summaryrefslogtreecommitdiffstats
path: root/include
Commit message (Collapse)AuthorAgeFilesLines
* blackfin architectureBryan Wu2007-05-07144-0/+23352
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* page migration: Only migrate pages if allocation in the highest zone is possibleChristoph Lameter2007-05-071-1/+14
| | | | | | | | | | | | | | | | | | Address spaces contain an allocation flag that specifies restriction on the zone for pages placed in the mapping. I.e. some device may require pages to be allocated from a DMA zone. Block devices may not be able to use pages from HIGHMEM. Memory policies and the common use of page migration works only on the highest zone. If the address space does not allow allocation from the highest zone then the pages in the address space are not migratable simply because we can only allocate memory for a specified node if we allow allocation for the highest zone on each node. Acked-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Slab allocators: remove useless __GFP_NO_GROW flagChristoph Lameter2007-05-071-2/+1
| | | | | | | | There is no user remaining and I have never seen any use of that flag. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab allocators: Remove SLAB_CTOR_ATOMICChristoph Lameter2007-05-071-1/+0
| | | | | | | | | | | | | | | | | | SLAB_CTOR atomic is never used which is no surprise since I cannot imagine that one would want to do something serious in a constructor or destructor. In particular given that the slab allocators run with interrupts disabled. Actions in constructors and destructors are by their nature very limited and usually do not go beyond initializing variables and list operations. (The i386 pgd ctor and dtors do take a spinlock in constructor and destructor..... I think that is the furthest we go at this point.) There is no flag passed to the destructor so removing SLAB_CTOR_ATOMIC also establishes a certain symmetry. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab allocators: Remove SLAB_DEBUG_INITIAL flagChristoph Lameter2007-05-071-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I have never seen a use of SLAB_DEBUG_INITIAL. It is only supported by SLAB. I think its purpose was to have a callback after an object has been freed to verify that the state is the constructor state again? The callback is performed before each freeing of an object. I would think that it is much easier to check the object state manually before the free. That also places the check near the code object manipulation of the object. Also the SLAB_DEBUG_INITIAL callback is only performed if the kernel was compiled with SLAB debugging on. If there would be code in a constructor handling SLAB_DEBUG_INITIAL then it would have to be conditional on SLAB_DEBUG otherwise it would just be dead code. But there is no such code in the kernel. I think SLUB_DEBUG_INITIAL is too problematic to make real use of, difficult to understand and there are easier ways to accomplish the same effect (i.e. add debug code before kfree). There is a related flag SLAB_CTOR_VERIFY that is frequently checked to be clear in fs inode caches. Remove the pointless checks (they would even be pointless without removeal of SLAB_DEBUG_INITIAL) from the fs constructors. This is the last slab flag that SLUB did not support. Remove the check for unimplemented flags from SLUB. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* KMEM_CACHE(): simplify slab cache creationChristoph Lameter2007-05-071-0/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | This patch provides a new macro KMEM_CACHE(<struct>, <flags>) to simplify slab creation. KMEM_CACHE creates a slab with the name of the struct, with the size of the struct and with the alignment of the struct. Additional slab flags may be specified if necessary. Example struct test_slab { int a,b,c; struct list_head; } __cacheline_aligned_in_smp; test_slab_cache = KMEM_CACHE(test_slab, SLAB_PANIC) will create a new slab named "test_slab" of the size sizeof(struct test_slab) and aligned to the alignment of test slab. If it fails then we panic. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab allocators: Remove obsolete SLAB_MUST_HWCACHE_ALIGNChristoph Lameter2007-05-071-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | This patch was recently posted to lkml and acked by Pekka. The flag SLAB_MUST_HWCACHE_ALIGN is 1. Never checked by SLAB at all. 2. A duplicate of SLAB_HWCACHE_ALIGN for SLUB 3. Fulfills the role of SLAB_HWCACHE_ALIGN for SLOB. The only remaining use is in sparc64 and ppc64 and their use there reflects some earlier role that the slab flag once may have had. If its specified then SLAB_HWCACHE_ALIGN is also specified. The flag is confusing, inconsistent and has no purpose. Remove it. Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: optimize kill_bdev()Peter Zijlstra2007-05-071-0/+1
