summaryrefslogtreecommitdiffstats
path: root/include/linux
Commit message (Collapse)AuthorAgeFilesLines
* [PATCH] pi-futex: add plist implementationIngo Molnar2006-06-271-0/+247
| | | | | | | | | | Add the priority-sorted list (plist) implementation. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pi-futex: introduce debug_check_no_locks_freed()Ingo Molnar2006-06-271-2/+8
| | | | | | | | | | | Add debug_check_no_locks_freed(), as a central inline to add bad-lock-free-debugging functionality to. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pi-futex: futex code cleanupsIngo Molnar2006-06-272-5/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We are pleased to announce "lightweight userspace priority inheritance" (PI) support for futexes. The following patchset and glibc patch implements it, ontop of the robust-futexes patchset which is included in 2.6.16-mm1. We are calling it lightweight for 3 reasons: - in the user-space fastpath a PI-enabled futex involves no kernel work (or any other PI complexity) at all. No registration, no extra kernel calls - just pure fast atomic ops in userspace. - in the slowpath (in the lock-contention case), the system call and scheduling pattern is in fact better than that of normal futexes, due to the 'integrated' nature of FUTEX_LOCK_PI. [more about that further down] - the in-kernel PI implementation is streamlined around the mutex abstraction, with strict rules that keep the implementation relatively simple: only a single owner may own a lock (i.e. no read-write lock support), only the owner may unlock a lock, no recursive locking, etc. Priority Inheritance - why, oh why??? ------------------------------------- Many of you heard the horror stories about the evil PI code circling Linux for years, which makes no real sense at all and is only used by buggy applications and which has horrible overhead. Some of you have dreaded this very moment, when someone actually submits working PI code ;-) So why would we like to see PI support for futexes? We'd like to see it done purely for technological reasons. We dont think it's a buggy concept, we think it's useful functionality to offer to applications, which functionality cannot be achieved in other ways. We also think it's the right thing to do, and we think we've got the right arguments and the right numbers to prove that. We also believe that we can address all the counter-arguments as well. For these reasons (and the reasons outlined below) we are submitting this patch-set for upstream kernel inclusion. What are the benefits of PI? The short reply: ---------------- User-space PI helps achieving/improving determinism for user-space applications. In the best-case, it can help achieve determinism and well-bound latencies. Even in the worst-case, PI will improve the statistical distribution of locking related application delays. The longer reply: ----------------- Firstly, sharing locks between multiple tasks is a common programming technique that often cannot be replaced with lockless algorithms. As we can see it in the kernel [which is a quite complex program in itself], lockless structures are rather the exception than the norm - the current ratio of lockless vs. locky code for shared data structures is somewhere between 1:10 and 1:100. Lockless is hard, and the complexity of lockless algorithms often endangers to ability to do robust reviews of said code. I.e. critical RT apps often choose lock structures to protect critical data structures, instead of lockless algorithms. Furthermore, there are cases (like shared hardware, or other resource limits) where lockless access is mathematically impossible. Media players (such as Jack) are an example of reasonable application design with multiple tasks (with multiple priority levels) sharing short-held locks: for example, a highprio audio playback thread is combined with medium-prio construct-audio-data threads and low-prio display-colory-stuff threads. Add video and decoding to the mix and we've got even more priority levels. So once we accept that synchronization objects (locks) are an unavoidable fact of life, and once we accept that multi-task userspace apps have a very fair expectation of being able to use locks, we've got to think about how to offer the option of a deterministic locking implementation to user-space. Most of the technical counter-arguments against doing priority inheritance only apply to kernel-space locks. But user-space locks are different, there we cannot disable interrupts or make the task non-preemptible in a critical section, so the 'use spinlocks' argument does not apply (user-space spinlocks have the same priority inversion problems as other user-space locking constructs). Fact is, pretty much the only technique that currently enables good determinism for userspace locks (such as futex-based pthread mutexes) is priority inheritance: Currently (without PI), if a high-prio and a low-prio task shares a lock [this is a quite common scenario for most non-trivial RT applications], even if all critical sections are coded carefully to be deterministic (i.e. all critical sections are short in duration and only execute a limited number of instructions), the kernel cannot guarantee any deterministic execution of the high-prio task: any medium-priority task could preempt the low-prio task while it holds the shared lock and executes the critical section, and could delay it indefinitely. Implementation: --------------- As mentioned before, the userspace fastpath of PI-enabled pthread mutexes involves no kernel work at all - they behave quite similarly to normal futex-based locks: a 0 value means unlocked, and a value==TID means locked. (This is the same method as used by list-based robust futexes.) Userspace uses atomic ops to lock/unlock these mutexes without entering the kernel. To handle the slowpath, we have added two new futex ops: FUTEX_LOCK_PI FUTEX_UNLOCK_PI If the lock-acquire fastpath fails, [i.e. an atomic transition from 0 to TID fails], then FUTEX_LOCK_PI is called. The kernel does all the remaining work: if there is no futex-queue attached to the futex address yet then the code looks up the task that owns the futex [it has put its own TID into the futex value], and attaches a 'PI state' structure to the futex-queue. The pi_state includes an rt-mutex, which is a PI-aware, kernel-based synchronization object. The 'other' task is made the owner of the rt-mutex, and the FUTEX_WAITERS bit is atomically set in the futex value. Then this task tries to lock the rt-mutex, on which