| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull VFS updates from Al Viro,
Misc cleanups all over the place, mainly wrt /proc interfaces (switch
create_proc_entry to proc_create(), get rid of the deprecated
create_proc_read_entry() in favor of using proc_create_data() and
seq_file etc).
7kloc removed.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (204 commits)
don't bother with deferred freeing of fdtables
proc: Move non-public stuff from linux/proc_fs.h to fs/proc/internal.h
proc: Make the PROC_I() and PDE() macros internal to procfs
proc: Supply a function to remove a proc entry by PDE
take cgroup_open() and cpuset_open() to fs/proc/base.c
ppc: Clean up scanlog
ppc: Clean up rtas_flash driver somewhat
hostap: proc: Use remove_proc_subtree()
drm: proc: Use remove_proc_subtree()
drm: proc: Use minor->index to label things, not PDE->name
drm: Constify drm_proc_list[]
zoran: Don't print proc_dir_entry data in debug
reiserfs: Don't access the proc_dir_entry in r_open(), r_start() r_show()
proc: Supply an accessor for getting the data from a PDE's parent
airo: Use remove_proc_subtree()
rtl8192u: Don't need to save device proc dir PDE
rtl8187se: Use a dir under /proc/net/r8180/
proc: Add proc_mkdir_data()
proc: Move some bits from linux/proc_fs.h to linux/{of.h,signal.h,tty.h}
proc: Move PDE_NET() to fs/proc/proc_net.c
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Split the proc namespace stuff out into linux/proc_ns.h.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: netdev@vger.kernel.org
cc: Serge E. Hallyn <serge.hallyn@ubuntu.com>
cc: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Changing uid/gid/projid mappings doesn't change your id within the
namespace; it reconfigures the namespace. Unprivileged programs should
*not* be able to write these files. (We're also checking the privileges
on the wrong task.)
Given the write-once nature of these files and the other security
checks, this is likely impossible to usefully exploit.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
|
| |
| |
| |
| | |
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
id_map
When we require privilege for setting /proc/<pid>/uid_map or
/proc/<pid>/gid_map no longer allow an unprivileged user to
open the file and pass it to a privileged program to write
to the file.
Instead when privilege is required require both the opener and the
writer to have the necessary capabilities.
I have tested this code and verified that setting /proc/<pid>/uid_map
fails when an unprivileged user opens the file and a privielged user
attempts to set the mapping, that unprivileged users can still map
their own id, and that a privileged users can still setup an arbitrary
mapping.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Only allow unprivileged mounts of proc and sysfs if they are already
mounted when the user namespace is created.
proc and sysfs are interesting because they have content that is
per namespace, and so fresh mounts are needed when new namespaces
are created while at the same time proc and sysfs have content that
is shared between every instance.
Respect the policy of who may see the shared content of proc and sysfs
by only allowing new mounts if there was an existing mount at the time
the user namespace was created.
In practice there are only two interesting cases: proc and sysfs are
mounted at their usual places, proc and sysfs are not mounted at all
(some form of mount namespace jail).
Cc: stable@vger.kernel.org
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Guarantee that the policy of which files may be access that is
established by setting the root directory will not be violated
by user namespaces by verifying that the root directory points
to the root of the mount namespace at the time of user namespace
creation.
Changing the root is a privileged operation, and as a matter of policy
it serves to limit unprivileged processes to files below the current
root directory.
For reasons of simplicity and comprehensibility the privilege to
change the root directory is gated solely on the CAP_SYS_CHROOT
capability in the user namespace. Therefore when creating a user
namespace we must ensure that the policy of which files may be access
can not be violated by changing the root directory.
Anyone who runs a processes in a chroot and would like to use user
namespace can setup the same view of filesystems with a mount
namespace instead. With this result that this is not a practical
limitation for using user namespaces.
Cc: stable@vger.kernel.org
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Don't allowing sharing the root directory with processes in a
different user namespace. There doesn't seem to be any point, and to
allow it would require the overhead of putting a user namespace
reference in fs_struct (for permission checks) and incrementing that
reference count on practically every call to fork.
