim from
kswapd but ignored it for direct reclaim. The intent was to minimse
direct reclaim latency but Yuanhan Liu pointer out that it substitutes one
long stall for many small stalls and distorts aging for normal workloads
like streaming readers/writers. Hugh Dickins pointed out that a
side-effect of the same commit was that when one LRU list dropped to zero
that the entirety of the other list was shrunk leading to excessive
reclaim in memcgs. This patch scans the file/anon lists proportionally
for direct reclaim to similarly age page whether reclaimed by kswapd or
direct reclaim but takes care to abort reclaim if one LRU drops to zero
after reclaiming the requested number of pages.
Based on ext4 and using the Intel VM scalability test
3.15.0-rc5 3.15.0-rc5
shrinker proportion
Unit lru-file-readonce elapsed 5.3500 ( 0.00%) 5.4200 ( -1.31%)
Unit lru-file-readonce time_range 0.2700 ( 0.00%) 0.1400 ( 48.15%)
Unit lru-file-readonce time_stddv 0.1148 ( 0.00%) 0.0536 ( 53.33%)
Unit lru-file-readtwice elapsed 8.1700 ( 0.00%) 8.1700 ( 0.00%)
Unit lru-file-readtwice time_range 0.4300 ( 0.00%) 0.2300 ( 46.51%)
Unit lru-file-readtwice time_stddv 0.1650 ( 0.00%) 0.0971 ( 41.16%)
The test cases are running multiple dd instances reading sparse files. The results are within
the noise for the small test machine. The impact of the patch is more noticable from the vmstats
3.15.0-rc5 3.15.0-rc5
shrinker proportion
Minor Faults 35154 36784
Major Faults 611 1305
Swap Ins 394 1651
Swap Outs 4394 5891
Allocation stalls 118616 44781
Direct pages scanned 4935171 4602313
Kswapd pages scanned 15921292 16258483
Kswapd pages reclaimed 15913301 16248305
Direct pages reclaimed 4933368 4601133
Kswapd efficiency 99% 99%
Kswapd velocity 670088.047 682555.961
Direct efficiency 99% 99%
Direct velocity 207709.217 193212.133
Percentage direct scans 23% 22%
Page writes by reclaim 4858.000 6232.000
Page writes file 464 341
Page writes anon 4394 5891
Note that there are fewer allocation stalls even though the amount
of direct reclaim scanning is very approximately the same.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Tested-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
correct comments.
Currently, we use (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1)
/ KSWAPD_ZONE_BALANCE_GAP_RATIO to avoid a zero gap value. It's better to
use DIV_ROUND_UP macro for neater code and clear meaning.
Besides, the gap value is calculated against the per-zone "managed pages",
not "present pages". This patch also corrects the comment and do some
rephrasing.
Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
cold is a bool, make it one. Make the likely case the "if" part of the
block instead of the else as according to the optimisation manual this is
preferred.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Now that we are doing NUMA-aware shrinking, and can have shrinkers
running in parallel, or working on individual nodes, it seems like we
should also be sticking the node in the output.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Dave Chinner <david@fromorbit.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
I was looking at a trace of the slab shrinkers (attachment in this comment):
https://bugs.freedesktop.org/show_bug.cgi?id=72742#c67
and noticed that "total_scan" can go negative in some cases. We
used to dump out the "total_scan" variable directly, but some of
the shrinker modifications along the way changed that.
This patch just dumps it out directly, again. It doesn't make
any sense to derive it from new_nr and nr any more since there
are now other shrinkers that can be running in parallel and
mucking with those values.
