summaryrefslogtreecommitdiffstats
path: root/kernel/sched/cputime.c
Commit message (Collapse)AuthorAgeFilesLines
* Merge branch 'timers-urgent-for-linus' of ↵Linus Torvalds2013-09-051-8/+11
|\ | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull cputime fix from Ingo Molnar: "This fixes a longer-standing cputime accounting bug that Stanislaw Gruszka finally managed to track down" * 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/cputime: Do not scale when utime == 0
| * sched/cputime: Do not scale when utime == 0Stanislaw Gruszka2013-09-041-8/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | scale_stime() silently assumes that stime < rtime, otherwise when stime == rtime and both values are big enough (operations on them do not fit in 32 bits), the resulting scaling stime can be bigger than rtime. In consequence utime = rtime - stime results in negative value. User space visible symptoms of the bug are overflowed TIME values on ps/top, for example: $ ps aux | grep rcu root 8 0.0 0.0 0 0 ? S 12:42 0:00 [rcuc/0] root 9 0.0 0.0 0 0 ? S 12:42 0:00 [rcub/0] root 10 62422329 0.0 0 0 ? R 12:42 21114581:37 [rcu_preempt] root 11 0.1 0.0 0 0 ? S 12:42 0:02 [rcuop/0] root 12 62422329 0.0 0 0 ? S 12:42 21114581:35 [rcuop/1] root 10 62422329 0.0 0 0 ? R 12:42 21114581:37 [rcu_preempt] or overflowed utime values read directly from /proc/$PID/stat Reference: https://lkml.org/lkml/2013/8/20/259 Reported-and-tested-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com> Cc: stable@vger.kernel.org Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Borislav Petkov <bp@alien8.de> Link: http://lkml.kernel.org/r/20130904131602.GC2564@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* | Merge branch 'timers-nohz-for-linus' of ↵Linus Torvalds2013-09-041-37/+16
|\ \ | |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timers/nohz changes from Ingo Molnar: "It mostly contains fixes and full dynticks off-case optimizations, by Frederic Weisbecker" * 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits) nohz: Include local CPU in full dynticks global kick nohz: Optimize full dynticks's sched hooks with static keys nohz: Optimize full dynticks state checks with static keys nohz: Rename a few state variables vtime: Always debug check snapshot source _before_ updating it vtime: Always scale generic vtime accounting results vtime: Optimize full dynticks accounting off case with static keys vtime: Describe overriden functions in dedicated arch headers m68k: hardirq_count() only need preempt_mask.h hardirq: Split preempt count mask definitions context_tracking: Split low level state headers vtime: Fix racy cputime delta update vtime: Remove a few unneeded generic vtime state checks context_tracking: User/kernel broundary cross trace events context_tracking: Optimize context switch off case with static keys context_tracking: Optimize guest APIs off case with static key context_tracking: Optimize main APIs off case with static key context_tracking: Ground setup for static key use context_tracking: Remove full dynticks' hacky dependency on wide context tracking nohz: Only enable context tracking on full dynticks CPUs ...
