summaryrefslogtreecommitdiffstats
path: root/mm/page_alloc.c
Commit message (Collapse)AuthorAgeFilesLines
* [PATCH] unpaged: PG_reserved bad_pageHugh Dickins2005-11-221-12/+34
| | | | | | | | | | | It used to be the case that PG_reserved pages were silently never freed, but in 2.6.15-rc1 they may be freed with a "Bad page state" message. We should work through such cases as they appear, fixing the code; but for now it's safer to issue the message without freeing the page, leaving PG_reserved set. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] unpaged: unifdefed PageCompoundHugh Dickins2005-11-221-5/+0
| | | | | | | | | | | | | | | | | It looks like snd_xxx is not the only nopage to be using PageReserved as a way of holding a high-order page together: which no longer works, but is masked by our failure to free from VM_RESERVED areas. We cannot fix that bug without first substituting another way to hold the high-order page together, while farming out the 0-order pages from within it. That's just what PageCompound is designed for, but it's been kept under CONFIG_HUGETLB_PAGE. Remove the #ifdefs: which saves some space (out- of-line put_page), doesn't slow down what most needs to be fast (already using hugetlb), and unifies the way we handle high-order pages. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] VM: fix zone list restart in page allocatateJens Axboe2005-11-171-3/+4
| | | | | | | | | We must reassign z before looping through the zones kicking kswapd, since it will be NULL if we hit an OOM condition and jump back to the beginning again. 'z' is initially assigned before the restart: label. So move the restart label up a little. Signed-off-by: Jens Axboe <axboe@suse.de>
* Merge x86-64 update from AndiLinus Torvalds2005-11-141-6/+14
|\
| * [PATCH] x86_64: Remove obsolete ARCH_HAS_ATOMIC_UNSIGNED and page_flags_tAndi Kleen2005-11-141-1/+1
| | | | | | | | | | | | | | | | | | Has been introduced for x86-64 at some point to save memory in struct page, but has been obsolete for some time. Just remove it. Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
| * [PATCH] x86_64: When cpu_up fails clean up page allocator properlyAndi Kleen2005-11-141-2/+1
| | | | | | | | | | Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
| * [PATCH] x86_64: Add 4GB DMA32 zoneAndi Kleen2005-11-141-3/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a new 4GB GFP_DMA32 zone between the GFP_DMA and GFP_NORMAL zones. As a bit of historical background: when the x86-64 port was originally designed we had some discussion if we should use a 16MB DMA zone like i386 or a 4GB DMA zone like IA64 or both. Both was ruled out at this point because it was in early 2.4 when VM is still quite shakey and had bad troubles even dealing with one DMA zone. We settled on the 16MB DMA zone mainly because we worried about older soundcards and the floppy. But this has always caused problems since then because device drivers had trouble getting enough DMA able memory. These days the VM works much better and the wide use of NUMA has proven it can deal with many zones successfully. So this patch adds both zones. This helps drivers who need a lot of memory below 4GB because their hardware is not accessing more (graphic drivers - proprietary and free ones, video frame buffer drivers, sound drivers etc.). Previously they could only use IOMMU+16MB GFP_DMA, which was not enough memory. Another common problem is that hardware who has full memory addressing for >4GB misses it for some control structures in memory (like transmit rings or other metadata). They tended to allocate memory in the 16MB GFP_DMA or the IOMMU/swiotlb then using pci_alloc_consistent, but that can tie up a lot of precious 16MB GFPDMA/IOMMU/swiotlb memory (even on AMD systems the IOMMU tends to be quite small) especially if you have many devices. With the new zone pci_alloc_consistent can just put this stuff into memory below 4GB which works better. One argument was still if the zone should be 4GB or 2GB. The main motivation for 2GB would be an unnamed not so unpopular hardware raid controller (mostly found in older machines from a particular four letter company) who has a strange 2GB restriction in firmware. But that one works ok with swiotlb/IOMMU anyways, so it doesn't really need GFP_DMA32. I chose 4GB to be compatible