Here's an example of the negative numbers in the output:
> kswapd0-840 [000] 160.869398: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 10 new scan count 39 total_scan 29 last shrinker return val 256
> kswapd0-840 [000] 160.869618: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 39 new scan count 102 total_scan 63 last shrinker return val 256
> kswapd0-840 [000] 160.870031: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 102 new scan count 47 total_scan -55 last shrinker return val 768
> kswapd0-840 [000] 160.870464: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 47 new scan count 45 total_scan -2 last shrinker return val 768
> kswapd0-840 [000] 163.384144: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 45 new scan count 56 total_scan 11 last shrinker return val 0
> kswapd0-840 [000] 163.384297: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 56 new scan count 15 total_scan -41 last shrinker return val 256
> kswapd0-840 [000] 163.384414: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 15 new scan count 117 total_scan 102 last shrinker return val 0
> kswapd0-840 [000] 163.384657: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 117 new scan count 36 total_scan -81 last shrinker return val 512
> kswapd0-840 [000] 163.384880: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 36 new scan count 111 total_scan 75 last shrinker return val 256
> kswapd0-840 [000] 163.385256: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 111 new scan count 34 total_scan -77 last shrinker return val 768
> kswapd0-840 [000] 163.385598: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 34 new scan count 122 total_scan 88 last shrinker return val 512
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Dave Chinner <david@fromorbit.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When a loopback NFS mount is active and the backing device for the NFS
mount becomes congested, that can impose throttling delays on the nfsd
threads.
These delays significantly reduce throughput and so the NFS mount remains
congested.
This results in a livelock and the reduced throughput persists.
This livelock has been found in testing with the 'wait_iff_congested'
call, and could possibly be caused by the 'congestion_wait' call.
This livelock is similar to the deadlock which justified the introduction
of PF_LESS_THROTTLE, and the same flag can be used to remove this
livelock.
To minimise the impact of the change, we still throttle nfsd when the
filesystem it is writing to is congested, but not when some separate
filesystem (e.g. the NFS filesystem) is congested.
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
ZONE_NORMAL
throttle_direct_reclaim() is meant to trigger during swap-over-network
during which the min watermark is treated as a pfmemalloc reserve. It
throttes on the first node in the zonelist but this is flawed.
The user-visible impact is that a process running on CPU whose local
memory node has no ZONE_NORMAL will stall for prolonged periods of time,
possibly indefintely. This is due to throttle_direct_reclaim thinking the
pfmemalloc reserves are depleted when in fact they don't exist on that
node.
On a NUMA machine running a 32-bit kernel (I know) allocation requests
from CPUs on node 1 would detect no pfmemalloc reserves and the process
gets throttled. This patch adjusts throttling of direct reclaim to
throttle based on the first node in the zonelist that has a usable
ZONE_NORMAL or lower zone.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
kmem_cache_{create,destroy,shrink} need to get a stable value of
cpu/node online mask, because they init/destroy/access per-cpu/node
kmem_cache parts, which can be allocated or destroyed on cpu/mem
hotplug. To protect against cpu hotplug, these functions use
{get,put}_online_cpus. However, they do nothing to synchronize with
memory hotplug - taking the slab_mutex does not eliminate the
possibility of race as described in patch 2.
What we need there is something like get_online_cpus, but for memory.
We already have lock_memory_hotplug, which serves for the purpose, but
it's a bit of a hammer right now, because it's backed by a mutex. As a
result, it imposes some limitations to locking order, which are not
desirable, and can't be used just like get_online_cpus. That's why in
patch 1 I substitute it with get/put_online_mems, which work exactly
like get/put_online_cpus except they block not cpu, but memory hotplug.
[ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by
myself, because it used an rw semaphore for get/put_online_mems,
making them dead lock prune. ]
This patch (of 2):
{un}lock_memory_hotplug, which is used to synchronize against memory
hotplug, is currently backed by a mutex, which makes it a bit of a
hammer - threads that only want to get a stable value of online nodes
mask won't be able to proceed concurrently. Also, it imposes some
strong locking ordering rules on it, which narrows down the set of its
usage scenarios.
This patch introduces get/put_online_mems, which are the same as
get/put_online_cpus, but for memory hotplug, i.e. executing a code
inside a get/put_online_mems section will guarantee a stable value of
online nodes, present pages, etc.
lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Prior to this change, we would decide whether to force scan a LRU during
reclaim if that LRU itself was too small for the current priority.
However, this can lead to the file LRU getting force scanned even if
there are a lot of anonymous pages we can reclaim, leading to hot file
pages getting needlessly reclaimed.
To address this, we instead only force scan when none of the reclaimable
LRUs are big enough.
Gives huge improvements with zswap. For example, when doing -j20 kernel
build in a 500MB container with zswap enabled, runtime (in seconds) is
greatly reduced:
x without this change
+ with this change
N Min Max Median Avg Stddev
x 5 700.997 790.076 763.928 754.05 39.59493
+ 5 141.634 197.899 155.706 161.9 21.270224
Difference at 95.0% confidence
-592.15 +/- 46.3521
-78.5293% +/- 6.14709%
(Student's t, pooled s = 31.7819)
Should also give some improvements in regular (non-zswap) swap cases.