| * vtime: Always debug check snapshot source _before_ updating itFrederic Weisbecker2013-08-141-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The vtime delta update performed by get_vtime_delta() always check that the source of the snapshot is valid. Meanhile the snapshot updaters that rely on get_vtime_delta() also set the new snapshot origin. But some of them do this right before the call to get_vtime_delta(), making its debug check useless. This is easily fixable by moving the snapshot origin update after the call to get_vtime_delta(). The order doesn't matter there. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Kevin Hilman <khilman@linaro.org>
| * vtime: Always scale generic vtime accounting resultsFrederic Weisbecker2013-08-141-6/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The cputime accounting in full dynticks can be a subtle mixup of CPUs using tick based accounting and others using generic vtime. As long as the tick can have a share on producing these stats, we want to scale the result against CFS precise accounting as the tick can miss some task hiding between the periodic interrupt. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Kevin Hilman <khilman@linaro.org>
| * vtime: Optimize full dynticks accounting off case with static keysFrederic Weisbecker2013-08-141-18/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If no CPU is in the full dynticks range, we can avoid the full dynticks cputime accounting through generic vtime along with its overhead and use the traditional tick based accounting instead. Let's do this and nope the off case with static keys. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Kevin Hilman <khilman@linaro.org>
| * vtime: Fix racy cputime delta updateFrederic Weisbecker2013-08-141-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | get_vtime_delta() must be called under the task vtime_seqlock with the code that does the cputime accounting flush. Otherwise the cputime reader can be fooled and run into a race where it sees the snapshot update but misses the cputime flush. As a result it can report a cputime that is way too short. Fix vtime_account_user() that wasn't complying to that rule. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Kevin Hilman <khilman@linaro.org>
| * vtime: Remove a few unneeded generic vtime state checksFrederic Weisbecker2013-08-141-12/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Some generic vtime APIs check if the vtime accounting is enabled on the local CPU before doing their work. Some of these are not needed because all their callers already take care of that. Let's remove the checks on these. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Kevin Hilman <khilman@linaro.org>
| * context_tracking: Optimize guest APIs off case with static keyFrederic Weisbecker2013-08-141-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Optimize guest entry/exit APIs with static keys. This minimize the overhead for those who enable CONFIG_NO_HZ_FULL without always using it. Having no range passed to nohz_full= should result in the probes overhead to be minimized. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Kevin Hilman <khilman@linaro.org>
| * vtime: Update a few commentsFrederic Weisbecker2013-08-131-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Update a stale comment from the old vtime era and document some locking that might be non obvious. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Kevin Hilman <khilman@linaro.org>
* | sched/cputime: Use this_cpu_add() in task_group_account_field()Christoph Lameter2013-08-161-1/+1
|/ | | | | | | | | | | Use of a this_cpu() operation reduces the number of instructions used for accounting (account_user_time()) and frees up some registers. This is in the scheduler tick hotpath. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/00000140596dd165-338ff7f5-893b-4fec-b251-aaac5557239e-000000@email.amazonses.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Merge tag 'v3.10' into sched/coreIngo Molnar2013-07-011-3/+3
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Merge in a recent upstream commit: c2853c8df57f include/linux/math64.h: add div64_ul() because: 72a4cf20cb71 sched: Change cfs_rq load avg to unsigned long relies on it. [ We don't rebase sched/core for this, because the handful of followup commits after the broken commit are not behavioral changes so are unlikely to be needed during bisection. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * vtime: Use consistent clocks among nohz accountingFrederic Weisbecker2013-05-311-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | While computing the cputime delta of dynticks CPUs, we are mixing up clocks of differents natures: * local_clock() which takes care of unstable clock sources and fix these if needed. * sched_clock() which is the weaker version of local_clock(). It doesn't compute any fixup in case of unstable source. If the clock source is stable, those two clocks are the same and we can safely compute the difference against two random points. Otherwise it results in random deltas as sched_clock() can randomly drift away, back or forward, from local_clock(). As a consequence, some strange behaviour with unstable tsc has been observed such as non progressing constant zero cputime. (The 'top' command showing no load). Fix this by only using local_clock(), or its irq safe/remote equivalent, in vtime code. Reported-by: Mike Galbraith <efault@gmx.de> Suggested-by: Mike Galbraith <efault@gmx.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
