summaryrefslogtreecommitdiffstats
path: root/kernel/sched_rt.c
Commit message (Collapse)AuthorAgeFilesLines
* sched: rt-group: optimize dequeue_rt_stackPeter Zijlstra2008-04-191-16/+11
| | | | | | | | | Now that the group hierarchy can have an arbitrary depth the O(n^2) nature of RT task dequeues will really hurt. Optimize this by providing space to store the tree path, so we can walk it the other way. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: fair-group: SMP-nice for group schedulingPeter Zijlstra2008-04-191-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | Implement SMP nice support for the full group hierarchy. On each load-balance action, compile a sched_domain wide view of the full task_group tree. We compute the domain wide view when walking down the hierarchy, and readjust the weights when walking back up. After collecting and readjusting the domain wide view, we try to balance the tasks within the task_groups. The current approach is a naively balance each task group until we've moved the targeted amount of load. Inspired by Srivatsa Vaddsgiri's previous code and Abhishek Chandra's H-SMP paper. XXX: there will be some numerical issues due to the limited nature of SCHED_LOAD_SCALE wrt to representing a task_groups influence on the total weight. When the tree is deep enough, or the task weight small enough, we'll run out of bits. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> CC: Abhishek Chandra <chandra@cs.umn.edu> CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: mix tasks and groupsDhaval Giani2008-04-191-6/+9
| | | | | | | | | | | | This patch allows tasks and groups to exist in the same cfs_rq. With this change the CFS group scheduling follows a 1/(M+N) model from a 1/(1+N) fairness model where M tasks and N groups exist at the cfs_rq level. [a.p.zijlstra@chello.nl: rt bits and assorted fixes] Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com> Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: add new set_cpus_allowed_ptr functionMike Travis2008-04-191-1/+2
| | | | | | | | | | | | | | | | | | Add a new function that accepts a pointer to the "newly allowed cpus" cpumask argument. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask) The current set_cpus_allowed() function is modified to use the above but this does not result in an ABI change. And with some compiler optimization help, it may not introduce any additional overhead. Additionally, to enforce the read only nature of the new_mask arg, the "const" property is migrated to sub-functions called by set_cpus_allowed. This silences compiler warnings. Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: rt-group: smp balancingPeter Zijlstra2008-04-191-3/+85
| | | | | | | | | | | | Currently the rt group scheduling does a per cpu runtime limit, however the rt load balancer makes no guarantees about an equal spread of real- time tasks, just that at any one time, the highest priority tasks run. Solve this by making the runtime limit a global property by borrowing excessive runtime from the other cpus once the local limit runs out. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: rt-group: synchonised bandwidth periodPeter Zijlstra2008-04-191-32/+72
| | | | | | | | | | | Various SMP balancing algorithms require that the bandwidth period run in sync. Possible improvements are moving the rt_bandwidth thing into root_domain and keeping a span per rt_bandwidth which marks throttled cpus. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: balance RT task resched only on runqueueSteven Rostedt2008-03-071-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Sripathi Kodi reported a crash in the -rt kernel: https://bugzilla.redhat.com/show_bug.cgi?id=435674 this is due to a place that can reschedule a task without holding the tasks runqueue lock. This was caused by the RT balancing code that pulls RT tasks to the current run queue and will reschedule the current task. There's a slight chance that the pulling of the RT tasks will release the current runqueue's lock and retake it (in the double_lock_balance). During this time that the runqueue is released, the current task can migrate to another runqueue. In the prio_changed_rt code, after the pull, if the current task is of lesser priority than one of the RT tasks pulled, resched_task is called on the current task. If the current task had migrated in that small window, resched_task will be called without holding the runqueue lock for the runqueue that the task is on. This race condition also exists in the mainline kernel and this patch adds a check to make sure the task hasn't migrated before calling resched_task. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Tested-by: Sripathi Kodi <sripathik@in.ibm.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: revert load_balance_monitor() changesPeter Zijlstra2008-03-041-4/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | The following commits cause a number of regressions: commit 58e2d4ca581167c2a079f4ee02be2f0bc52e8729 Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Date: Fri Jan 25 21:08:00 2008 +0100 sched: group scheduling, change how cpu load is calculated commit 6b2d7700266b9402e12824e11e0099ae6a4a6a79 Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Date: Fri Jan 25 21:08:00 2008 +0100 sched: group scheduler, fix fairness of cpu bandwidth allocation for task groups Namely: - very frequent wakeups on SMP, reported by PowerTop users. - cacheline trashing on (large) SMP - some latencies larger than 500ms While there is a mergeable patch to fix the latter, the former issues are not fixable in a manner suitable for .25 (we're at -rc3 now). Hence we revert them and try again in v2.6.26. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Tested-by: Alexey Zaytsev <alexey.zaytsev@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: rt-group: make rt groups scheduling configurablePeter Zijlstra2008-02-131-6/+6