with IA64 and because it seems to be the most common restriction. The new zone is so far added only for x86-64. For other architectures who don't set up this new zone nothing changes. Architectures can set a compatibility define in Kconfig CONFIG_DMA_IS_DMA32 that will define GFP_DMA32 as GFP_DMA. Otherwise it's a nop because on 32bit architectures it's normally not needed because GFP_NORMAL (=0) is DMA able enough. One problem is still that GFP_DMA means different things on different architectures. e.g. some drivers used to have #ifdef ia64 use GFP_DMA (trusting it to be 4GB) #elif __x86_64__ (use other hacks like the swiotlb because 16MB is not enough) ... . This was quite ugly and is now obsolete. These should be now converted to use GFP_DMA32 unconditionally. I haven't done this yet. Or best only use pci_alloc_consistent/dma_alloc_coherent which will use GFP_DMA32 transparently. Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] mm: highmem watermarksNick Piggin2005-11-131-13/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The pages_high - pages_low and pages_low - pages_min deltas are the asynch reclaim watermarks. As such, the should be in the same ratios as any other zone for highmem zones. It is the pages_min - 0 delta which is the PF_MEMALLOC reserve, and this is the region that isn't very useful for highmem. This patch ensures highmem systems have similar characteristics as non highmem ones with the same amount of memory, and also that highmem zones get similar reclaim pressures to other zones. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] mm: __alloc_pages cleanupRohit Seth2005-11-131-110/+85
| | | | | | | | | | | | | | | | | | | | | | | | Clean up of __alloc_pages. Restoration of previous behaviour, plus further cleanups by introducing an 'alloc_flags', removing the last of should_reclaim_zone. Signed-off-by: Rohit Seth <rohit.seth@intel.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] mm: __GFP_NOFAIL fixKirill Korotaev2005-11-131-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In __alloc_pages(): if ((p->flags & (PF_MEMALLOC | PF_MEMDIE)) && !in_interrupt()) { /* go through the zonelist yet again, ignoring mins */ for (i = 0; zones[i] != NULL; i++) { struct zone *z = zones[i]; page = buffered_rmqueue(z, order, gfp_mask); if (page) { zone_statistics(zonelist, z); goto got_pg; } } goto nopage; <<<< HERE!!! FAIL... } kswapd (which has PF_MEMALLOC flag) can fail to allocate memory even when it allocates it with __GFP_NOFAIL flag. Signed-Off-By: Pavel Emelianov <xemul@sw.ru> Signed-Off-By: Denis Lunev <den@sw.ru> Signed-Off-By: Kirill Korotaev <dev@sw.ru> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] Don't print per-cpu vm stats for offline cpus.Dave Jones2005-11-101-1/+1
| | | | | | | | | | | | | | | | I just hit a page allocation error on a kernel configured to support 64 CPUs. It spewed 60 completely useless unnecessary lines of info. Signed-off-by: Dave Jones <davej@redhat.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] unexport nr_swap_pagesAdrian Bunk2005-11-071-1/+0
|/ | | | | | | | I didn't find any possible modular usage in the kernel. Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] mm: wider use of for_each_*cpu()John Hawkes2005-10-291-4/+1
| | | | | | | | | | | | In 'mm' change the explicit use of a for-loop using NR_CPUS into the general for_each_cpu() constructs. This widens the scope of potential future optimizations of the general constructs, as well as takes advantage of the existing optimizations of first_cpu() and next_cpu(), which is advantageous when the true CPU count is much smaller than NR_CPUS. Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] memory hotplug: sysfs and add/remove functionsDave Hansen2005-10-291-2/+2
| | | | | | | | | | | | | | | This adds generic memory add/remove and supporting functions for memory hotplug into a new file as well as a memory hotplug kernel config option. Individual architecture patches will follow. For now, disable memory hotplug when swsusp is enabled. There's a lot of churn there right now. We'll fix it up properly once it calms down. Signed-off-by: Matt Tolentino <matthew.e.tolentino@intel.com> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] memory hotplug locking: zone span seqlockDave Hansen2005-10-291-5/+14