* | sched: Use swap() macro in scale_stime()Stanislaw Gruszka2013-05-281-3/+2
|/ | | | | | | | | | Simple cleanup. Reported-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/1367501673-6563-1-git-send-email-sgruszka@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Merge branch 'sched-urgent-for-linus' of ↵Linus Torvalds2013-05-021-29/+51
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Ingo Molnar: "This fixes the cputime scaling overflow problems for good without having bad 32-bit overhead, and gets rid of the div64_u64_rem() helper as well." * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: Revert "math64: New div64_u64_rem helper" sched: Avoid prev->stime underflow sched: Do not account bogus utime sched: Avoid cputime scaling overflow
| * sched: Avoid prev->stime underflowStanislaw Gruszka2013-04-301-7/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Dave Hansen reported strange utime/stime values on his system: https://lkml.org/lkml/2013/4/4/435 This happens because prev->stime value is bigger than rtime value. Root of the problem are non-monotonic rtime values (i.e. current rtime is smaller than previous rtime) and that should be debugged and fixed. But since problem did not manifest itself before commit 62188451f0d63add7ad0cd2a1ae269d600c1663d "cputime: Avoid multiplication overflow on utime scaling", it should be threated as regression, which we can easily fixed on cputime_adjust() function. For now, let's apply this fix, but further work is needed to fix root of the problem. Reported-and-tested-by: Dave Hansen <dave@sr71.net> Cc: <stable@vger.kernel.org> # 3.9+ Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: rostedt@goodmis.org Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Dave Hansen <dave@sr71.net> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1367314507-9728-3-git-send-email-sgruszka@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * sched: Do not account bogus utimeStanislaw Gruszka2013-04-301-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Due to rounding in scale_stime(), for big numbers, scaled stime values will grow in chunks. Since rtime grow in jiffies and we calculate utime like below: prev->stime = max(prev->stime, stime); prev->utime = max(prev->utime, rtime - prev->stime); we could erroneously account stime values as utime. To prevent that only update prev->{u,s}time values when they are smaller than current rtime. Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: rostedt@goodmis.org Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Dave Hansen <dave@sr71.net> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1367314507-9728-2-git-send-email-sgruszka@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * sched: Avoid cputime scaling overflowStanislaw Gruszka2013-04-301-22/+35
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Here is patch, which adds Linus's cputime scaling algorithm to the kernel. This is a follow up (well, fix) to commit d9a3c9823a2e6a543eb7807fb3d15d8233817ec5 ("sched: Lower chances of cputime scaling overflow") which commit tried to avoid multiplication overflow, but did not guarantee that the overflow would not happen. Linus crated a different algorithm, which completely avoids the multiplication overflow by dropping precision when numbers are big. It was tested by me and it gives good relative error of scaled numbers. Testing method is described here: http://marc.info/?l=linux-kernel&m=136733059505406&w=2 Originally-From: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: rostedt@goodmis.org Cc: Dave Hansen <dave@sr71.net> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20130430151441.GC10465@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* | Merge branch 'sched-core-for-linus' of ↵Linus Torvalds2013-04-301-101/+113
|\ \ | |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler changes from Ingo Molnar: "The main changes in this development cycle were: - full dynticks preparatory work by Frederic Weisbecker - factor out the cpu time accounting code better, by Li Zefan - multi-CPU load balancer cleanups and improvements by Joonsoo Kim - various smaller fixes and cleanups" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits) sched: Fix init NOHZ_IDLE flag sched: Prevent to re-select dst-cpu in load_balance() sched: Rename load_balance_tmpmask to load_balance_mask sched: Move up affinity check to mitigate useless redoing overhead sched: Don't consider other cpus in our group in case of NEWLY_IDLE sched: Explicitly cpu_idle_type checking in rebalance_domains() sched: Change position of resched_cpu() in load_balance() sched: Fix wrong rq's runnable_avg update with rt tasks sched: Document task_struct::personality field sched/cpuacct/UML: Fix header file dependency bug on the UML build cgroup: Kill subsys.active flag sched/cpuacct: No need to check subsys active state sched/cpuacct: Initialize cpuacct subsystem earlier sched/cpuacct: Initialize root cpuacct earlier sched/cpuacct: Allocate per_cpu cpuusage for root cpuacct statically sched/cpuacct: Clean up cpuacct.h sched/cpuacct: Remove redundant NULL checks in cpuacct_acount_field() sched/cpuacct: Remove redundant NULL checks in cpuacct_charge() sched/cpuacct: Add cpuacct_acount_field() sched/cpuacct: Add cpuacct_init() ...