Yes, hughd found significant speedup using regular swap, with several
memcgs under pressure; and it should also be effective in the non-memcg
case, whenever one or another zone LRU is forced too small.
Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Luigi Semenzato <semenzato@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit 0bf1457f0cfc ("mm: vmscan: do not swap anon pages
just because free+file is low") because it introduced a regression in
mostly-anonymous workloads, where reclaim would become ineffective and
trap every allocating task in direct reclaim.
The problem is that there is a runaway feedback loop in the scan balance
between file and anon, where the balance tips heavily towards a tiny
thrashing file LRU and anonymous pages are no longer being looked at.
The commit in question removed the safe guard that would detect such
situations and respond with forced anonymous reclaim.
This commit was part of a series to fix premature swapping in loads with
relatively little cache, and while it made a small difference, the cure
is obviously worse than the disease. Revert it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Seems to be called with preemption enabled. Therefore it must use
mod_zone_page_state instead.
Signed-off-by: Christoph Lameter <cl@linux.com>
Reported-by: Grygorii Strashko <grygorii.strashko@ti.com>
Tested-by: Grygorii Strashko <grygorii.strashko@ti.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Page reclaim force-scans / swaps anonymous pages when file cache drops
below the high watermark of a zone in order to prevent what little cache
remains from thrashing.
However, on bigger machines the high watermark value can be quite large
and when the workload is dominated by a static anonymous/shmem set, the
file set might just be a small window of used-once cache. In such
situations, the VM starts swapping heavily when instead it should be
recycling the no longer used cache.
This is a longer-standing problem, but it's more likely to trigger after
commit 81c0a2bb515f ("mm: page_alloc: fair zone allocator policy")
because file pages can no longer accumulate in a single zone and are
dispersed into smaller fractions among the available zones.
To resolve this, do not force scan anon when file pages are low but
instead rely on the scan/rotation ratios to make the right prediction.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: <stable@kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We abort direct reclaim if we find the zone is ready for compaction.
Sometimes the zone is just a promoted highmem zone to force a scan of
highmem, which is not the intended zone the caller want to allocate a
page from. In this situation, setting aborted_reclaim to indicate the
caller turned back to retry the allocation is waste of time and could
cause a loop in __alloc_pages_slowpath().
This patch does not check compaction_ready() on promoted zones to avoid
the above situation. Only set aborted_reclaim if the caller intended
zone is ready for compaction.
Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We promote sc->gfp_mask to __GFP_HIGHMEM to forcibly scan highmem if
there are too many buffer_heads pinning highmem. See cc715d99e5 ("mm:
vmscan: forcibly scan highmem if there are too many buffer_heads pinning
highmem").
This patch restores sc->gfp_mask to its caller original value after
finishing the scan job, to avoid the impact on other invocations from
its upper caller, such as vmpressure_prio(), shrink_slab().
Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The VM maintains cached filesystem pages on two types of lists. One
list holds the pages recently faulted into the cache, the other list
holds pages that have been referenced repeatedly on that first list.
The idea is to prefer reclaiming young pages over those that have shown
to benefit from caching in the past. We call the recently usedbut
ultimately was not significantly better than a FIFO policy and still
thrashed cache based on eviction speed, rather than actual demand for
cache.
This patch solves one half of the problem by decoupling the ability to
detect working set changes from the inactive list size. By maintaining
a history of recently evicted file pages it can detect frequently used
pages with an arbitrarily small inactive list size, and subsequently
apply pressure on the active list based on actual demand for cache, not
just overall eviction speed.
Every zone maintains a counter that tracks inactive list aging speed.
When a page is evicted, a snapshot of this counter is stored in the
now-empty page cache radix tree slot. On refault, the minimum access
distance of the page can be assessed, to evaluate whether the page
should be part of the active list or not.
This fixes the VM's blindness towards working set changes in excess of
the inactive list. And it's the foundation to further improve the
protection ability and reduce the minimum inactive list size of 50%.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Bob Liu <bob.liu@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reclaim will be leaving shadow entries in the page cache radix tree upon
evicting the real page. As those pages are found from the LRU, an
iput() can lead to the inode being freed concurrently. At this point,
reclaim must no longer install shadow pages because the inode freeing
code needs to ensure the page tree is really empty.