| | | | | | | | | | | | | | | | | | | | | | | Remove duplicate work in kill_bdev(). It currently invalidates and then truncates the bdev's mapping. invalidate_mapping_pages() will opportunistically remove pages from the mapping. And truncate_inode_pages() will forcefully remove all pages. The only thing truncate doesn't do is flush the bh lrus. So do that explicitly. This avoids (very unlikely) but possible invalid lookup results if the same bdev is quickly re-issued. It also will prevent extreme kernel latencies which are observed when blockdevs which have a large amount of pagecache are unmounted, by avoiding invalidate_mapping_pages() on that path. invalidate_mapping_pages() has no cond_resched (it can be called under spinlock), whereas truncate_inode_pages() has one. [akpm@linux-foundation.org: restore nrpages==0 optimisation] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove destroy_dirty_buffers from invalidate_bdev()Peter Zijlstra2007-05-071-2/+2
| | | | | | | | | | | | | | | Remove the destroy_dirty_buffers argument from invalidate_bdev(), it hasn't been used in 6 years (so akpm says). find * -name \*.[ch] | xargs grep -l invalidate_bdev | while read file; do quilt add $file; sed -ie 's/invalidate_bdev(\([^,]*\),[^)]*)/invalidate_bdev(\1)/g' $file; done Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Quicklist support for sparc64David Miller2007-05-071-12/+14
| | | | | | | | | | | | | | I ported this to sparc64 as per the patch below, tested on UP SunBlade1500 and 24 cpu Niagara T1000. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Quicklists for page table pagesChristoph Lameter2007-05-071-0/+94
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On x86_64 this cuts allocation overhead for page table pages down to a fraction (kernel compile / editing load. TSC based measurement of times spend in each function): no quicklist pte_alloc 1569048 4.3s(401ns/2.7us/179.7us) pmd_alloc 780988 2.1s(337ns/2.7us/86.1us) pud_alloc 780072 2.2s(424ns/2.8us/300.6us) pgd_alloc 260022 1s(920ns/4us/263.1us) quicklist: pte_alloc 452436 573.4ms(8ns/1.3us/121.1us) pmd_alloc 196204 174.5ms(7ns/889ns/46.1us) pud_alloc 195688 172.4ms(7ns/881ns/151.3us) pgd_alloc 65228 9.8ms(8ns/150ns/6.1us) pgd allocations are the most complex and there we see the most dramatic improvement (may be we can cut down the amount of pgds cached somewhat?). But even the pte allocations still see a doubling of performance. 1. Proven code from the IA64 arch. The method used here has been fine tuned for years and is NUMA aware. It is based on the knowledge that accesses to page table pages are sparse in nature. Taking a page off the freelists instead of allocating a zeroed pages allows a reduction of number of cachelines touched in addition to getting rid of the slab overhead. So performance improves. This is particularly useful if pgds contain standard mappings. We can save on the teardown and setup of such a page if we have some on the quicklists. This includes avoiding lists operations that are otherwise necessary on alloc and free to track pgds. 2. Light weight alternative to use slab to manage page size pages Slab overhead is significant and even page allocator use is pretty heavy weight. The use of a per cpu quicklist means that we touch only two cachelines for an allocation. There is no need to access the page_struct (unless arch code needs to fiddle around with it). So the fast past just means bringing in one cacheline at the beginning of the page. That same cacheline may then be used to store the page table entry. Or a second cacheline may be used if the page table entry is not in the first cacheline of the page. The current code will zero the page which means touching 32 cachelines (assuming 128 byte). We get down from 32 to 2 cachelines in the fast path. 3. x86_64 gets lightweight page table page management. This will allow x86_64 arch code to faster repopulate pgds and other page table entries. The list operations for pgds are reduced in the same way as for i386 to the point where a pgd is allocated from the page allocator and when it is freed back to the page allocator. A pgd can pass through the quicklists without having to be reinitialized. 64 Consolidation of code from multiple arches So far arches have their own implementation of quicklist management. This patch moves that feature into the core allowing an easier maintenance and consistent management of quicklists. Page table pages have the characteristics that they are typically zero or in a known state when they are freed. This is usually the exactly same state as needed after allocation. So it makes sense to build a list of freed page table pages and then consume the pages already in use first. Those pages have already been initialized correctly (thus no need to zero them) and are likely already cached in such a way that the MMU can use them most effectively. Page table pages are used in a sparse way so zeroing them on allocation is not too useful. Such an implementation already exits for ia64. Howver, that implementation did not support constructors and destructors as needed by i386 / x86_64. It also only supported a single quicklist. The implementation here has constructor and destructor support as well as the ability for an arch to specify how many quicklists are needed. Quicklists are defined by an arch defining CONFIG_QUICKLIST. If more than one quicklist is necessary then we can define NR_QUICK for additional lists. F.e. i386 needs two and thus has config NR_QUICK int default 2 If an arch has requested quicklist support then pages can be allocated from the quicklist (or from the page allocator if the quicklist is empty) via: quicklist_alloc(<quicklist-nr>, <gfpflags>, <constructor>) Page table pages can be freed using: quicklist_free(<quicklist-nr>, <destructor>, <page>) Pages must have a definite state after allocation and before they are freed. If no constructor is specified then pages will be zeroed on allocation and must be zeroed before they are freed. If a constructor is used then the constructor will establish a definite page state. F.e. the i386 and x86_64 pgd constructors establish certain mappings. Constructors and destructors can also be used to track the pages. i386 and x86_64 use a list of pgds in order to be able to dynamically update standard mappings. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slub: enable tracking of full slabsChristoph Lameter2007-05-071-0/+1