So just perform the inexpensive test of forbidding sharing fs_struct
acrosss processes in different user namespaces. We already disallow
other forms of threading when unsharing a user namespace so this
should be no real burden in practice.
This updates setns, clone, and unshare to disallow multiple user
namespaces sharing an fs_struct.
Cc: stable@vger.kernel.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When I initially wrote the code for /proc/<pid>/uid_map. I was lazy
and avoided duplicate mappings by the simple expedient of ensuring the
first number in a new extent was greater than any number in the
previous extent.
Unfortunately that precludes a number of valid mappings, and someone
noticed and complained. So use a simple check to ensure that ranges
in the mapping extents don't overlap.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When freeing a deeply nested user namespace free_user_ns calls
put_user_ns on it's parent which may in turn call free_user_ns again.
When -fno-optimize-sibling-calls is passed to gcc one stack frame per
user namespace is left on the stack, potentially overflowing the
kernel stack. CONFIG_FRAME_POINTER forces -fno-optimize-sibling-calls
so we can't count on gcc to optimize this code.
Remove struct kref and use a plain atomic_t. Making the code more
flexible and easier to comprehend. Make the loop in free_user_ns
explict to guarantee that the stack does not overflow with
CONFIG_FRAME_POINTER enabled.
I have tested this fix with a simple program that uses unshare to
create a deeply nested user namespace structure and then calls exit.
With 1000 nesteuser namespaces before this change running my test
program causes the kernel to die a horrible death. With 10,000,000
nested user namespaces after this change my test program runs to
completion and causes no harm.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Pointed-out-by: Vasily Kulikov <segoon@openwall.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
|
|
|
| |
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Assign a unique proc inode to each namespace, and use that
inode number to ensure we only allocate at most one proc
inode for every namespace in proc.
A single proc inode per namespace allows userspace to test
to see if two processes are in the same namespace.
This has been a long requested feature and only blocked because
a naive implementation would put the id in a global space and
would ultimately require having a namespace for the names of
namespaces, making migration and certain virtualization tricks
impossible.
We still don't have per superblock inode numbers for proc, which
appears necessary for application unaware checkpoint/restart and
migrations (if the application is using namespace file descriptors)
but that is now allowd by the design if it becomes important.
I have preallocated the ipc and uts initial proc inode numbers so
their structures can be statically initialized.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
file
To keep things sane in the context of file descriptor passing derive the
user namespace that uids are mapped into from the opener of the file
instead of from current.
When writing to the maps file the lower user namespace must always
be the parent user namespace, or setting the mapping simply does
not make sense. Enforce that the opener of the file was in
the parent user namespace or the user namespace whose mapping
is being set.
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Add CLONE_THREAD to the unshare flags if CLONE_NEWUSER is selected
As changing user namespaces is only valid if all there is only
a single thread.
- Restore the code to add CLONE_VM if CLONE_THREAD is selected and
the code to addCLONE_SIGHAND if CLONE_VM is selected.
Making the constraints in the code clear.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
This allows entering a user namespace, and the ability
to store a reference to a user namespace with a bind
mount.
Addition of missing userns_ns_put in userns_install
from Gao feng <gaofeng@cn.fujitsu.com>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
|
|
|
| |
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implement kprojid_t a cousin of the kuid_t and kgid_t.
The per user namespace mapping of project id values can be set with
/proc/<pid>/projid_map.
A full compliment of helpers is provided: make_kprojid, from_kprojid,
from_kprojid_munged, kporjid_has_mapping, projid_valid, projid_eq,
projid_eq, projid_lt.
Project identifiers are part of the generic disk quota interface,
although it appears only xfs implements project identifiers currently.
The xfs code allows anyone who has permission to set the project
identifier on a file to use any project identifier so when
setting up the user namespace project identifier mappings I do
not require a capability.
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
| |
cred.h and a few trivial users of struct cred are changed. The rest of the users
of struct cred are left for other patches as there are too many changes to make
in one go and leave the change reviewable. If the user namespace is disabled and
CONFIG_UIDGID_STRICT_TYPE_CHECKS are disabled the code will contiue to compile
and behave correctly.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Convert the old uid mapping functions into compatibility wrappers
- Add a uid/gid mapping layer from user space uid and gids to kernel
internal uids and gids that is extent based for simplicty and speed.