| | | | | | | | | | See the "fixup bad_range()" patch for more information, but this actually creates a the lock to protect things making assumptions about a zone's size staying constant at runtime. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] memory hotplug locking: node_size_lockDave Hansen2005-10-291-0/+1
| | | | | | | | | | | | | | | | | | | | pgdat->node_size_lock is basically only neeeded in one place in the normal code: show_mem(), which is the arch-specific sysrq-m printing function. Strictly speaking, the architectures not doing memory hotplug do no need this locking in show_mem(). However, they are all included for completeness. This should also make any future consolidation of all of the implementations a little more straightforward. This lock is also held in the sparsemem code during a memory removal, as sections are invalidated. This is the place there pfn_valid() is made false for a memory area that's being removed. The lock is only required when doing pfn_valid() operations on memory which the user does not already have a reference on the page, such as in show_mem(). Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] memory hotplug prep: fixup bad_range()Dave Hansen2005-10-291-5/+21
| | | | | | | | | | | | | | | | When doing memory hotplug operations, the size of existing zones can obviously change. This means that zone->zone_{start_pfn,spanned_pages} can change. There are currently no locks that protect these structure members. However, they are rarely accessed at runtime. Outside of swsusp, the only place that I can find is bad_range(). So, split bad_range() up into two pieces: one that needs to be locked and anther that doesn't. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] memory hotplug prep: break out zone initializationDave Hansen2005-10-291-40/+58
| | | | | | | | | | | | | If a zone is empty at boot-time and then hot-added to later, it needs to run the same init code that would have been run on it at boot. This patch breaks out zone table and per-cpu-pages functions for use by the hotplug code. You can almost see all of the free_area_init_core() function on one page now. :) Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] mm: split page table lockHugh Dickins2005-10-291-8/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] core remove PageReservedNick Piggin2005-10-291-6/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Remove PageReserved() calls from core code by tightening VM_RESERVED handling in mm/ to cover PageReserved functionality. PageReserved special casing is removed from get_page and put_page. All setting and clearing of PageReserved is retained, and it is now flagged in the page_alloc checks to help ensure we don't introduce any refcount based freeing of Reserved pages. MAP_PRIVATE, PROT_WRITE of VM_RESERVED regions is tentatively being deprecated. We never completely handled it correctly anyway, and is be reintroduced in future if required (Hugh has a proof of concept). Once PageReserved() calls are removed from kernel/power/swsusp.c, and all arch/ and driver code, the Set and Clear calls, and the PG_reserved bit can be trivially removed. Last real user of PageReserved is swsusp, which uses PageReserved to determine whether a struct page points to valid memory or not. This still needs to be addressed (a generic page_is_ram() should work). A last caveat: the ZERO_PAGE is now refcounted and managed with rmap (and thus mapcounted and count towards shared rss). These writes to the struct page could cause excessive cacheline bouncing on big systems. There are a number of ways this could be addressed if it is an issue. Signed-off-by: Nick Piggin <npiggin@suse.de> Refcount bug fix for filemap_xip.c Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] mm: set per-cpu-pages lower threshold to zeroSeth, Rohit2005-10-291-2/+2
| | | | | | | | | | | | | | Set the low water mark for hot pages in pcp to zero. (akpm: for the life of me I cannot remember why we created pcp->low. Neither can Martin and the changelog is silent. Maybe it was just a brainfart, but I have this feeling that there was a reason. If not, we should remove the fields completely. We'll see.) Signed-off-by: Rohit Seth <rohit.seth@intel.com> Cc: <linux-mm@kvack.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] mm: page_alloc: increase size of per-cpu-pagesSeth, Rohit2005-10-291-12/+12