| | | | | | | | | | If slab tracking is on then build a list of full slabs so that we can verify the integrity of all slabs and are also able to built list of alloc/free callers. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Add virt_to_head_page and consolidate code in slab and slubChristoph Lameter2007-05-071-0/+6
| | | | | | Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: optimize compound_head() by avoiding a shared page flagChristoph Lameter2007-05-072-20/+28
| | | | | | | | | | The patch adds PageTail(page) and PageHead(page) to check if a page is the head or the tail of a compound page. This is done by masking the two bits describing the state of a compound page and then comparing them. So one comparision and a branch instead of two bit checks and two branches. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Make page->private usable in compound pagesChristoph Lameter2007-05-072-5/+42
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If we add a new flag so that we can distinguish between the first page and the tail pages then we can avoid to use page->private in the first page. page->private == page for the first page, so there is no real information in there. Freeing up page->private makes the use of compound pages more transparent. They become more usable like real pages. Right now we have to be careful f.e. if we are going beyond PAGE_SIZE allocations in the slab on i386 because we can then no longer use the private field. This is one of the issues that cause us not to support debugging for page size slabs in SLAB. Having page->private available for SLUB would allow more meta information in the page struct. I can probably avoid the 16 bit ints that I have in there right now. Also if page->private is available then a compound page may be equipped with buffer heads. This may free up the way for filesystems to support larger blocks than page size. We add PageTail as an alias of PageReclaim. Compound pages cannot currently be reclaimed. Because of the alias one needs to check PageCompound first. The RFC for the this approach was discussed at http://marc.info/?t=117574302800001&r=1&w=2 [nacc@us.ibm.com: fix hugetlbfs] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: allocate smallest object size if the user asks for 0 bytesChristoph Lameter2007-05-071-2/+6
| | | | | | | | | | | | | | Makes SLUB behave like SLAB in this area to avoid issues.... Throw a stack dump to alert people. At some point the behavior should be switched back. NULL is no memory as far as I can tell and if the use asked for 0 bytes then he need to get no memory. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB coreChristoph Lameter2007-05-074-6/+229
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is a new slab allocator which was motivated by the complexity of the existing code in mm/slab.c. It attempts to address a variety of concerns with the existing implementation. A. Management of object queues A particular concern was the complex management of the numerous object queues in SLAB. SLUB has no such queues. Instead we dedicate a slab for each allocating CPU and use objects from a slab directly instead of queueing them up. B. Storage overhead of object queues SLAB Object queues exist per node, per CPU. The alien cache queue even has a queue array that contain a queue for each processor on each node. For very large systems the number of queues and the number of objects that may be caught in those queues grows exponentially. On our systems with 1k nodes / processors we have several gigabytes just tied up for storing references to objects for those queues This does not include the objects that could be on those queues. One fears that the whole memory of the machine could one day be consumed by those queues. C. SLAB meta data overhead SLAB has overhead at the beginning of each slab. This means that data cannot be naturally aligned at the beginning of a slab block. SLUB keeps all meta data in the corresponding page_struct. Objects can be naturally aligned in the slab. F.e. a 128 byte object will be aligned at 128 byte boundaries and can fit tightly into a 4k page with no bytes left over. SLAB cannot do this. D. SLAB has a complex cache reaper SLUB does not need a cache reaper for UP systems. On SMP systems the per CPU slab may be pushed back into partial list but that operation is simple and does not require an iteration over a list of objects. SLAB expires per CPU, shared and alien object queues