| * sched/cpuacct: Add cpuacct_acount_field()Li Zefan2013-04-101-17/+1
| | | | | | | | | | | | | | | | | | So we can remove open-coded cpuacct code in cputime.c. Signed-off-by: Li Zefan <lizefan@huawei.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/51553692.9060008@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * sched: Lower chances of cputime scaling overflowFrederic Weisbecker2013-03-131-12/+34
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Some users have reported that after running a process with hundreds of threads on intensive CPU-bound loads, the cputime of the group started to freeze after a few days. This is due to how we scale the tick-based cputime against the scheduler precise execution time value. We add the values of all threads in the group and we multiply that against the sum of the scheduler exec runtime of the whole group. This easily overflows after a few days/weeks of execution. A proposed solution to solve this was to compute that multiplication on stime instead of utime: 62188451f0d63add7ad0cd2a1ae269d600c1663d ("cputime: Avoid multiplication overflow on utime scaling") The rationale behind that was that it's easy for a thread to spend most of its time in userspace under intensive CPU-bound workload but it's much harder to do CPU-bound intensive long run in the kernel. This postulate got defeated when a user recently reported he was still seeing cputime freezes after the above patch. The workload that triggers this issue relates to intensive networking workloads where most of the cputime is consumed in the kernel. To reduce much more the opportunities for multiplication overflow, lets reduce the multiplication factors to the remainders of the division between sched exec runtime and cputime. Assuming the difference between these shouldn't ever be that large, it could work on many situations. This gets the same results as in the upstream scaling code except for a small difference: the upstream code always rounds the results to the nearest integer not greater to what would be the precise result. The new code rounds to the nearest integer either greater or not greater. In practice this difference probably shouldn't matter but it's worth mentioning. If this solution appears not to be enough in the end, we'll need to partly revert back to the behaviour prior to commit 0cf55e1ec08bb5a22e068309e2d8ba1180ab4239 ("sched, cputime: Introduce thread_group_times()") Back then, the scaling was done on exit() time before adding the cputime of an exiting thread to the signal struct. And then we'll need to scale one-by-one the live threads cputime in thread_group_cputime(). The drawback may be a slightly slower code on exit time. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org>
| * cputime: Dynamically scale cputime for full dynticks accountingFrederic Weisbecker2013-03-071-74/+80
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The full dynticks cputime accounting is able to account either using the tick or the context tracking subsystem. This way the housekeeping CPU can keep the low overhead tick based solution. This latter mode has a low jiffies resolution granularity and need to be scaled against CFS precise runtime accounting to improve its result. We are doing this for CONFIG_TICK_CPU_ACCOUNTING, now we also need to expand it to full dynticks accounting dynamic off-case as well. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Kevin Hilman <khilman@linaro.org> Cc: Mats Liljegren <mats.liljegren@enea.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
* | sched/cputime: Fix accounting on multi-threaded processesStanislaw Gruszka2013-04-081-1/+1
|/ | | | | | | | | | | | | | Recent commit 6fac4829 ("cputime: Use accessors to read task cputime stats") introduced a bug, where we account many times the cputime of the first thread, instead of cputimes of all the different threads. Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20130404085740.GA2495@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* cputime: Use local_clock() for full dynticks cputime accountingFrederic Weisbecker2013-02-241-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Running the full dynticks cputime accounting with preemptible kernel debugging trigger the following warning: [ 4.488303] BUG: using smp_processor_id() in preemptible [00000000] code: init/1 [ 4.490971] caller is native_sched_clock+0x22/0x80 [ 4.493663] Pid: 1, comm: init Not tainted 3.8.0+ #13 [ 4.496376] Call Trace: [ 4.498996] [<ffffffff813410eb>] debug_smp_processor_id+0xdb/0xf0 [ 4.501716] [<ffffffff8101e642>] native_sched_clock+0x22/0x80 [ 4.504434] [<ffffffff8101db99>] sched_clock+0x9/0x10 [ 4.507185] [<ffffffff81096ccd>] fetch_task_cputime+0xad/0x120 [ 4.509916] [<ffffffff81096dd5>] task_cputime+0x35/0x60 [ 4.512622] [<ffffffff810f146e>] acct_update_integrals+0x1e/0x40 [ 4.515372] [<ffffffff8117d2cf>] do_execve_common+0x4ff/0x5c0 [ 4.518117] [<ffffffff8117cf14>] ? do_execve_common+0x144/0x5c0 [ 4.520844] [<ffffffff81867a10>] ? rest_init+0x160/0x160 [ 4.523554] [<ffffffff8117d457>] do_execve+0x37/0x40 [ 4.526276] [<ffffffff810021a3>] run_init_process+0x23/0x30 [ 4.528953] [<ffffffff81867aac>] kernel_init+0x9c/0xf0 [ 4.531608] [<ffffffff8188356c>] ret_from_fork+0x7c/0xb0 We use sched_clock() to perform and fixup the cputime accounting. However we are calling it with preemption enabled from the read side, which trigger the bug above. To fix this up, use local_clock() instead. It takes care of preemption and also provide a more reliable clock source. This is welcome for this kind of statistic that is widely relied on in userspace. Reported-by: Thomas Gleixner <tglx@linutronix.de> Reported-by: Ingo Molnar <mingo@kernel.org> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Kevin Hilman <khilman@linaro.org> Link: http://lkml.kernel.org/r/1361636925-22288-3-git-send-email-fweisbec@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* cputime: Remove irqsave from seqlock readersThomas Gleixner2013-02-191-6/+4
| | | | | | | | | The reader side code has no requirement to disable interrupts while sampling data. The sequence counter is enough to ensure consistency. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Merge tag 'full-dynticks-cputime-for-mingo' of ↵Ingo Molnar2013-02-051-34/+264
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks into sched/core Pull full-dynticks (user-space execution is undisturbed and receives no timer IRQs) preparation changes that convert the cputime accounting code to be full-dynticks ready, from Frederic Weisbecker: "This implements the cputime accounting on full dynticks CPUs. Typical cputime stats infrastructure relies on the timer tick and its periodic polling on the CPU to account the amount of time spent by the CPUs and the tasks per high level domains such as userspace, kernelspace, guest, ... Now we are preparing to implement full dynticks capability on Linux for Real Time and HPC users who want full CPU isolation. This feature requires a cputime accounting that doesn't depend on the timer tick. To implement it, this new cputime infrastructure plugs into kernel/user/guest boundaries to take snapshots of cputime and flush these to the stats when needed. This performs pretty much like CONFIG_VIRT_CPU_ACCOUNTING except that context location and cputime snaphots are synchronized between write and read side such that the latter can safely retrieve the pending tickless cputime of a task and add it to its latest cputime snapshot to return the correct result to the user." Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * cputime: Safely read cputime of full dynticks CPUsFrederic Weisbecker2013-01-271-12/+181
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | While remotely reading the cputime of a task running in a full dynticks CPU, the values stored in utime/stime fields of struct task_struct may be stale. Its values may be those of the last kernel <-> user transition time snapshot and we need to add the tickless time spent since this snapshot. To fix this, flush the cputime of the dynticks CPUs on kernel <-> user transition and record the time / context where we did this. Then on top of this snapshot and the current time, perform the fixup on the reader side from task_times() accessors. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> [fixed kvm module related build errors] Signed-off-by: Sedat Dilek <sedat.dilek@gmail.com>
| * kvm: Prepare to add generic guest entry/exit callbacksFrederic Weisbecker2013-01-271-10/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Do some ground preparatory work before adding guest_enter() and guest_exit() context tracking callbacks. Those will be later used to read the guest cputime safely when we run in full dynticks mode. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Gleb Natapov <gleb@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
| * cputime: Use accessors to read task cputime statsFrederic Weisbecker2013-01-271-6/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is in preparation for the full dynticks feature. While remotely reading the cputime of a task running in a full dynticks CPU, we'll need to do some extra-computation. This way we can account the time it spent tickless in userspace since its last cputime snapshot. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
| * cputime: Allow dynamic switch between tick/virtual based cputime accountingFrederic Weisbecker2013-01-271-10/+31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Allow to dynamically switch between tick and virtual based cputime accounting. This way we can provide a kind of "on-demand" virtual based cputime accounting. In this mode, the kernel relies on the context tracking subsystem to dynamically probe on kernel boundaries. This is in preparation for being able to stop the timer tick in more places than just the idle state. Doing so will depend on CONFIG_VIRT_CPU_ACCOUNTING_GEN which makes it possible to account the cputime without the tick by hooking on kernel/user boundaries. Depending whether the tick is stopped or not, we can switch between tick and vtime based accounting anytime in order to minimize the overhead associated to user hooks. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