| | | | | | | | | | | | Increase the page allocator's per-cpu magazines from 1/4MB to 1/2MB. Over 100+ runs for a workload, the difference in mean is about 2%. The best results for both are almost same. Though the max variation in results with 1/2MB is only 2.2%, whereas with 1/4MB it is 12%. Signed-off-by: Rohit Seth <rohit.seth@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] gfp_t: the restAl Viro2005-10-281-14/+15
| | | | | | | zone handling, mapping->flags handling Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] gfp_t: infrastructureAl Viro2005-10-281-2/+2
| | | | | | | | | | | | | | | | Beginning of gfp_t annotations: - -Wbitwise added to CHECKFLAGS - old __bitwise renamed to __bitwise__ - __bitwise defined to either __bitwise__ or nothing, depending on __CHECK_ENDIAN__ being defined - gfp_t switched from __nocast to __bitwise__ - force cast to gfp_t added to __GFP_... constants - new helper - gfp_zone(); extracts zone bits out of gfp_t value and casts the result to int Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] NUMA: broken per cpu pageset countersMagnus Damm2005-10-261-0/+2
| | | | | | | | | | | The NUMA counters in struct per_cpu_pageset (linux/mmzone.h) are never cleared today. This works ok for CPU 0 on NUMA machines because boot_pageset[] is already zero, but for other CPU:s this results in uninitialized counters. Signed-off-by: Magnus Damm <magnus@valinux.co.jp> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] gfp flags annotations - part 1Al Viro2005-10-081-6/+6
| | | | | | | | | | | | - added typedef unsigned int __nocast gfp_t; - replaced __nocast uses for gfp flags with gfp_t - it gives exactly the same warnings as far as sparse is concerned, doesn't change generated code (from gcc point of view we replaced unsigned int with typedef) and documents what's going on far better. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] use add_taint() for setting tainted bit flagsRandy Dunlap2005-09-131-1/+2
| | | | | | | | | Use the add_taint() interface for setting tainted bit flags instead of doing it manually. Signed-off-by: Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] remove invalid comment in mm/page_alloc.cRenaud Lienhart2005-09-101-1/+1
| | | | | | | | free_pages_bulk() doesn't free the entire list if count == 0. Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpusets: formalize intermediate GFP_KERNEL containmentPaul Jackson2005-09-071-6/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch makes use of the previously underutilized cpuset flag 'mem_exclusive' to provide what amounts to another layer of memory placement resolution. With this patch, there are now the following four layers of memory placement available: 1) The whole system (interrupt and GFP_ATOMIC allocations can use this), 2) The nearest enclosing mem_exclusive cpuset (GFP_KERNEL allocations can use), 3) The current tasks cpuset (GFP_USER allocations constrained to here), and 4) Specific node placement, using mbind and set_mempolicy. These nest - each layer is a subset (same or within) of the previous. Layer (2) above is new, with this patch. The call used to check whether a zone (its node, actually) is in a cpuset (in its mems_allowed, actually) is extended to take a gfp_mask argument, and its logic is extended, in the case that __GFP_HARDWALL is not set in the flag bits, to look up the cpuset hierarchy for the nearest enclosing mem_exclusive cpuset, to determine if placement is allowed. The definition of GFP_USER, which used to be identical to GFP_KERNEL, is changed to also set the __GFP_HARDWALL bit, in the previous cpuset_gfp_hardwall_flag patch. GFP_ATOMIC and GFP_KERNEL allocations will stay within the current tasks cpuset, so long as any node therein is not too tight on memory, but will escape to the larger layer, if need be. The intended use is to allow something like a batch manager to handle several jobs, each job in its own cpuset, but using common kernel memory for caches and such. Swapper and oom_kill activity is also constrained to Layer (2). A task in or below one mem_exclusive cpuset should not cause swapping on nodes in another non-overlapping mem_exclusive cpuset, nor provoke oom_killing of a task in another such cpuset. Heavy use of kernel memory for i/o caching and such by one job should not impact the memory available to jobs in other non-overlapping mem_exclusive cpusets. This patch enables providing hardwall, inescapable cpusets for memory allocations of each job, while sharing kernel memory allocations between several jobs, in an enclosing mem_exclusive cpuset. Like Dinakar's patch earlier to enable administering sched domains using the cpu_exclusive flag, this patch also provides a useful meaning to a cpuset flag that had previously done nothing much useful other than restrict what cpuset configurations were allowed. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Additions to .data.read_mostly sectionRavikiran G Thirumalai2005-09-071-2/+2
| | | | | | | | | | Mark variables which are usually accessed for reads with __readmostly. Signed-off-by: Alok N Kataria <alokk@calsoftinc.com> Signed-off-by: Shai Fultheim <shai@scalex86.org> Signed-off-by: Ravikiran Thirumalai <kiran@scalex86.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] More __read_mostly variablesChristoph Lameter2005-09-071-4/+4
| | | | | | | | | | | | | | | Move some more frequently read variables that showed up during some of our performance tests as sometimes ending up in hot cachelines to the read_mostly section. Fix: Move the __read_mostly from before hpet_usec_quotient to follow the variable like the other uses of __read_mostly. Signed-off-by: Alok N Kataria <alokk@calsoftinc.com> Signed-off-by: Christoph Lameter <christoph@scalex86.org> Signed-off-by: Shai Fultheim <shai@scalex86.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] VM: add page_state info to per-node meminfoMartin Hicks2005-09-051-5/+20
| | | | | | | | | | | | | | | Add page_state info to the per-node meminfo file in sysfs. This is mostly just for informational purposes. The lack of this information was brought up recently during a discussion regarding pagecache clearing, and I put this patch together to test out one of the suggestions. It seems like interesting info to have, so I'm submitting the patch. Signed-off-by: Martin Hicks <mort@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] VM: zone reclaim atomic ops cleanupMartin Hicks2005-09-051-1/+1
| | | | | | | | | | Christoph Lameter and Marcelo Tosatti asked to get rid of the atomic_inc_and_test() to cleanup the atomic ops in the zone reclaim code. Signed-off-by: Martin Hicks <mort@sgi.com> Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] mm: remove atomicNick Piggin2005-09-051-1/+1
| | | | | | | | | This bitop does not need to be atomic because it is performed when there will be no references to the page (ie. the page is being freed). Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Fix NUMA node sizing in nr_free_zone_pagesMartin J. Bligh2005-07-301-11/+10
| | | | | | | | | | | | | | | | | We are iterating over all nodes in nr_free_zone_pages(). Because the fallback zonelists contain all nodes in the system, and we walk all the zonelists, we're counting memory multiple times (once for each node). This caused us to make a size estimate of 32GB for an 8GB AMD64 box, which makes all the dirty ratio calculations, etc incorrect. There's still a further bug to fix from e820 holes causing overestimation as well, but this fix is separate, and good as is, and fixes one class of problems. Problem found by Badari, and tested by Ram Pai - thanks! Signed-off-by: Martin J. Bligh <mbligh@mbligh.org> Signed-off-by: Matt Dobson <colpatch@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Remove bogus warning in page_alloc.cAndy Whitcroft2005-07-271-4/+0
| | | | | | | | | | | | | | | | | | | | Originally __free_pages_bulk used the relative page number within a zone to define its buddies. This meant that to maintain the "maximally aligned" requirements (that an allocation of size N will be aligned at least to N physically) zones had to also be aligned to 1<<MAX_ORDER pages. When __free_pages_bulk was updated to use the relative page frame numbers of the free'd pages to pair buddies this released the alignment constraint on the 'left' edge of the zone. This allows _either_ edge of the zone to contain partial MAX_ORDER sized buddies. These simply never will have matching buddies and thus will never make it to the 'top' of the pyramid. The patch below removes a now redundant check ensuring that the mem_map was aligned to MAX_ORDER. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Cc: Christoph Lameter <christoph@lameter.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] remove completly bogus comment inside __alloc_pages() ↵Marcelo Tosatti2005-07-071-6/+0