* Working with number space after mapping uids/gids into their kernel
internal version adds only mapping complexity over what we have today,
leaving the kernel code easy to understand and test.
- Add proc files /proc/self/uid_map /proc/self/gid_map
These files display the mapping and allow a mapping to be added
if a mapping does not exist.
- Allow entering the user namespace without a uid or gid mapping.
Since we are starting with an existing user our uids and gids
still have global mappings so are still valid and useful they just don't
have local mappings. The requirement for things to work are global uid
and gid so it is odd but perfectly fine not to have a local uid
and gid mapping.
Not requiring global uid and gid mappings greatly simplifies
the logic of setting up the uid and gid mappings by allowing
the mappings to be set after the namespace is created which makes the
slight weirdness worth it.
- Make the mappings in the initial user namespace to the global
uid/gid space explicit. Today it is an identity mapping
but in the future we may want to twist this for debugging, similar
to what we do with jiffies.
- Document the memory ordering requirements of setting the uid and
gid mappings. We only allow the mappings to be set once
and there are no pointers involved so the requirments are
trivial but a little atypical.
Performance:
In this scheme for the permission checks the performance is expected to
stay the same as the actuall machine instructions should remain the same.
The worst case I could think of is ls -l on a large directory where
all of the stat results need to be translated with from kuids and
kgids to uids and gids. So I benchmarked that case on my laptop
with a dual core hyperthread Intel i5-2520M cpu with 3M of cpu cache.
My benchmark consisted of going to single user mode where nothing else
was running. On an ext4 filesystem opening 1,000,000 files and looping
through all of the files 1000 times and calling fstat on the
individuals files. This was to ensure I was benchmarking stat times
where the inodes were in the kernels cache, but the inode values were
not in the processors cache. My results:
v3.4-rc1: ~= 156ns (unmodified v3.4-rc1 with user namespace support disabled)
v3.4-rc1-userns-: ~= 155ns (v3.4-rc1 with my user namespace patches and user namespace support disabled)
v3.4-rc1-userns+: ~= 164ns (v3.4-rc1 with my user namespace patches and user namespace support enabled)
All of the configurations ran in roughly 120ns when I performed tests
that ran in the cpu cache.
So in summary the performance impact is:
1ns improvement in the worst case with user namespace support compiled out.
8ns aka 5% slowdown in the worst case with user namespace support compiled in.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Transform userns->creator from a user_struct reference to a simple
kuid_t, kgid_t pair.
In cap_capable this allows the check to see if we are the creator of
a namespace to become the classic suser style euid permission check.
This allows us to remove the need for a struct cred in the mapping
functions and still be able to dispaly the user namespace creators
uid and gid as 0.
- Remove the now unnecessary delayed_work in free_user_ns.
All that is left for free_user_ns to do is to call kmem_cache_free
and put_user_ns. Those functions can be called in any context
so call them directly from free_user_ns removing the need for delayed work.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Modify alloc_uid to take a kuid and make the user hash table global.
Stop holding a reference to the user namespace in struct user_struct.
This simplifies the code and makes the per user accounting not
care about which user namespace a uid happens to appear in.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
| |
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
| |
I am about to remove the struct user_namespace reference from struct user_struct.
So keep an explicit track of the parent user namespace.
Take advantage of this new reference and replace instances of user_ns->creator->user_ns
with user_ns->parent.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
| |
struct user_struct will shortly loose it's user_ns reference
so make the cred user_ns reference a proper reference complete
with reference counting.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
| |
Optimize performance and prepare for the removal of the user_ns reference
from user_struct. Remove the slow long walk through cred->user->user_ns and
instead go straight to cred->user_ns.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The changed files were only including linux/module.h for the
EXPORT_SYMBOL infrastructure, and nothing else. Revector them
onto the isolated export header for faster compile times.
Nothing to see here but a whole lot of instances of:
-#include <linux/module.h>
+#include <linux/export.h>
This commit is only changing the kernel dir; next targets
will probably be mm, fs, the arch dirs, etc.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently on 64-bit arch the user_namespace is 2096 and when being
kmalloc-ed it resides on a 4k slab wasting 2003 bytes.