| * cputime: Generic on-demand virtual cputime accountingFrederic Weisbecker2013-01-271-4/+57
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
| * cputime: Move default nsecs_to_cputime() to jiffies based cputime fileFrederic Weisbecker2013-01-271-4/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If the architecture doesn't provide an implementation of nsecs_to_cputime(), the cputime accounting core uses a default one that converts the nanoseconds to jiffies. However this only makes sense if we use the jiffies based cputime. For now it doesn't matter much because this API is only called on code that uses jiffies based cputime accounting. But the code may evolve and this API may be used more broadly in the future. Keeping this default implementation around is very error prone as it may introduce a bug and hide it on architectures that don't override this API. Fix this by moving this definition to the jiffies based cputime headers as it is the only place where it belongs to. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
* | cputime: Avoid multiplication overflow on utime scalingFrederic Weisbecker2013-01-271-9/+9
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We scale stime, utime values based on rtime (sum_exec_runtime converted to jiffies). During scaling we multiple rtime * utime, which seems to be fine, since both values are converted to u64, but it's not. Let assume HZ is 1000 - 1ms tick. Process consist of 64 threads, run for 1 day, threads utilize 100% cpu on user space. Machine has 64 cpus. Process rtime = utime will be 64 * 24 * 60 * 60 * 1000 jiffies, which is 0x149970000. Multiplication rtime * utime result is 0x1a855771100000000, which can not be covered in 64 bits. Result of overflow is stall of utime values visible in user space (prev_utime in kernel), even if application still consume lot of CPU time. A solution to solve this is to perform the multiplication on stime instead of utime. It's easy to grow the utime value fast with a CPU bound thread in userspace for example. Now we assume that doing so with stime is much harder. In most cases a task shouldn't ever spend much time in kernel space as it tends to sleep waiting for jobs completion when they take long to achieve. IO is the typical example of that. Hence scaling the cputime by performing the multiplication on stime instead of utime should considerably reduce the chances of an overflow on most workloads. This is largely inspired by a patch from Stanislaw Gruszka: http://lkml.kernel.org/r/20130107113144.GA7544@redhat.com Inspired-by: Stanislaw Gruszka <sgruszka@redhat.com> Reported-by: Stanislaw Gruszka <sgruszka@redhat.com> Acked-by: Stanislaw Gruszka <sgruszka@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1359217182-25184-1-git-send-email-fweisbec@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Merge tag 'sched-cputime-for-mingo' of ↵Ingo Molnar2012-12-081-12/+19
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks into sched/core Pull more cputime cleanups from Frederic Weisbecker: * Get rid of underscores polluting the vtime namespace * Consolidate context switch and tick handling * Improve debuggability by detecting irq unsafe callers Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * vtime: No need to disable irqs on vtime_account()Frederic Weisbecker2012-11-191-6/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vtime_account() is only called from irq entry. irqs are always disabled at this point so we can safely remove the irq disabling guards on that function. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
| * vtime: Consolidate a bit the ctx switch codeFrederic Weisbecker2012-11-191-0/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On ia64 and powerpc, vtime context switch only consists in flushing system and user pending time, plus a few arch housekeeping. Consolidate that into a generic implementation. s390 is a special case because pending user and system time accounting there is hard to dissociate. So it's keeping its own implementation. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
| * vtime: Remove the underscore prefix invasionFrederic Weisbecker2012-11-191-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Prepending irq-unsafe vtime APIs with underscores was actually a bad idea as the result is a big mess in the API namespace that is even waiting to be further extended. Also these helpers are always called from irq safe callers except kvm. Just provide a vtime_account_system_irqsafe() for this specific case so that we can remove the underscore prefix on other vtime functions. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