during cache reaping which may cause strange hold offs. E. SLAB has complex NUMA policy layer support SLUB pushes NUMA policy handling into the page allocator. This means that allocation is coarser (SLUB does interleave on a page level) but that situation was also present before 2.6.13. SLABs application of policies to individual slab objects allocated in SLAB is certainly a performance concern due to the frequent references to memory policies which may lead a sequence of objects to come from one node after another. SLUB will get a slab full of objects from one node and then will switch to the next. F. Reduction of the size of partial slab lists SLAB has per node partial lists. This means that over time a large number of partial slabs may accumulate on those lists. These can only be reused if allocator occur on specific nodes. SLUB has a global pool of partial slabs and will consume slabs from that pool to decrease fragmentation. G. Tunables SLAB has sophisticated tuning abilities for each slab cache. One can manipulate the queue sizes in detail. However, filling the queues still requires the uses of the spin lock to check out slabs. SLUB has a global parameter (min_slab_order) for tuning. Increasing the minimum slab order can decrease the locking overhead. The bigger the slab order the less motions of pages between per CPU and partial lists occur and the better SLUB will be scaling. G. Slab merging We often have slab caches with similar parameters. SLUB detects those on boot up and merges them into the corresponding general caches. This leads to more effective memory use. About 50% of all caches can be eliminated through slab merging. This will also decrease slab fragmentation because partial allocated slabs can be filled up again. Slab merging can be switched off by specifying slub_nomerge on boot up. Note that merging can expose heretofore unknown bugs in the kernel because corrupted objects may now be placed differently and corrupt differing neighboring objects. Enable sanity checks to find those. H. Diagnostics The current slab diagnostics are difficult to use and require a recompilation of the kernel. SLUB contains debugging code that is always available (but is kept out of the hot code paths). SLUB diagnostics can be enabled via the "slab_debug" option. Parameters can be specified to select a single or a group of slab caches for diagnostics. This means that the system is running with the usual performance and it is much more likely that race conditions can be reproduced. I. Resiliency If basic sanity checks are on then SLUB is capable of detecting common error conditions and recover as best as possible to allow the system to continue. J. Tracing Tracing can be enabled via the slab_debug=T,<slabcache> option during boot. SLUB will then protocol all actions on that slabcache and dump the object contents on free. K. On demand DMA cache creation. Generally DMA caches are not needed. If a kmalloc is used with __GFP_DMA then just create this single slabcache that is needed. For systems that have no ZONE_DMA requirement the support is completely eliminated. L. Performance increase Some benchmarks have shown speed improvements on kernbench in the range of 5-10%. The locking overhead of slub is based on the underlying base allocation size. If we can reliably allocate larger order pages then it is possible to increase slub performance much further. The anti-fragmentation patches may enable further performance increases. Tested on: i386 UP + SMP, x86_64 UP + SMP + NUMA emulation, IA64 NUMA + Simulator SLUB Boot options slub_nomerge Disable merging of slabs slub_min_order=x Require a minimum order for slab caches. This increases the managed chunk size and therefore reduces meta data and locking overhead. slub_min_objects=x Mininum objects per slab. Default is 8. slub_max_order=x Avoid generating slabs larger than order specified. slub_debug Enable all diagnostics for all caches slub_debug=<options> Enable selective options for all caches slub_debug=<o>,<cache> Enable selective options for a certain set of caches Available Debug options F Double Free checking, sanity and resiliency R Red zoning P Object / padding poisoning U Track last free / alloc T Trace all allocs / frees (only use for individual slabs). To use SLUB: Apply this patch and then select SLUB as the default slab allocator. [hugh@veritas.com: fix an oops-causing locking error] [akpm@linux-foundation.org: various stupid cleanups and small fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* i386: use page allocator to allocate thread_info structureChristoph Lameter2007-05-071-3/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | i386 uses kmalloc to allocate the threadinfo structure assuming that the allocations result in a page sized aligned allocation. That has worked so far because SLAB exempts page sized slabs from debugging and aligns them in special ways that goes beyond the restrictions imposed by KMALLOC_ARCH_MINALIGN valid for other slabs in the kmalloc array. SLUB also works fine without debugging since page sized allocations neatly align at page boundaries. However, if debugging is switched on then SLUB will extend the slab with debug information. The resulting slab is not longer of page size. It will only be aligned following the requirements imposed by KMALLOC_ARCH_MINALIGN. As a result the threadinfo structure may not be page aligned which makes i386 fail to boot with SLUB debug on. Replace the calls to kmalloc with calls into the page allocator. An alternate solution may be to create a custom slab cache where the alignment is set to PAGE_SIZE. That would allow slub debugging to be applied to the threadinfo structure. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* readahead: code cleanupJan Kara2007-05-071-2/+2