| | | | | | | | Make the rt group scheduler compile time configurable. Keep it experimental for now. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: rt-group: interfacePeter Zijlstra2008-02-131-30/+23
| | | | | | | | | | | Change the rt_ratio interface to rt_runtime_us, to match rt_period_us. This avoids picking a granularity for the ratio. Extend the /sys/kernel/uids/<uid>/ interface to allow setting the group's rt_runtime. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: rt-group: deal with PIPeter Zijlstra2008-02-131-5/+38
| | | | | | | | | | | | | | | | Steven mentioned the fun case where a lock holding task will be throttled. Simple fix: allow groups that have boosted tasks to run anyway. If a runnable task in a throttled group gets boosted the dequeue/enqueue done by rt_mutex_setprio() is enough to unthrottle the group. This is ofcourse not quite correct. Two possible ways forward are: - second prio array for boosted tasks - boost to a prio ceiling (this would also work for deadline scheduling) Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: fix goto retry in pick_next_task_rt()Dmitry Adamushko2008-01-251-7/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | looking at it one more time: (1) it looks to me that there is no need to call sched_rt_ratio_exceeded() from pick_next_rt_entity() - [ for CONFIG_FAIR_GROUP_SCHED ] queues with rt_rq->rt_throttled are not within this 'tree-like hierarchy' (or whatever we should call it :-) - there is also no need to re-check 'rt_rq->rt_time > ratio' at this point as 'rt_rq->rt_time' couldn't have been increased since the last call to update_curr_rt() (which obviously calls sched_rt_ratio_esceeded()) well, it might be that 'ratio' for this rt_rq has been re-configured (and the period over which this rt_rq was active has not yet been finished)... but I don't think we should really take this into account. (2) now pick_next_rt_entity() must never return NULL, so let's change pick_next_task_rt() accordingly. Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: rt-watchdog: fix .rlim_max = RLIM_INFINITYPeter Zijlstra2008-01-251-7/+1
| | | | | | | | | | | | | Remove the curious logic to set it_sched_expires in the future. It useless because rt.timeout wouldn't be incremented anyway. Explicity check for RLIM_INFINITY as a test programm that had a 1s soft limit and a inf hard limit would SIGKILL at 1s. This is because RLIM_INFINITY+d-1 is d-2. Signed-off-by: Peter Zijlsta <a.p.zijlstra@chello.nl> CC: Michal Schmidt <mschmidt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: rt-group: reduce reschedulingPeter Zijlstra2008-01-251-1/+4
| | | | | | | Only reschedule if the new group has a higher prio task. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: rt throttling vs no_hzPeter Zijlstra2008-01-251-14/+16
| | | | | | | We need to teach no_hz about the rt throttling because its tick driven. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: pull_rt_task() cleanupMike Galbraith2008-01-251-6/+4
| | | | | | | "goto out" is an odd way to spell "skip". Signed-off-by: Mike Galbraith <efault@gmx.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: rt group schedulingPeter Zijlstra2008-01-251-119/+336
| | | | | | | | | | | | | | | | | Extend group scheduling to also cover the realtime classes. It uses the time limiting introduced by the previous patch to allow multiple realtime groups. The hard time limit is required to keep behaviour deterministic. The algorithms used make the realtime scheduler O(tg), linear scaling wrt the number of task groups. This is the worst case behaviour I can't seem to get out of, the avg. case of the algorithms can be improved, I focused on correctness and worst case. [ akpm@linux-foundation.org: move side-effects out of BUG_ON(). ] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: rt time limitPeter Zijlstra2008-01-251-0/+53
| | | | | | | | | | Very simple time limit on the realtime scheduling classes. Allow the rq's realtime class to consume sched_rt_ratio of every sched_rt_period slice. If the class exceeds this quota the fair class will preempt the realtime class. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: high-res preemption tickPeter Zijlstra2008-01-251-1/+1