* | cputime: Comment cputime's adjusting codeFrederic Weisbecker2012-11-281-2/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The reason for the scaling and monotonicity correction performed by cputime_adjust() may not be immediately clear to the reviewer. Add some comments to explain what happens there. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
* | cputime: Consolidate cputime adjustment codeFrederic Weisbecker2012-11-281-23/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | task_cputime_adjusted() and thread_group_cputime_adjusted() essentially share the same code. They just don't use the same source: * The first function uses the cputime in the task struct and the previous adjusted snapshot that ensures monotonicity. * The second adds the cputime of all tasks in the group and the previous adjusted snapshot of the whole group from the signal structure. Just consolidate the common code that does the adjustment. These functions just need to fetch the values from the appropriate source. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
* | cputime: Rename thread_group_times to thread_group_cputime_adjustedFrederic Weisbecker2012-11-281-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We have thread_group_cputime() and thread_group_times(). The naming doesn't provide enough information about the difference between these two APIs. To lower the confusion, rename thread_group_times() to thread_group_cputime_adjusted(). This name better suggests that it's a version of thread_group_cputime() that does some stabilization on the raw cputime values. ie here: scale on top of CFS runtime stats and bound lower value for monotonicity. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
* | cputime: Move thread_group_cputime() to sched codeFrederic Weisbecker2012-11-281-0/+28
|/ | | | | | | | | | | | thread_group_cputime() is a general cputime API that is not only used by posix cpu timer. Let's move this helper to sched code. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
* cputime: Separate irqtime accounting from generic vtimeFrederic Weisbecker2012-10-291-2/+2
| | | | | | | | | | | | | | | | | | | | | | vtime_account() doesn't have the same role in CONFIG_VIRT_CPU_ACCOUNTING and CONFIG_IRQ_TIME_ACCOUNTING. In the first case it handles time accounting in any context. In the second case it only handles irq time accounting. So when vtime_account() is called from outside vtime_account_irq_*() this call is pointless to CONFIG_IRQ_TIME_ACCOUNTING. To fix the confusion, change vtime_account() to irqtime_account_irq() in CONFIG_IRQ_TIME_ACCOUNTING. This way we ensure future account_vtime() calls won't waste useless cycles in the irqtime APIs. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
* vtime: Make vtime_account_system() irqsafeFrederic Weisbecker2012-10-291-3/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | vtime_account_system() currently has only one caller with vtime_account() which is irq safe. Now we are going to call it from other places like kvm where irqs are not always disabled by the time we account the cputime. So let's make it irqsafe. The arch implementation part is now prefixed with "__". vtime_account_idle() arch implementation is prefixed accordingly to stay consistent. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
* vtime: Consolidate system/idle context detectionFrederic Weisbecker2012-09-251-0/+26
| | | | | | | | | | | | | | | | | | | | | | | | | Move the code that finds out to which context we account the cputime into generic layer. Archs that consider the whole time spent in the idle task as idle time (ia64, powerpc) can rely on the generic vtime_account() and implement vtime_account_system() and vtime_account_idle(), letting the generic code to decide when to call which API. Archs that have their own meaning of idle time, such as s390 that only considers the time spent in CPU low power mode as idle time, can just override vtime_account(). Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org>
* cputime: Use a proper subsystem naming for vtime related APIsFrederic Weisbecker2012-09-251-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | Use a naming based on vtime as a prefix for virtual based cputime accounting APIs: - account_system_vtime() -> vtime_account() - account_switch_vtime() -> vtime_task_switch() It makes it easier to allow for further declension such as vtime_account_system(), vtime_account_idle(), ... if we want to find out the context we account to from generic code. This also make it better to know on which subsystem these APIs refer to. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org>
* sched: Move cputime code to its own fileFrederic Weisbecker2012-08-201-0/+504
Extract cputime code from the giant sched/core.c and put it in its own file. This make it easier to deal with this particular area and de-bloat a bit more core.c Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org>
OpenPOWER on IntegriCloud