| | | | | | | | | | | | | | Rename file_ra_state.prev_page to prev_index and file_ra_state.offset to prev_offset. Also update of prev_index in do_generic_mapping_read() is now moved close to the update of prev_offset. [wfg@mail.ustc.edu.cn: fix it] Signed-off-by: Jan Kara <jack@suse.cz> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: WU Fengguang <wfg@mail.ustc.edu.cn> Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* readahead: improve heuristic detecting sequential readsJan Kara2007-05-071-0/+1
| | | | | | | | | | | | | | Introduce ra.offset and store in it an offset where the previous read ended. This way we can detect whether reads are really sequential (and thus we should not mark the page as accessed repeatedly) or whether they are random and just happen to be in the same page (and the page should really be marked accessed again). Signed-off-by: Jan Kara <jack@suse.cz> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Cc: WU Fengguang <wfg@mail.ustc.edu.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* smaps: add clear_refs file to clear referenceDavid Rientjes2007-05-071-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Adds /proc/pid/clear_refs. When any non-zero number is written to this file, pte_mkold() and ClearPageReferenced() is called for each pte and its corresponding page, respectively, in that task's VMAs. This file is only writable by the user who owns the task. It is now possible to measure _approximately_ how much memory a task is using by clearing the reference bits with echo 1 > /proc/pid/clear_refs and checking the reference count for each VMA from the /proc/pid/smaps output at a measured time interval. For example, to observe the approximate change in memory footprint for a task, write a script that clears the references (echo 1 > /proc/pid/clear_refs), sleeps, and then greps for Pgs_Referenced and extracts the size in kB. Add the sizes for each VMA together for the total referenced footprint. Moments later, repeat the process and observe the difference. For example, using an efficient Mozilla: accumulated time referenced memory ---------------- ----------------- 0 s 408 kB 1 s 408 kB 2 s 556 kB 3 s 1028 kB 4 s 872 kB 5 s 1956 kB 6 s 416 kB 7 s 1560 kB 8 s 2336 kB 9 s 1044 kB 10 s 416 kB This is a valuable tool to get an approximate measurement of the memory footprint for a task. Cc: Hugh Dickins <hugh@veritas.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: David Rientjes <rientjes@google.com> [akpm@linux-foundation.org: build fixes] [mpm@selenic.com: rename for_each_pmd] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* i386: use pte_update_defer in ptep_test_and_clear_{dirty,young}Zachary Amsden2007-05-071-20/+18
| | | | | | | | | | | | | | | | | | If you actually clear the bit, you need to: + pte_update_defer(vma->vm_mm, addr, ptep); The reason is, when updating PTEs, the hypervisor must be notified. Using atomic operations to do this is fine for all hypervisors I am aware of. However, for hypervisors which shadow page tables, if these PTE modifications are not trapped, you need a post-modification call to fulfill the update of the shadow page table. Acked-by: Zachary Amsden <zach@vmware.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* i386: add ptep_test_and_clear_{dirty,young}David Rientjes2007-05-071-8/+17
| | | | | | | | | | | | | | | | | | Add ptep_test_and_clear_{dirty,young} to i386. They advertise that they have it and there is at least one place where it needs to be called without the page table lock: to clear the accessed bit on write to /proc/pid/clear_refs. ptep_clear_flush_{dirty,young} are updated to use the new functions. The overall net effect to current users of ptep_clear_flush_{dirty,young} is that we introduce an additional branch. Cc: Hugh Dickins <hugh@veritas.com> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Add unitialized_var() macro for suppressing gcc warningsBorislav Petkov2007-05-073-0/+14
| | | | | | | | | | | | | | | | | | | | | | | | | Introduce a macro for suppressing gcc from generating a warning about a probable uninitialized state of a variable. Example: - spinlock_t *ptl; + spinlock_t *uninitialized_var(ptl); Not a happy solution, but those warnings are obnoxious. - Using the usual pointlessly-set-it-to-zero approach wastes several bytes of text. - Using a macro means we can (hopefully) do something else if gcc changes cause the `x = x' hack to stop working - Using a macro means that people who are worried about hiding true bugs can easily turn it off. Signed-off-by: Borislav Petkov <bbpetkov@yahoo.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* add pfn_valid_within helper for sub-MAX_ORDER hole detectionAndy Whitcroft2007-05-071-0/+12
