summaryrefslogtreecommitdiffstats
path: root/kernel/sched/features.h
Commit message (Collapse)AuthorAgeFilesLines
* sched/core: Implement new approach to scale select_idle_cpu()Peter Zijlstra2017-06-081-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hackbench recently suffered a bunch of pain, first by commit: 4c77b18cf8b7 ("sched/fair: Make select_idle_cpu() more aggressive") and then by commit: c743f0a5c50f ("sched/fair, cpumask: Export for_each_cpu_wrap()") which fixed a bug in the initial for_each_cpu_wrap() implementation that made select_idle_cpu() even more expensive. The bug was that it would skip over CPUs when bits were consequtive in the bitmask. This however gave me an idea to fix select_idle_cpu(); where the old scheme was a cliff-edge throttle on idle scanning, this introduces a more gradual approach. Instead of stopping to scan entirely, we limit how many CPUs we scan. Initial benchmarks show that it mostly recovers hackbench while not hurting anything else, except Mason's schbench, but not as bad as the old thing. It also appears to recover the tbench high-end, which also suffered like hackbench. Tested-by: Matt Fleming <matt@codeblueprint.co.uk> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Mason <clm@fb.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: hpa@zytor.com Cc: kitsunyan <kitsunyan@inbox.ru> Cc: linux-kernel@vger.kernel.org Cc: lvenanci@redhat.com Cc: riel@redhat.com Cc: xiaolong.ye@intel.com Link: http://lkml.kernel.org/r/20170517105350.hk5m4h4jb6dfr65a@hirez.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sched/topology: Remove FORCE_SD_OVERLAPPeter Zijlstra2017-05-151-1/+0
| | | | | | | | | | | | | | | | | Its an obsolete debug mechanism and future code wants to rely on properties this undermines. Namely, it would be good to assume that SD_OVERLAP domains have children, but if we build the entire hierarchy with SD_OVERLAP this is obviously false. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sched/core: Add WARNING for multiple update_rq_clock() callsPeter Zijlstra2017-03-161-0/+7
| | | | | | | | | | | | | | | Now that we have no missing calls, add a warning to find multiple calls. By having only a single update_rq_clock() call per rq-lock section, the section appears 'atomic' wrt time. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sched/fair: Make select_idle_cpu() more aggressivePeter Zijlstra2017-03-021-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Kitsunyan reported desktop latency issues on his Celeron 887 because of commit: 1b568f0aabf2 ("sched/core: Optimize SCHED_SMT") ... even though his CPU doesn't do SMT. The effect of running the SMT code on a !SMT part is basically a more aggressive select_idle_cpu(). Removing the avg condition fixed things for him. I also know FB likes this test gone, even though other workloads like having it. For now, take it out by default, until we get a better idea. Reported-by: kitsunyan <kitsunyan@inbox.ru> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Mason <clm@fb.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Mike Galbraith <umgwanakikbuti@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sched/fair: Convert arch_scale_cpu_capacity() from weak function to #defineMorten Rasmussen2015-09-131-5/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Bring arch_scale_cpu_capacity() in line with the recent change of its arch_scale_freq_capacity() sibling in commit dfbca41f3479 ("sched: Optimize freq invariant accounting") from weak function to #define to allow inlining of the function. While at it, remove the ARCH_CAPACITY sched_feature as well. With the change to #define there isn't a straightforward way to allow runtime switch between an arch implementation and the default implementation of arch_scale_cpu_capacity() using sched_feature. The default was to use the arch-specific implementation, but only the arm architecture provides one and that is essentially equivalent to the default implementation. Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <Dietmar.Eggemann@arm.com> Cc: Juri Lelli <Juri.Lelli@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: daniel.lezcano@linaro.org Cc: mturquette@baylibre.com Cc: pang.xunlei@zte.com.cn Cc: rjw@rjwysocki.net Cc: sgurrappadi@nvidia.com Cc: vincent.guittot@linaro.org Cc: yuyang.du@intel.com Link: http://lkml.kernel.org/r/1439569394-11974-3-git-send-email-morten.rasmussen@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sched/numa: Remove the NUMA sched_featureSrikar Dronamraju2015-09-131-16/+0