| | | | | | | | | | | | | | | | Use HR-timers (when available) to deliver an accurate preemption tick. The regular scheduler tick that runs at 1/HZ can be too coarse when nice level are used. The fairness system will still keep the cpu utilisation 'fair' by then delaying the task that got an excessive amount of CPU time but try to minimize this by delivering preemption points spot-on. The average frequency of this extra interrupt is sched_latency / nr_latency. Which need not be higher than 1/HZ, its just that the distribution within the sched_latency period is important. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: SCHED_FIFO/SCHED_RR watchdog timerPeter Zijlstra2008-01-251-0/+30
| | | | | | | | | | | | | | | | Introduce a new rlimit that allows the user to set a runtime timeout on real-time tasks their slice. Once this limit is exceeded the task will receive SIGXCPU. So it measures runtime since the last sleep. Input and ideas by Thomas Gleixner and Lennart Poettering. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> CC: Lennart Poettering <mzxreary@0pointer.de> CC: Michael Kerrisk <mtk.manpages@googlemail.com> CC: Ulrich Drepper <drepper@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: sched_rt_entityPeter Zijlstra2008-01-251-10/+10
| | | | | | | | | | Move the task_struct members specific to rt scheduling together. A future optimization could be to put sched_entity and sched_rt_entity into a union. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: remove some old cpuset logicGregory Haskins2008-01-251-33/+0
| | | | | | | | | We had support for overlapping cpuset based rto logic in early prototypes that is no longer used, so remove it. Signed-off-by: Gregory Haskins <ghaskins@novell.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: RT-balance, only adjust overload state when changingGregory Haskins2008-01-251-3/+5
| | | | | | | | | | | | The overload set/clears were originally idempotent when this logic was first implemented. But that is no longer true due to the addition of the atomic counter and this logic was never updated to work properly with that change. So only adjust the overload state if it is actually changing to avoid getting out of sync. Signed-off-by: Gregory Haskins <ghaskins@novell.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: RT-balance, add new methods to sched_classSteven Rostedt2008-01-251-0/+89
| | | | | | | | | | | | | | | | | Dmitry Adamushko found that the current implementation of the RT balancing code left out changes to the sched_setscheduler and rt_mutex_setprio. This patch addresses this issue by adding methods to the schedule classes to handle being switched out of (switched_from) and being switched into (switched_to) a sched_class. Also a method for changing of priorities is also added (prio_changed). This patch also removes some duplicate logic between rt_mutex_setprio and sched_setscheduler. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: RT-balance, replace hooks with pre/post schedule and wakeup methodsSteven Rostedt2008-01-251-10/+7
| | | | | | | | | | | To make the main sched.c code more agnostic to the schedule classes. Instead of having specific hooks in the schedule code for the RT class balancing. They are replaced with a pre_schedule, post_schedule and task_wake_up methods. These methods may be used by any of the classes but currently, only the sched_rt class implements them. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: fix sched_rt.c:join/leave_domainIngo Molnar2008-01-251-17/+16
| | | | | | | fix build bug in sched_rt.c:join/leave_domain and make them only be included on SMP builds. Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: only balance our RT tasks within our domainGregory Haskins2008-01-251-26/+31
| | | | | | | | | | | | | | | | | | | | | | We move the rt-overload data as the first global to per-domain reclassification. This limits the scope of overload related cache-line bouncing to stay with a specified partition instead of affecting all cpus in the system. Finally, we limit the scope of find_lowest_cpu searches to the domain instead of the entire system. Note that we would always respect domain boundaries even without this patch, but we first would scan potentially all cpus before whittling the list down. Now we can avoid looking at RQs that are out of scope, again reducing cache-line hits. Note: In some cases, task->cpus_allowed will effectively reduce our search to within our domain. However, I believe there are cases where the cpus_allowed mask may be all ones and therefore we err on the side of caution. If it can be optimized later, so be it. Signed-off-by: Gregory Haskins <ghaskins@novell.com> CC: Christoph Lameter <clameter@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: clean up schedule_balance_rt()Ingo Molnar2008-01-251-4/+2
| | | | | | clean up schedule_balance_rt(). Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: clean up pull_rt_task()Ingo Molnar2008-01-251-12/+10
| | | | | | clean up pull_rt_task(). Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: remove leftover debuggingIngo Molnar2008-01-251-8/+0
| | | | | | remove leftover debugging. Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: remove rt_overload()Ingo Molnar2008-01-251-9/+1
| | | | | | remove rt_overload() - it's an unnecessary indirection. Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: clean up kernel/sched_rt.cIngo Molnar2008-01-251-0/+9
| | | | | | clean up whitespace damage and missing comments in kernel/sched_rt.c. Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: clean up overlong line in kernel/sched_debug.cIngo Molnar2008-01-251-2/+4