| | | | | | | | | | | | | | | | | | | Generally we work under the assumption that memory the mem_map array is contigious and valid out to MAX_ORDER_NR_PAGES block of pages, ie. that if we have validated any page within this MAX_ORDER_NR_PAGES block we need not check any other. This is not true when CONFIG_HOLES_IN_ZONE is set and we must check each and every reference we make from a pfn. Add a pfn_valid_within() helper which should be used when scanning pages within a MAX_ORDER_NR_PAGES block when we have already checked the validility of the block normally with pfn_valid(). This can then be optimised away when we do not have holes within a MAX_ORDER_NR_PAGES block of pages. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/slab.c: proper prototypesAdrian Bunk2007-05-071-0/+3
| | | | | | | | Add proper prototypes in include/linux/slab.h. Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Introduce CONFIG_HAS_DMAHeiko Carstens2007-05-071-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | Architectures that don't support DMA can say so by adding a config NO_DMA to their Kconfig file. This will prevent compilation of some dma specific driver code. Also dma-mapping-broken.h isn't needed anymore on at least s390. This avoids compilation and linking of otherwise dead/broken code. Other architectures that include dma-mapping-broken.h are arm26, h8300, m68k, m68knommu and v850. If these could be converted as well we could get rid of the header file. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> "John W. Linville" <linville@tuxdriver.com> Cc: Kyle McMartin <kyle@parisc-linux.org> Cc: <James.Bottomley@SteelEye.com> Cc: Tejun Heo <htejun@gmail.com> Cc: Jeff Garzik <jeff@garzik.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <geert@linux-m68k.org> Cc: <zippel@linux-m68k.org> Cc: <spyro@f2s.com> Cc: <uclinux-v850@lsi.nec.co.jp> Cc: <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: make read_cache_page synchronousNick Piggin2007-05-071-0/+11
| | | | | | | | | | | | | | | | Ensure pages are uptodate after returning from read_cache_page, which allows us to cut out most of the filesystem-internal PageUptodate calls. I didn't have a great look down the call chains, but this appears to fixes 7 possible use-before uptodate in hfs, 2 in hfsplus, 1 in jfs, a few in ecryptfs, 1 in jffs2, and a possible cleared data overwritten with readpage in block2mtd. All depending on whether the filler is async and/or can return with a !uptodate page. Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove gcc workaroundNick Piggin2007-05-071-0/+18
| | | | | | | | | | | | Minimum gcc version is 3.2 now. However, with likely profiling, even modern gcc versions cannot always eliminate the call. Replace the placeholder functions with the more conventional empty static inlines, which should be optimal for everyone. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* proper prototype for hugetlb_get_unmapped_area()Adrian Bunk2007-05-071-0/+6
| | | | | | | | | | Add a proper prototype for hugetlb_get_unmapped_area() in include/linux/hugetlb.h. Signed-off-by: Adrian Bunk <bunk@stusta.de> Acked-by: William Irwin <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Add apply_to_page_range() which applies a function to a pte rangeJeremy Fitzhardinge2007-05-071-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | Add a new mm function apply_to_page_range() which applies a given function to every pte in a given virtual address range in a given mm structure. This is a generic alternative to cut-and-pasting the Linux idiomatic pagetable walking code in every place that a sequence of PTEs must be accessed. Although this interface is intended to be useful in a wide range of situations, it is currently used specifically by several Xen subsystems, for example: to ensure that pagetables have been allocated for a virtual address range, and to construct batched special pagetable update requests to map I/O memory (in ioremap()). [akpm@linux-foundation.org: fix warning, unpleasantly] Signed-off-by: Ian Pratt <ian.pratt@xensource.com> Signed-off-by: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Matt Mackall <mpm@waste.org> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* serial: define FIXED_PORT flag for serial_coreDavid Gibson2007-05-071-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | At present, the serial core always allows setserial in userspace to change the port address, irq and base clock of any serial port. That makes sense for legacy ISA ports, but not for (say) embedded ns16550 compatible serial ports at peculiar addresses. In these cases, the kernel code configuring the ports must know exactly where they are, and their clocking arrangements (which can be unusual on embedded boards). It doesn't make sense for userspace to change these settings. Therefore, this patch defines a UPF_FIXED_PORT flag for the uart_port structure. If this flag is set when the serial port is configured, any attempts to alter the port's type, io address, irq or base clock with setserial are ignored. In addition this patch uses the new flag for on-chip serial ports probed in arch/powerpc/kernel/legacy_serial.c, and for other hard-wired serial ports probed by drivers/serial/of_serial.c. Signed-off-by: David Gibson <dwg@au1.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* RM9000 serial driverThomas Koeller2007-05-071-1/+3