| | | | | | | | | | | | | | | | | | Variable sched_numa_balancing is available for both CONFIG_SCHED_DEBUG and !CONFIG_SCHED_DEBUG. All code paths now check for sched_numa_balancing. Hence remove sched_feat(NUMA). Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1439290813-6683-4-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sched/fair: Make the entity load aging on attaching tunablePeter Zijlstra2015-09-131-0/+2
| | | | | | | | | | | | | | | In case there are problems with the aging on attach, provide a debug knob to turn it off. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Cc: yuyang.du@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sched/numa: Prefer NUMA hotness over cache hotnessSrikar Dronamraju2015-07-071-13/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The current load balancer may not try to prevent a task from moving out of a preferred node to a less preferred node. The reason for this being: - Since sched features NUMA and NUMA_RESIST_LOWER are disabled by default, migrate_degrades_locality() always returns false. - Even if NUMA_RESIST_LOWER were to be enabled, if its cache hot, migrate_degrades_locality() never gets called. The above behaviour can mean that tasks can move out of their preferred node but they may be eventually be brought back to their preferred node by numa balancer (due to higher numa faults). To avoid the above, this commit merges migrate_degrades_locality() and migrate_improves_locality(). It also replaces 3 sched features NUMA, NUMA_FAVOUR_HIGHER and NUMA_RESIST_LOWER by a single sched feature NUMA. Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Mike Galbraith <efault@gmx.de> Link: http://lkml.kernel.org/r/1434455762-30857-2-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sched/rt: Use IPI to trigger RT task push migration instead of pullingSteven Rostedt2015-03-231-0/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When debugging the latencies on a 40 core box, where we hit 300 to 500 microsecond latencies, I found there was a huge contention on the runqueue locks. Investigating it further, running ftrace, I found that it was due to the pulling of RT tasks. The test that was run was the following: cyclictest --numa -p95 -m -d0 -i100 This created a thread on each CPU, that would set its wakeup in iterations of 100 microseconds. The -d0 means that all the threads had the same interval (100us). Each thread sleeps for 100us and wakes up and measures its latencies. cyclictest is maintained at: git://git.kernel.org/pub/scm/linux/kernel/git/clrkwllms/rt-tests.git What happened was another RT task would be scheduled on one of the CPUs that was running our test, when the other CPU tests went to sleep and scheduled idle. This caused the "pull" operation to execute on all these CPUs. Each one of these saw the RT task that was overloaded on the CPU of the test that was still running, and each one tried to grab that task in a thundering herd way. To grab the task, each thread would do a double rq lock grab, grabbing its own lock as well as the rq of the overloaded CPU. As the sched domains on this box was rather flat for its size, I saw up to 12 CPUs block on this lock at once. This caused a ripple affect with the rq locks especially since the taking was done via a double rq lock, which means that several of the CPUs had their own rq locks held while trying to take this rq lock. As these locks were blocked, any wakeups or load balanceing on these CPUs would also block on these locks, and the wait time escalated. I've tried various methods to lessen the load, but things like an atomic counter to only let one CPU grab the task wont work, because the task may have a limited affinity, and we may pick the wrong CPU to take that lock and do the pull, to only find out that the CPU we picked isn't in the task's affinity. Instead of doing the PULL, I now have the CPUs that want the pull to send over an IPI to the overloaded CPU, and let that CPU pick what CPU to push the task to. No more need to grab the rq lock, and the push/pull algorithm still works fine. With this patch, the latency dropped to just 150us over a 20 hour run. Without the patch, the huge latencies would trigger in seconds. I've created a new sched feature called RT_PUSH_IPI, which is enabled by default. When RT_PUSH_IPI is not enabled, the old method of grabbing the rq locks and having the pulling CPU do the work is implemented. When RT_PUSH_IPI is enabled, the IPI is sent to the overloaded CPU to do a push. To enabled or disable this at run time: # mount -t debugfs nodev /sys/kernel/debug # echo RT_PUSH_IPI > /sys/kernel/debug/sched_features or # echo NO_RT_PUSH_IPI > /sys/kernel/debug/sched_features Update: This original patch would send an IPI to all CPUs in the RT overload list. But that could theoretically cause the reverse issue. That is, there could be lots of overloaded RT queues and