If we allocate a separate cache for it and reduce the hash size from 128
to 64 chains the packaging becomes *much* better - the struct is 1072
bytes and the hole between is 98 bytes.
[akpm@linux-foundation.org: s/__initcall/module_init/]
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Acked-by: Serge E. Hallyn <serge@hallyn.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Define what happens when a we view a uid from one user_namespace
in another user_namepece.
- If the user namespaces are the same no mapping is necessary.
- For most cases of difference use overflowuid and overflowgid,
the uid and gid currently used for 16bit apis when we have a 32bit uid
that does fit in 16bits. Effectively the situation is the same,
we want to return a uid or gid that is not assigned to any user.
- For the case when we happen to be mapping the uid or gid of the
creator of the target user namespace use uid 0 and gid as confusing
that user with root is not a problem.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Acked-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Of the three uses of kref_set in the kernel:
One really should be kref_put as the code is letting go of a
reference,
Two really should be kref_init because the kref is being
initialised.
This suggests that making kref_set available encourages bad code.
So fix the three uses and remove kref_set completely.
Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: Mimi Zohar <zohar@us.ibm.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
free_uid() and free_user_ns() are corecursive when CONFIG_USER_SCHED=n,
but free_user_ns() is called from free_uid() by way of uid_hash_remove(),
which requires uidhash_lock to be held. free_user_ns() then calls
free_uid() to complete the destruction.
Fix this by deferring the destruction of the user_namespace.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The user_ns is moved from nsproxy to user_struct, so that a struct
cred by itself is sufficient to determine access (which it otherwise
would not be). Corresponding ecryptfs fixes (by David Howells) are
here as well.
Fix refcounting. The following rules now apply:
1. The task pins the user struct.
2. The user struct pins its user namespace.
3. The user namespace pins the struct user which created it.
User namespaces are cloned during copy_creds(). Unsharing a new user_ns
is no longer possible. (We could re-add that, but it'll cause code
duplication and doesn't seem useful if PAM doesn't need to clone user
namespaces).
When a user namespace is created, its first user (uid 0) gets empty
keyrings and a clean group_info.
This incorporates a previous patch by David Howells. Here
is his original patch description:
>I suggest adding the attached incremental patch. It makes the following
>changes:
>
> (1) Provides a current_user_ns() macro to wrap accesses to current's user
> namespace.
>
> (2) Fixes eCryptFS.
>
> (3) Renames create_new_userns() to create_user_ns() to be more consistent
> with the other associated functions and because the 'new' in the name is
> superfluous.
>
> (4) Moves the argument and permission checks made for CLONE_NEWUSER to the
> beginning of do_fork() so that they're done prior to making any attempts
> at allocation.
>
> (5) Calls create_user_ns() after prepare_creds(), and gives it the new creds
> to fill in rather than have it return the new root user. I don't imagine
> the new root user being used for anything other than filling in a cred
> struct.
>
> This also permits me to get rid of a get_uid() and a free_uid(), as the
> reference the creds were holding on the old user_struct can just be
> transferred to the new namespace's creator pointer.
>
> (6) Makes create_user_ns() reset the UIDs and GIDs of the creds under
> preparation rather than doing it in copy_creds().
>
>David
>Signed-off-by: David Howells <dhowells@redhat.com>
Changelog:
Oct 20: integrate dhowells comments
1. leave thread_keyring alone
2. use current_user_ns() in set_user()
Signed-off-by: Serge Hallyn <serue@us.ibm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Wrap access to task credentials so that they can be separated more easily from
the task_struct during the introduction of COW creds.
Change most current->(|e|s|fs)[ug]id to current_(|e|s|fs)[ug]id().
Change some task->e?[ug]id to task_e?[ug]id(). In some places it makes more
sense to use RCU directly rather than a convenient wrapper; these will be
addressed by later patches.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-audit@redhat.com
Cc: containers@lists.linux-foundation.org
Cc: linux-mm@kvack.org
Signed-off-by: James Morris <jmorris@namei.org>
|
|
|
|
|
|
|
|
| |
This patch lets the files using linux/version.h match the files that
#include it.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Make eCryptfs key module subsystem respect namespaces.