| | | | | | | | | | | | | | Add support for the integrated serial ports of the MIPS RM9122 processor and its relatives. The patch also does some whitespace cleanup. [akpm@linux-foundation.org: cleanups] Signed-off-by: Thomas Koeller <thomas.koeller@baslerweb.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* serial driver PMC MSP71xxMarc St-Jean2007-05-072-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Serial driver patch for the PMC-Sierra MSP71xx devices. There are three different fixes: 1 Fix for DesignWare APB THRE errata: In brief, this is a non-standard 16550 in that the THRE interrupt will not re-assert itself simply by disabling and re-enabling the THRI bit in the IER, it is only re-enabled if a character is actually sent out. It appears that the "8250-uart-backup-timer.patch" in the "mm" tree also fixes it so we have dropped our initial workaround. This patch now needs to be applied on top of that "mm" patch. 2 Fix for Busy Detect on LCR write: The DesignWare APB UART has a feature which causes a new Busy Detect interrupt to be generated if it's busy when the LCR is written. This fix saves the value of the LCR and rewrites it after clearing the interrupt. 3 Workaround for interrupt/data concurrency issue: The SoC needs to ensure that writes that can cause interrupts to be cleared reach the UART before returning from the ISR. This fix reads a non-destructive register on the UART so the read transaction completion ensures the previously queued write transaction has also completed. Signed-off-by: Marc St-Jean <Marc_St-Jean@pmc-sierra.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* add new_id to PCMCIA driversBernhard Walle2007-05-071-0/+6
| | | | | | | | | | | | | | | | | | | PCI drivers have the new_id file in sysfs which allows new IDs to be added at runtime. The advantage is to avoid re-compilation of a driver that works for a new device, but it's ID table doesn't contain the new device. This mechanism is only meant for testing, after the driver has been tested successfully, the ID should be added in source code so that new revisions of the kernel automatically detect the device. The implementation follows the PCI implementation. The interface is documented in Documentation/pcmcia/driver.txt. Computations should be done in userspace, so the sysfs string contains the raw structure members for matching. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab: introduce kreallocPekka Enberg2007-05-071-1/+2
| | | | | | | | | | | | | | | This introduce krealloc() that reallocates memory while keeping the contents unchanged. The allocator avoids reallocation if the new size fits the currently used cache. I also added a simple non-optimized version for mm/slob.c for compatibility. [akpm@linux-foundation.org: fix warnings] Acked-by: Josef Sipek <jsipek@fsl.cs.sunysb.edu> Acked-by: Matt Mackall <mpm@selenic.com> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Revert "[PATCH] x86: __pa and __pa_symbol address space separation"Linus Torvalds2007-05-072-13/+9
| | | | | | | | | | | | | | | | | | | | | | | This was broken. It adds complexity, for no good reason. Rather than separate __pa() and __pa_symbol(), we should deprecate __pa_symbol(), and preferably __pa() too - and just use "virt_to_phys()" instead, which is more readable and has nicer semantics. However, right now, just undo the separation, and make __pa_symbol() be the exact same as __pa(). That fixes the bugs this patch introduced, and we can do the fairly obvious cleanups later. Do the new __phys_addr() function (which is now the actual workhorse for the unified __pa()/__pa_symbol()) as a real external function, that way all the potential issues with compile/link-time optimizations of constant symbol addresses go away, and we can also, if we choose to, add more sanity-checking of the argument. Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: Andi Kleen <ak@suse.de> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuildLinus Torvalds2007-05-062-0/+5
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild: (38 commits) kconfig: fix mconf segmentation fault kbuild: enable use of code from a different dir kconfig: error out if recursive dependencies are found kbuild: scripts/basic/fixdep segfault on pathological string-o-death kconfig: correct minor typo in Kconfig warning message. kconfig: fix path to modules.txt in Kconfig help usr/Kconfig: fix typo kernel-doc: alphabetically-sorted entries in index.html of 'htmldocs' kbuild: be more explicit on missing .config file kbuild: clarify the creation of the LOCALVERSION_AUTO string. kbuild: propagate errors from find in scripts/gen_initramfs_list.sh kconfig: refer to qt3 if we cannot find qt libraries kbuild: handle compressed cpio initramfs-es kbuild: ignore section mismatch warning for references from .paravirtprobe to .init.text kbuild: remove stale comment in modpost.c kbuild/mkuboot.sh: allow spaces in CROSS_COMPILE kbuild: fix make mrproper for Documentation/DocBook/man kbuild: remove kconfig binaries during make mrproper kconfig/menuconfig: do not hardcode '.config' kbuild: override build timestamp & version ...