one CPU lowers its priority. It would then send an IPI to all the overloaded RT queues and they could then all try to grab the rq lock of the CPU lowering its priority, and then we have the same problem. The latest design sends out only one IPI to the first overloaded CPU. It tries to push any tasks that it can, and then looks for the next overloaded CPU that can push to the source CPU. The IPIs stop when all overloaded CPUs that have pushable tasks that have priorities greater than the source CPU are covered. In case the source CPU lowers its priority again, a flag is set to tell the IPI traversal to restart with the first RT overloaded CPU after the source CPU. Parts-suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Joern Engel <joern@purestorage.com> Cc: Clark Williams <williams@redhat.com> Cc: Mike Galbraith <umgwanakikbuti@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20150318144946.2f3cc982@gandalf.local.home Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sched: Rename capacity related flagsNicolas Pitre2014-06-051-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It is better not to think about compute capacity as being equivalent to "CPU power". The upcoming "power aware" scheduler work may create confusion with the notion of energy consumption if "power" is used too liberally. Let's rename the following feature flags since they do relate to capacity: SD_SHARE_CPUPOWER -> SD_SHARE_CPUCAPACITY ARCH_POWER -> ARCH_CAPACITY NONTASK_POWER -> NONTASK_CAPACITY Signed-off-by: Nicolas Pitre <nico@linaro.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: linaro-kernel@lists.linaro.org Cc: Andy Fleming <afleming@freescale.com> Cc: Anton Blanchard <anton@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Grant Likely <grant.likely@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: Rob Herring <robh+dt@kernel.org> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Vasant Hegde <hegdevasant@linux.vnet.ibm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: devicetree@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Link: http://lkml.kernel.org/n/tip-e93lpnxb87owfievqatey6b5@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sched/numa: Resist moving tasks towards nodes with fewer hinting faultsMel Gorman2013-10-091-0/+8
| | | | | | | | | | | | | | | Just as "sched: Favour moving tasks towards the preferred node" favours moving tasks towards nodes with a higher number of recorded NUMA hinting faults, this patch resists moving tasks towards nodes with lower faults. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-24-git-send-email-mgorman@suse.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sched/numa: Favour moving tasks towards the preferred nodeMel Gorman2013-10-091-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | This patch favours moving tasks towards NUMA node that recorded a higher number of NUMA faults during active load balancing. Ideally this is self-reinforcing as the longer the task runs on that node, the more faults it should incur causing task_numa_placement to keep the task running on that node. In reality a big weakness is that the nodes CPUs can be overloaded and it would be more efficient to queue tasks on an idle node and migrate to the new node. This would require additional smarts in the balancer so for now the balancer will simply prefer to place the task on the preferred node for a PTE scans which is controlled by the numa_balancing_settle_count sysctl. Once the settle_count number of scans has complete the schedule is free to place the task on an alternative node if the load is imbalanced. [srikar@linux.vnet.ibm.com: Fixed statistics] Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> [ Tunable and use higher faults instead of preferred. ] Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-23-git-send-email-mgorman@suse.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Revert "mm: sched: numa: Delay PTE scanning until a task is scheduled on a ↵Mel Gorman2013-10-091-3/+1
| | | | | | | | | | | | | | | | | | | | | | new node" PTE scanning and NUMA hinting fault handling is expensive so commit 5bca2303 ("mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node") deferred the PTE scan until a task had been scheduled on another node. The problem is that in the purely shared memory case that this may never happen and no NUMA hinting fault information will be captured. We are not ruling out the possibility that something better can be done here but for now, this patch needs to be reverted and depend entirely on the scan_delay to avoid punishing short-lived processes. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-16-git-send-email-mgorman@suse.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