| | | | | | clean up overlong line in kernel/sched_debug.c. Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: clean up find_lock_lowest_rq()Ingo Molnar2008-01-251-4/+5
| | | | | | clean up find_lock_lowest_rq(). Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: clean up pick_next_highest_task_rt()Ingo Molnar2008-01-251-3/+3
| | | | | | clean up pick_next_highest_task_rt(). Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: RT-balance, optimize cpu searchSteven Rostedt2008-01-251-13/+36
| | | | | | | | | | | This patch removes several cpumask operations by keeping track of the first of the CPUS that is of the lowest priority. When the search for the lowest priority runqueue is completed, all the bits up to the first CPU with the lowest priority runqueue is cleared. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: RT-balance, optimizeGregory Haskins2008-01-251-7/+18
| | | | | | | | | We can cheaply track the number of bits set in the cpumask for the lowest priority CPUs. Therefore, compute the mask's weight and use it to skip the optimal domain search logic when there is only one CPU available. Signed-off-by: Gregory Haskins <ghaskins@novell.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: break out early if RT task cannot be migratedGregory Haskins2008-01-251-1/+2
| | | | | | | | We don't need to bother searching if the task cannot be migrated Signed-off-by: Gregory Haskins <ghaskins@novell.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: RT-balance, avoid overloadingSteven Rostedt2008-01-251-4/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch changes the searching for a run queue by a waking RT task to try to pick another runqueue if the currently running task is an RT task. The reason is that RT tasks behave different than normal tasks. Preempting a normal task to run a RT task to keep its cache hot is fine, because the preempted non-RT task may wait on that same runqueue to run again unless the migration thread comes along and pulls it off. RT tasks behave differently. If one is preempted, it makes an active effort to continue to run. So by having a high priority task preempt a lower priority RT task, that lower RT task will then quickly try to run on another runqueue. This will cause that lower RT task to replace its nice hot cache (and TLB) with a completely cold one. This is for the hope that the new high priority RT task will keep its cache hot. Remeber that this high priority RT task was just woken up. So it may likely have been sleeping for several milliseconds, and will end up with a cold cache anyway. RT tasks run till they voluntarily stop, or are preempted by a higher priority task. This means that it is unlikely that the woken RT task will have a hot cache to wake up to. So pushing off a lower RT task is just killing its cache for no good reason. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: wake-balance fixesGregory Haskins2008-01-251-2/+8
| | | | | | | | | | We have logic to detect whether the system has migratable tasks, but we are not using it when deciding whether to push tasks away. So we add support for considering this new information. Signed-off-by: Gregory Haskins <ghaskins@novell.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: optimize RT affinityGregory Haskins2008-01-251-12/+88
| | | | | | | | | | | | | | | | | The current code base assumes a relatively flat CPU/core topology and will route RT tasks to any CPU fairly equally. In the real world, there are various toplogies and affinities that govern where a task is best suited to run with the smallest amount of overhead. NUMA and multi-core CPUs are prime examples of topologies that can impact cache performance. Fortunately, linux is already structured to represent these topologies via the sched_domains interface. So we change our RT router to consult a combination of topology and affinity policy to best place tasks during migration. Signed-off-by: Gregory Haskins <ghaskins@novell.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: pre-route RT tasks on wakeupGregory Haskins2008-01-251-0/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | In the original patch series that Steven Rostedt and I worked on together, we both took different approaches to low-priority wakeup path. I utilized "pre-routing" (push the task away to a less important RQ before activating) approach, while Steve utilized a "post-routing" approach. The advantage of my approach is that you avoid the overhead of a wasted activate/deactivate cycle and peripherally related burdens. The advantage of Steve's method is that it neatly solves an issue preventing a "pull" optimization from being deployed. In the end, we ended up deploying Steve's idea. But it later dawned on me that we could get the best of both worlds by deploying both ideas together, albeit slightly modified. The idea is simple: Use a "light-weight" lookup for pre-routing, since we only need to approximate a good home for the task. And we also retain the post-routing push logic to clean up any inaccuracies caused by a condition of "priority mistargeting" caused by the lightweight lookup. Most of the time, the pre-routing should work and yield lower overhead. In the cases where it doesnt, the post-router will bat cleanup. Signed-off-by: Gregory Haskins <ghaskins@novell.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: RT balancing: include current CPUGregory Haskins2008-01-251-4/+1