Add an address_space flag, AS_EXITING, that the inode freeing code sets
under the tree lock before doing the final truncate. Reclaim will check
for this flag before installing shadow pages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The name `max_pass' is misleading, because this variable actually keeps
the estimate number of freeable objects, not the maximal number of
objects we can scan in this pass, which can be twice that. Rename it to
reflect its actual meaning.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is no need passing on a shrink_control struct from
try_to_free_pages() and friends to do_try_to_free_pages() and then to
shrink_zones(), because it is only used in shrink_zones() and the only
field initialized on the top level is gfp_mask, which is always equal to
scan_control.gfp_mask. So let's move shrink_control initialization to
shrink_zones().
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reduces the indentation level of do_try_to_free_pages() and removes
extra loop over all eligible zones counting the number of on-LRU pages.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Glauber Costa <glommer@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When direct reclaim is executed by a process bound to a set of NUMA
nodes, we should scan only those nodes when possible, but currently we
will scan kmem from all online nodes even if the kmem shrinker is NUMA
aware. That said, binding a process to a particular NUMA node won't
prevent it from shrinking inode/dentry caches from other nodes, which is
not good. Fix this.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The VM is currently heavily tuned to avoid swapping. Whether that is
good or bad is a separate discussion, but as long as the VM won't swap
to make room for dirty cache, we can not consider anonymous pages when
calculating the amount of dirtyable memory, the baseline to which
dirty_background_ratio and dirty_ratio are applied.
A simple workload that occupies a significant size (40+%, depending on
memory layout, storage speeds etc.) of memory with anon/tmpfs pages and
uses the remainder for a streaming writer demonstrates this problem. In
that case, the actual cache pages are a small fraction of what is
considered dirtyable overall, which results in an relatively large
portion of the cache pages to be dirtied. As kswapd starts rotating
these, random tasks enter direct reclaim and stall on IO.
Only consider free pages and file pages dirtyable.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Tested-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If a shrinker is not NUMA-aware, shrink_slab() should call it exactly
once with nid=0, but currently it is not true: if node 0 is not set in
the nodemask or if it is not online, we will not call such shrinkers at
all. As a result some slabs will be left untouched under some
circumstances. Let us fix it.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reported-by: Dave Chinner <dchinner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When reclaiming kmem, we currently don't scan slabs that have less than
batch_size objects (see shrink_slab_node()):
while (total_scan >= batch_size) {
shrinkctl->nr_to_scan = batch_size;
shrinker->scan_objects(shrinker, shrinkctl);
total_scan -= batch_size;
}
If there are only a few shrinkers available, such a behavior won't cause
any problems, because the batch_size is usually small, but if we have a
lot of slab shrinkers, which is perfectly possible since FS shrinkers
are now per-superblock, we can end up with hundreds of megabytes of
practically unreclaimable kmem objects. For instance, mounting a
thousand of ext2 FS images with a hundred of files in each and iterating
over all the files using du(1) will result in about 200 Mb of FS caches
that cannot be dropped even with the aid of the vm.drop_caches sysctl!
This problem was initially pointed out by Glauber Costa [*]. Glauber
proposed to fix it by making the shrink_slab() always take at least one
pass, to put it simply, turning the scan loop above to a do{}while()
loop. However, this proposal was rejected, because it could result in
more aggressive and frequent slab shrinking even under low memory
pressure when total_scan is naturally very small.
This patch is a slightly modified version of Glauber's approach.
Similarly to Glauber's patch, it makes shrink_slab() scan less than
batch_size objects, but only if the total number of objects we want to
scan (total_scan) is greater than the total number of objects available
(max_pass). Since total_scan is biased as half max_pass if the current
delta change is small:
if (delta < max_pass / 4)
total_scan = min(total_scan, max_pass / 2);
this is only possible if we are scanning at high prio. That said, this
patch shouldn't change the vmscan behaviour if the memory pressure is
low, but if we are tight on memory, we will do our best by trying to
reclaim all available objects, which sounds reasonable.
[*] http://www.spinics.net/lists/cgroups/msg06913.html
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|