| | | | | | | | | | | try_to_free_pages handling Remove completly bogus comment from did_some_progress != 0 handling (that same comment is a few lines below on did_some_progress = 0 case, where it belongs). Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] print order information when OOM killingMarcelo Tosatti2005-07-071-1/+1
| | | | | | | Dump the current allocation order when OOM killing. Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] fix WANT_PAGE_VIRTUAL in memmap_initBob Picco2005-06-271-2/+1
| | | | | | | | | | I spotted this issue while in memmap_init last week. I can't say the change has any test coverage by me. start_pfn was formerly used in main "for" loop. The fix is replace start_pfn with pfn. Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] sparsemem hotplug baseAndy Whitcroft2005-06-231-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] sparsemem swiss cheese numa layoutsAndy Whitcroft2005-06-231-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The part of the sparsemem patch which modifies memmap_init_zone() has recently become a problem. It changes behavior so that there is a call to pfn_to_page() for each individual page inside of a node's range: node_start_pfn through node_end_pfn. It used to simply do this once, at the beginning of the node, but having sparsemem's non-contiguous mem_map[]s inside of a node made it necessary to change. Mike Kravetz recently wrote a patch which made the NUMA code accept some new kinds of layouts. The system's memory was laid out like this, with node 0's memory in two pieces: one before and one after node 1's memory: Node 0: +++++ +++++ Node 1: +++++ Previous behavior before Mike's patch was to assign nodes like this: Node 0: 00000 XXXXX Node 1: 11111 Where the 'X' areas were simply thrown away. The new behavior was to make the pg_data_t span node 0 across all of its areas, including areas that are really node 1's: Node 0: 000000000000000 Node 1: 11111 This wastes a little bit of mem_map space, but ends up being OK, and more fully utilizes the system's memory. memmap_init_zone() initializes all of the "struct page"s for node 0, even for the "hole", but those never get used, because there is no pfn_to_page() that resolves to those pages. However, only calling pfn_to_page() once, memmap_init_zone() always uses the pages that were allocated for node0->node_mem_map because: struct page *start = pfn_to_page(start_pfn); // effectively start = &node->node_mem_map[0] for (page = start; page < (start + size); page++) { init_page_here();... page++; } Slow, and wasteful, but generally harmless. But, modify that to call pfn_to_page() for each loop iteration (like sparsemem does): for (pfn = start_pfn; pfn < < (start_pfn + size); pfn++++) { page = pfn_to_page(pfn); } And you end up trying to initialize node 1's pages too early, along with bogus data from node 0. This patch checks for those weird layouts and declines to touch the pages, making the more frequent pfn_to_page() calls OK to do. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] sparsemem memory modelAndy Whitcroft2005-06-231-9/+30
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Introduce new Kconfig option for NUMA or DISCONTIGDave Hansen2005-06-231-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | There is some confusion that arose when working on SPARSEMEM patch between what is needed for DISCONTIG vs. NUMA. Multiple pg_data_t's are needed for DISCONTIGMEM or NUMA, independently. All of the current NUMA implementations require an implementation of DISCONTIG. Because of this, quite a lot of code which is really needed for NUMA is actually under DISCONTIG #ifdefs. For SPARSEMEM, we changed some of these #ifdefs to CONFIG_NUMA, but that broke the DISCONTIG=y and NUMA=n case. Introducing this new NEED_MULTIPLE_NODES config option allows code that is needed for both NUMA or DISCONTIG to be separated out from code that is specific to DISCONTIG. One great advantage of this approach is that it doesn't require every architecture to be converted over. All of the current implementations should "just work", only the ones implementing SPARSEMEM will have to be fixed up. The change to free_area_init() makes it work inside, or out of the new config option. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] sparsemem base: reorganize page->flags bit operationsDave Hansen2005-06-231-1/+1