| | | | | | | | | | | | It doesn't hurt if we allow the current CPU to be included in the search. We will just simply skip it later if the current CPU turns out to be the lowest. We will use this later in the series Signed-off-by: Gregory Haskins <ghaskins@novell.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: break out search for RT tasksGregory Haskins2008-01-251-27/+39
| | | | | | | | | Isolate the search logic into a function so that it can be used later in places other than find_locked_lowest_rq(). Signed-off-by: Gregory Haskins <ghaskins@novell.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: de-SCHED_OTHER-ize the RT pathGregory Haskins2008-01-251-0/+10
| | | | | | | | | | | | | | | | The current wake-up code path tries to determine if it can optimize the wake-up to "this_cpu" by computing load calculations. The problem is that these calculations are only relevant to SCHED_OTHER tasks where load is king. For RT tasks, priority is king. So the load calculation is completely wasted bandwidth. Therefore, we create a new sched_class interface to help with pre-wakeup routing decisions and move the load calculation as a function of CFS task's class. Signed-off-by: Gregory Haskins <ghaskins@novell.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: clean up this_rq use in kernel/sched_rt.cGregory Haskins2008-01-251-11/+11
| | | | | | | | | | "this_rq" is normally used to denote the RQ on the current cpu (i.e. "cpu_rq(this_cpu)"). So clean up the usage of this_rq to be more consistent with the rest of the code. Signed-off-by: Gregory Haskins <ghaskins@novell.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: add RT-balance cpu-weightGregory Haskins2008-01-251-5/+45
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Some RT tasks (particularly kthreads) are bound to one specific CPU. It is fairly common for two or more bound tasks to get queued up at the same time. Consider, for instance, softirq_timer and softirq_sched. A timer goes off in an ISR which schedules softirq_thread to run at RT50. Then the timer handler determines that it's time to smp-rebalance the system so it schedules softirq_sched to run. So we are in a situation where we have two RT50 tasks queued, and the system will go into rt-overload condition to request other CPUs for help. This causes two problems in the current code: 1) If a high-priority bound task and a low-priority unbounded task queue up behind the running task, we will fail to ever relocate the unbounded task because we terminate the search on the first unmovable task. 2) We spend precious futile cycles in the fast-path trying to pull overloaded tasks over. It is therefore optimial to strive to avoid the overhead all together if we can cheaply detect the condition before overload even occurs. This patch tries to achieve this optimization by utilizing the hamming weight of the task->cpus_allowed mask. A weight of 1 indicates that the task cannot be migrated. We will then utilize this information to skip non-migratable tasks and to eliminate uncessary rebalance attempts. We introduce a per-rq variable to count the number of migratable tasks that are currently running. We only go into overload if we have more than one rt task, AND at least one of them is migratable. In addition, we introduce a per-task variable to cache the cpus_allowed weight, since the hamming calculation is probably relatively expensive. We only update the cached value when the mask is updated which should be relatively infrequent, especially compared to scheduling frequency in the fast path. Signed-off-by: Gregory Haskins <ghaskins@novell.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: disable standard balancer for RT tasksSteven Rostedt2008-01-251-91/+4
| | | | | | | | | | Since we now take an active approach to load balancing, we don't need to balance RT tasks via the normal task balancer. In fact, this code was found to pull RT tasks away from CPUS that the active movement performed, resulting in large latencies. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: push RT tasks from overloaded CPUsSteven Rostedt2008-01-251-0/+10
| | | | | | | | | | This patch adds pushing of overloaded RT tasks from a runqueue that is having tasks (most likely RT tasks) added to the run queue. TODO: We don't cover the case of waking of new RT tasks (yet). Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: pull RT tasks from overloaded runqueuesSteven Rostedt2008-01-251-11/+176
| | | | | | | | | | | | | This patch adds the algorithm to pull tasks from RT overloaded runqueues. When a pull RT is initiated, all overloaded runqueues are examined for a RT task that is higher in prio than the highest prio task queued on the target runqueue. If another runqueue holds a RT task that is of higher prio than the highest prio task on the target runqueue is found it is pulled to the target runqueue. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
OpenPOWER on IntegriCloud