Since I will be removing the netlink interface in a future patch, I just made
changes to the netlink.c code so that it will not break the build. With my
recent patches, the kernel module currently defaults to the device handle
interface rather than the netlink interface.
[akpm@linux-foundation.org: export free_user_ns()]
Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Following an experimental deletion of the unnecessary directive
#include <linux/slab.h>
from the header file <linux/percpu.h>, these files under kernel/ were exposed
as needing to include one of <linux/slab.h> or <linux/gfp.h>, so explicit
includes were added where necessary.
Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Make the user_namespace.o compilation depend on this option and move the
init_user_ns into user.c file to make the kernel compile and work without the
namespaces support. This make the user namespace code be organized similar to
other namespaces'.
Also mask the USER_NS option as "depend on NAMESPACES".
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It turned out, that the user namespace is released during the do_exit() in
exit_task_namespaces(), but the struct user_struct is released only during the
put_task_struct(), i.e. MUCH later.
On debug kernels with poisoned slabs this will cause the oops in
uid_hash_remove() because the head of the chain, which resides inside the
struct user_namespace, will be already freed and poisoned.
Since the uid hash itself is required only when someone can search it, i.e.
when the namespace is alive, we can safely unhash all the user_struct-s from
it during the namespace exiting. The subsequent free_uid() will complete the
user_struct destruction.
For example simple program
#include <sched.h>
char stack[2 * 1024 * 1024];
int f(void *foo)
{
return 0;
}
int main(void)
{
clone(f, stack + 1 * 1024 * 1024, 0x10000000, 0);
return 0;
}
run on kernel with CONFIG_USER_NS turned on will oops the
kernel immediately.
This was spotted during OpenVZ kernel testing.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Alexey Dobriyan <adobriyan@openvz.org>
Acked-by: "Serge E. Hallyn" <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Surprisingly, but (spotted by Alexey Dobriyan) the uid hash still uses
list_heads, thus occupying twice as much place as it could. Convert it to
hlist_heads.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Alexey Dobriyan <adobriyan@openvz.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
| |
Signed-off-by: Alexey Dobriyan <adobriyan@sw.ru>
Acked-by: Cedric Le Goater <clg@fr.ibm.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
dup_mnt_ns() and clone_uts_ns() return NULL on failure. This is wrong,
create_new_namespaces() uses ERR_PTR() to catch an error. This means that the
subsequent create_new_namespaces() will hit BUG_ON() in copy_mnt_ns() or
copy_utsname().
Modify create_new_namespaces() to also use the errors returned by the
copy_*_ns routines and not to systematically return ENOMEM.
[oleg@tv-sign.ru: better changelog]
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch enables the unshare of user namespaces.
It adds a new clone flag CLONE_NEWUSER and implements copy_user_ns() which
resets the current user_struct and adds a new root user (uid == 0)
For now, unsharing the user namespace allows a process to reset its
user_struct accounting and uid 0 in the new user namespace should be contained
using appropriate means, for instance selinux
The plan, when the full support is complete (all uid checks covered), is to
keep the original user's rights in the original namespace, and let a process
become uid 0 in the new namespace, with full capabilities to the new
namespace.
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Acked-by: Pavel Emelianov <xemul@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Andrew Morgan <agm@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Basically, it will allow a process to unshare its user_struct table,
resetting at the same time its own user_struct and all the associated
accounting.
A new root user (uid == 0) is added to the user namespace upon creation.
Such root users have full privileges and it seems that theses privileges
should be controlled through some means (process capabilities ?)
The unshare is not included in this patch.
Changes since [try #4]:
- Updated get_user_ns and put_user_ns to accept NULL, and
get_user_ns to return the namespace.
Changes since [try #3]:
- moved struct user_namespace to files user_namespace.{c,h}
Changes since [try #2]:
- removed struct user_namespace* argument from find_user()
Changes since [try #1]:
- removed struct user_namespace* argument from find_user()
- added a root_user per user namespace
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: Pavel Emelianov <xemul@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Andrew Morgan <agm@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|