| | | | | | | | | | | | Generify the value fields in the page_flags. The aim is to allow the location and size of these fields to be varied. Additionally we want to move away from fixed allocations per field whilst still enforcing the overall bit utilisation limits. We rely on the compiler to spot and optimise the accessor functions. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] sparsemem base: simple NUMA remap space allocatorDave Hansen2005-06-231-1/+5
| | | | | | | | | | | | | | | | | | | Introduce a simple allocator for the NUMA remap space. This space is very scarce, used for structures which are best allocated node local. This mechanism is also used on non-NUMA ia64 systems with a vmem_map to keep the pgdat->node_mem_map initialized in a consistent place for all architectures. Issues: o alloc_remap takes a node_id where we might expect a pgdat which was intended to allow us to allocate the pgdat's using this mechanism; which we do not yet do. Could have alloc_remap_node() and alloc_remap_nid() for this purpose. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] boot_pageset must not be freed.Christoph Lameter2005-06-221-2/+9
| | | | | | | | | | The boot_pageset needs to be preserved for hotplugging and for off line processors and nodes. Otherwise pointers will point into memory that has now a different use. /proc/zoneinfo is currently showing strange results if processors / nodes are not present. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Kill stray newlineDenis Vlasenko2005-06-211-1/+1
| | | | | | | OOM killer prints a stray newline. Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] bad_page: clear reclaim and slabHugh Dickins2005-06-211-5/+10
| | | | | | | | | | Since free_pages_check complains if PG_reclaim or PG_slab is set, bad_page ought to clear them to avoid repetitive reports (Nikita noticed this too). Let prep_new_page check page_count and PG_slab as free_pages_check does. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Reduce size of huge boot per_cpu_pagesetChristoph Lameter2005-06-211-66/+42
| | | | | | | | | | | | | | | | | | | | | Reduce size of the huge per_cpu_pageset structure in __initdata introduced into mm1 with the pageset localization patchset. Use one specially configured pageset per cpu for all zones and nodes during bootup. - Avoid duplication of pageset initialization code. - do the adding to the pageset list before potential free_pages_bulk in free_hot_cold_page (otherwise we would have to hold a page in a pageset during the period that the boot pagesets are in use). - remove mistaken __cpuinitdata attribute and revert back to __initdata for the boot pageset. A boot pageset is not necessary for cpu hotplug. Tested for UP SMP NUMA on x86_64 (2.6.12-rc6-mm1): UP SMP NUMA Tested on IA64 (2.6.12-rc5-mm2): NUMA (2.6.12-rc6-mm1 broken for IA64 because of sparsemem patches) Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Periodically drain non local pagesetsChristoph Lameter2005-06-211-2/+33
| | | | | | | | | | | | | | | | | | | | | | | The pageset array can potentially acquire a huge amount of memory on large NUMA systems. F.e. on a system with 512 processors and 256 nodes there will be 256*512 pagesets. If each pageset only holds 5 pages then we are talking about 655360 pages.With a 16K page size on IA64 this results in potentially 10 Gigabytes of memory being trapped in pagesets. The typical cases are much less for smaller systems but there is still the potential of memory being trapped in off node pagesets. Off node memory may be rarely used if local memory is available and so we may potentially have memory in seldom used pagesets without this patch. The slab allocator flushes its per cpu caches every 2 seconds. The following patch flushes the off node pageset caches in the same way by tying into the slab flush. The patch also changes /proc/zoneinfo to include the number of pages currently in each pageset. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
OpenPOWER on IntegriCloud