* mutex: Move mutex spinning code from sched/core.c back to mutex.cWaiman Long2013-04-191-7/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | As mentioned by Ingo, the SCHED_FEAT_OWNER_SPIN scheduler feature bit was really just an early hack to make with/without mutex-spinning testable. So it is no longer necessary. This patch removes the SCHED_FEAT_OWNER_SPIN feature bit and move the mutex spinning code from kernel/sched/core.c back to kernel/mutex.c which is where they should belong. Signed-off-by: Waiman Long <Waiman.Long@hp.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Chandramouleeswaran Aswin <aswin@hp.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: Norton Scott J <scott.norton@hp.com> Cc: Rik van Riel <riel@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: David Howells <dhowells@redhat.com> Cc: Dave Jones <davej@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1366226594-5506-2-git-send-email-Waiman.Long@hp.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Merge tag 'balancenuma-v11' of ↵Linus Torvalds2012-12-161-0/+11
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma Pull Automatic NUMA Balancing bare-bones from Mel Gorman: "There are three implementations for NUMA balancing, this tree (balancenuma), numacore which has been developed in tip/master and autonuma which is in aa.git. In almost all respects balancenuma is the dumbest of the three because its main impact is on the VM side with no attempt to be smart about scheduling. In the interest of getting the ball rolling, it would be desirable to see this much merged for 3.8 with the view to building scheduler smarts on top and adapting the VM where required for 3.9. The most recent set of comparisons available from different people are mel: https://lkml.org/lkml/2012/12/9/108 mingo: https://lkml.org/lkml/2012/12/7/331 tglx: https://lkml.org/lkml/2012/12/10/437 srikar: https://lkml.org/lkml/2012/12/10/397 The results are a mixed bag. In my own tests, balancenuma does reasonably well. It's dumb as rocks and does not regress against mainline. On the other hand, Ingo's tests shows that balancenuma is incapable of converging for this workloads driven by perf which is bad but is potentially explained by the lack of scheduler smarts. Thomas' results show balancenuma improves on mainline but falls far short of numacore or autonuma. Srikar's results indicate we all suffer on a large machine with imbalanced node sizes. My own testing showed that recent numacore results have improved dramatically, particularly in the last week but not universally. We've butted heads heavily on system CPU usage and high levels of migration even when it shows that overall performance is better. There are also cases where it regresses. Of interest is that for specjbb in some configurations it will regress for lower numbers of warehouses and show gains for higher numbers which is not reported by the tool by default and sometimes missed in treports. Recently I reported for numacore that the JVM was crashing with NullPointerExceptions but currently it's unclear what the source of this problem is. Initially I thought it was in how numacore batch handles PTEs but I'm no longer think this is the case. It's possible numacore is just able to trigger it due to higher rates of migration. These reports were quite late in the cycle so I/we would like to start with this tree as it contains much of the code we can agree on and has not changed significantly over the last 2-3 weeks." * tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits) mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable mm/rmap: Convert the struct anon_vma::mutex to an rwsem mm: migrate: Account a transhuge page properly when rate limiting mm: numa: Account for failed allocations and isolations as migration failures mm: numa: Add THP migration for the NUMA working set scanning fault case build fix mm: numa: Add THP migration for the NUMA working set scanning fault case. mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG mm: sched: numa: Control enabling and disabling of NUMA balancing mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships mm: numa: migrate: Set last_nid on newly allocated page mm: numa: split_huge_page: Transfer last_nid on tail page mm: numa: Introduce last_nid to the page frame sched: numa: Slowly increase the scanning period as NUMA faults are handled mm: numa: Rate limit setting of pte_numa if node is saturated mm: numa: Rate limit the amount of memory that is migrated between nodes mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting mm: numa: Migrate pages handled during a pmd_numa hinting fault mm: numa: Migrate on reference policy ...