| * kbuild: remove dependency on input.h from file2aliasSam Ravnborg2007-05-022-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | Almost all definitions used by file2alias was already present in mod_devicetable.h. Added the last definition and killed the input.h usage. The errornous include was pointed out by: Jan Engelhardt <jengelh@linux01.gwdg.de> Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Cc: Jan Engelhardt <jengelh@linux01.gwdg.de> Cc: Deepak Saxena <dsaxena@plexity.net>
* | Merge branch 'for-linus' of ↵Linus Torvalds2007-05-063-38/+97
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/avi/kvm * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/avi/kvm: (66 commits) KVM: Remove unused 'instruction_length' KVM: Don't require explicit indication of completion of mmio or pio KVM: Remove extraneous guest entry on mmio read KVM: SVM: Only save/restore MSRs when needed KVM: fix an if() condition KVM: VMX: Add lazy FPU support for VT KVM: VMX: Properly shadow the CR0 register in the vcpu struct KVM: Don't complain about cpu erratum AA15 KVM: Lazy FPU support for SVM KVM: Allow passing 64-bit values to the emulated read/write API KVM: Per-vcpu statistics KVM: VMX: Avoid unnecessary vcpu_load()/vcpu_put() cycles KVM: MMU: Avoid heavy ASSERT at non debug mode. KVM: VMX: Only save/restore MSR_K6_STAR if necessary KVM: Fold drivers/kvm/kvm_vmx.h into drivers/kvm/vmx.c KVM: VMX: Don't switch 64-bit msrs for 32-bit guests KVM: VMX: Reduce unnecessary saving of host msrs KVM: Handle guest page faults when emulating mmio KVM: SVM: Report hardware exit reason to userspace instead of dmesg KVM: Retry sleeping allocation if atomic allocation fails ...
| * | KVM: Remove unused 'instruction_length'Avi Kivity2007-05-031-3/+2
| | | | | | | | | | | | | | | | | | | | | As we no longer emulate in userspace, this is meaningless. We don't compute it on SVM anyway. Signed-off-by: Avi Kivity <avi@qumranet.com>
| * | KVM: Don't require explicit indication of completion of mmio or pioAvi Kivity2007-05-031-3/+2
| | | | | | | | | | | | | | | | | | | | | | | | It is illegal not to return from a pio or mmio request without completing it, as mmio or pio is an atomic operation. Therefore, we can simplify the userspace interface by avoiding the completion indication. Signed-off-by: Avi Kivity <avi@qumranet.com>
| * | KVM: Add fpu get/set operationsAvi Kivity2007-05-031-0/+17
| | | | | | | | | | | | | | | | | | | | | These are really helpful when migrating an floating point app to another machine. Signed-off-by: Avi Kivity <avi@qumranet.com>
| * | KVM: Add physical memory aliasing featureAvi Kivity2007-05-031-1/+9
| | | | | | | | | | | | | | | | | | | | | | | | With this, we can specify that accesses to one physical memory range will be remapped to another. This is useful for the vga window at 0xa0000 which is used as a movable window into the (much larger) framebuffer. Signed-off-by: Avi Kivity <avi@qumranet.com>
| * | KVM: Avoid guest virtual addresses in string pio userspace interfaceAvi Kivity2007-05-031-9/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The current string pio interface communicates using guest virtual addresses, relying on userspace to translate addresses and to check permissions. This interface cannot fully support guest smp, as the check needs to take into account two pages at one in case an unaligned string transfer straddles a page boundary. Change the interface not to communicate guest addresses at all; instead use a buffer page (mmaped by userspace) and do transfers there. The kernel manages the virtual to physical translation and can perform the checks atomically by taking the appropriate locks. Signed-off-by: Avi Kivity <avi@qumranet.com>
| * | KVM: Allow kernel to select size of mmap() bufferAvi Kivity2007-05-031-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | This allows us to store offsets in the kernel/user kvm_run area, and be sure that userspace has them mapped. As offsets can be outside the kvm_run struct, userspace has no way of knowing how much to mmap. Signed-off-by: Avi Kivity <avi@qumranet.com>
| * | KVM: Add guest mode signal maskAvi Kivity2007-05-031-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | Allow a special signal mask to be used while executing in guest mode. This allows signals to be used to interrupt a vcpu without requiring signal delivery to a userspace handler, which is quite expensive. Userspace still receives -EINTR and can get the signal via sigwait(). Signed-off-by: Avi Kivity <avi@qumranet.com>
| * | KVM: Add a special exit reason when exiting due to an interruptAvi Kivity2007-05-031-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | This is redundant, as we also return -EINTR from the ioctl, but it allows us to examine the exit_reason field on resume without seeing old data. Signed-off-by: Avi Kivity <avi@qumranet.com>
| * | KVM: Fold kvm_run::exit_type into kvm_run::exit_reasonAvi Kivity2007-05-031-7/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, userspace is told about the nature of the last exit from the guest using two fields, exit_type and exit_reason, where exit_type has just two enumerations (and no need for more). So fold exit_type into exit_reason, reducing the complexity of determining what really happened. Signed-off-by: Avi Kivity <avi@qumranet.com>
| * | KVM: Allow userspace to process hypercalls which have no kernel handlerAvi Kivity2007-05-031-1/+9
| | | | | | | | | | | | | | | | | | This is useful for paravirtualized graphics devices, for example. Signed-off-by: Avi Kivity <avi@qumranet.com>
OpenPOWER on IntegriCloud