| * mm: sched: numa: Delay PTE scanning until a task is scheduled on a new nodeMel Gorman2012-12-111-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Due to the fact that migrations are driven by the CPU a task is running on there is no point tracking NUMA faults until one task runs on a new node. This patch tracks the first node used by an address space. Until it changes, PTE scanning is disabled and no NUMA hinting faults are trapped. This should help workloads that are short-lived, do not care about NUMA placement or have bound themselves to a single node. This takes advantage of the logic in "mm: sched: numa: Implement slow start for working set sampling" to delay when the checks are made. This will take advantage of processes that set their CPU and node bindings early in their lifetime. It will also potentially allow any initial load balancing to take place. Signed-off-by: Mel Gorman <mgorman@suse.de>
| * mm: sched: numa: Control enabling and disabling of NUMA balancingMel Gorman2012-12-111-2/+4
| | | | | | | | | | | | | | | | | | | | This patch adds Kconfig options and kernel parameters to allow the enabling and disabling of automatic NUMA balancing. The existance of such a switch was and is very important when debugging problems related to transparent hugepages and we should have the same for automatic NUMA placement. Signed-off-by: Mel Gorman <mgorman@suse.de>
| * mm: numa: Add fault driven placement and migrationPeter Zijlstra2012-12-111-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NOTE: This patch is based on "sched, numa, mm: Add fault driven placement and migration policy" but as it throws away all the policy to just leave a basic foundation I had to drop the signed-offs-by. This patch creates a bare-bones method for setting PTEs pte_numa in the context of the scheduler that when faulted later will be faulted onto the node the CPU is running on. In itself this does nothing useful but any placement policy will fundamentally depend on receiving hints on placement from fault context and doing something intelligent about it. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com>
* | sched: Add WAKEUP_PREEMPTION feature flag, on by defaultIngo Molnar2012-10-161-0/+5
|/ | | | | | | | | | | As per the recent discussion with Mike and Linus, make it easier to test with/without this feature. No change in default behavior. Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Galbraith <efault@gmx.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-izoxq4haeg4mTognnDbwcevt@git.kernel.org
* sched: cpu_power: enable ARCH_POWERVincent Guittot2012-09-131-1/+1
| | | | | | | | | | Heteregeneous ARM platform uses arch_scale_freq_power function to reflect the relative capacity of each core Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1341826026-6504-6-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sched: Remove AFFINE_WAKEUPS feature flagNamhyung Kim2012-09-041-8/+0
| | | | | | | | | | | Commit beac4c7e4a1c ("sched: Remove AFFINE_WAKEUPS feature") removed use of the flag but left the definition. Get rid of it. Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Galbraith <efault@gmx.de> Link: http://lkml.kernel.org/r/1345090865-20851-1-git-send-email-namhyung@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sched: Fix more load-balancing falloutPeter Zijlstra2012-04-261-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commits 367456c756a6 ("sched: Ditch per cgroup task lists for load-balancing") and 5d6523ebd ("sched: Fix load-balance wreckage") left some more wreckage. By setting loop_max unconditionally to ->nr_running load-balancing could take a lot of time on very long runqueues (hackbench!). So keep the sysctl as max limit of the amount of tasks we'll iterate. Furthermore, the min load filter for migration completely fails with cgroups since inequality in per-cpu state can easily lead to such small loads :/ Furthermore the change to add new tasks to the tail of the queue instead of the head seems to have some effect.. not quite sure I understand why. Combined these fixes solve the huge hackbench regression reported by Tim when hackbench is ran in a cgroup. Reported-by: Tim Chen <tim.c.chen@linux.intel.com> Acked-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1335365763.28150.267.camel@twins [ got rid of the CONFIG_PREEMPT tuning and made small readability edits ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sched: Use jump_labels for sched_featPeter Zijlstra2011-12-061-15/+15
| | | | | | | | | | Now that we initialize jump_labels before sched_init() we can use them for the debug features without having to worry about a window where they have the wrong setting. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/n/tip-vpreo4hal9e0kzqmg5y0io2k@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched: Move all scheduler bits into kernel/sched/Peter Zijlstra2011-11-171-0/+70
There's too many sched*.[ch] files in kernel/, give them their own directory. (No code changed, other than Makefile glue added.) Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
OpenPOWER on IntegriCloud