it blocks. Once it returns, it has the mutex acquired, and it sets the futex value to its own TID and returns. Userspace has no other work to perform - it now owns the lock, and futex value contains FUTEX_WAITERS|TID. If the unlock side fastpath succeeds, [i.e. userspace manages to do a TID -> 0 atomic transition of the futex value], then no kernel work is triggered. If the unlock fastpath fails (because the FUTEX_WAITERS bit is set), then FUTEX_UNLOCK_PI is called, and the kernel unlocks the futex on the behalf of userspace - and it also unlocks the attached pi_state->rt_mutex and thus wakes up any potential waiters. Note that under this approach, contrary to other PI-futex approaches, there is no prior 'registration' of a PI-futex. [which is not quite possible anyway, due to existing ABI properties of pthread mutexes.] Also, under this scheme, 'robustness' and 'PI' are two orthogonal properties of futexes, and all four combinations are possible: futex, robust-futex, PI-futex, robust+PI-futex. glibc support: -------------- Ulrich Drepper and Jakub Jelinek have written glibc support for PI-futexes (and robust futexes), enabling robust and PI (PTHREAD_PRIO_INHERIT) POSIX mutexes. (PTHREAD_PRIO_PROTECT support will be added later on too, no additional kernel changes are needed for that). [NOTE: The glibc patch is obviously inofficial and unsupported without matching upstream kernel functionality.] the patch-queue and the glibc patch can also be downloaded from: http://redhat.com/~mingo/PI-futex-patches/ Many thanks go to the people who helped us create this kernel feature: Steven Rostedt, Esben Nielsen, Benedikt Spranger, Daniel Walker, John Cooper, Arjan van de Ven, Oleg Nesterov and others. Credits for related prior projects goes to Dirk Grambow, Inaky Perez-Gonzalez, Bill Huey and many others. Clean up the futex code, before adding more features to it: - use u32 as the futex field type - that's the ABI - use __user and pointers to u32 instead of unsigned long - code style / comment style cleanups - rename hash-bucket name from 'bh' to 'hb'. I checked the pre and post futex.o object files to make sure this patch has no code effects. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Cc: Ulrich Drepper <drepper@redhat.com> Cc: Jakub Jelinek <jakub@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] sched: mc/smt power savings sched policySiddha, Suresh B2006-06-272-1/+12
| | | | | | | | | | | | | | | | | | | | | | sysfs entries 'sched_mc_power_savings' and 'sched_smt_power_savings' in /sys/devices/system/cpu/ control the MC/SMT power savings policy for the scheduler. Based on the values (1-enable, 0-disable) for these controls, sched groups cpu power will be determined for different domains. When power savings policy is enabled and under light load conditions, scheduler will minimize the physical packages/cpu cores carrying the load and thus conserving power(with a perf impact based on the workload characteristics... see OLS 2005 CMP kernel scheduler paper for more details..) Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Con Kolivas <kernel@kolivas.org> Cc: "Chen, Kenneth W" <kenneth.w.chen@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] sched_domain: handle kmalloc failureSrivatsa Vaddagiri2006-06-271-1/+1
| | | | | | | | | | | | | | | | Try to handle mem allocation failures in build_sched_domains by bailing out and cleaning up thus-far allocated memory. The patch has a direct consequence that we disable load balancing completely (even at sibling level) upon *any* memory allocation failure. [Lee.Schermerhorn@hp.com: bugfix] Signed-off-by: Srivatsa Vaddagir <vatsa@in.ibm.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Ingo Molnar <mingo@elte.hu> Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] sched: implement smpnicePeter Williams2006-06-271-2/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem: The introduction of separate run queues per CPU has brought with it "nice" enforcement problems that are best described by a simple example. For the sake of argument suppose that on a single CPU machine with a nice==19 hard spinner and a nice==0 hard spinner running that the nice==0 task gets 95% of the CPU and the nice==19 task gets 5% of the CPU. Now suppose that there is a system with 2 CPUs and 2 nice==19 hard spinners and 2 nice==0 hard spinners running. The user of this system would be entitled to expect that the nice==0 tasks each get 95% of a CPU and the nice==19 tasks only get 5% each. However, whether this expectation is met is pretty much down to luck as there are four equally likely distributions of the tasks to the CPUs that the load balancing code will consider to be balanced with loads of 2.0 for each CPU. Two of these distributions involve one nice==0 and one nice==19 task per CPU and in these circumstances the users expectations will be met. The other two distributions both involve both nice==0 tasks being on one CPU and both nice==19 being on the other CPU and each task will get 50% of a CPU and the user's expectations will not be met. Solution: The solution to this problem that is implemented in the attached patch is to use weighted loads when determining if the system is balanced and, when an imbalance is detected, to move an amount of weighted load between run queues (as opposed to a number of tasks) to restore the balance. Once again, the easiest way to explain why both of these measures are necessary is to use a simple example. Suppose that (in a slight variation of the above example) that we have a two CPU system with 4 nice==0 and 4 nice=19 hard spinning tasks running and that the 4 nice==0 tasks are on one CPU and the 4 nice==19 tasks are on the other CPU. The weighted loads for the two CPUs would be 4.0 and 0.2 respectively and the load balancing code would move 2 tasks resulting in one CPU with a load of 2.0 and the other with load of 2.2. If this was considered to be a big enough imbalance to justify moving a task and that task was moved using the current move_tasks() then it would move the highest priority task that it found and this would result in one CPU with a load of 3.0 and the other with a load of 1.2 which would result in the movement of a task in the opposite direction and so on -- infinite loop. If, on the other hand, an amount of load to be moved is calculated from the imbalance (in this case 0.1) and move_tasks() skips tasks until it find ones whose contributions to the weighted load are less than this amount it would move two of the nice==19 tasks resulting in a system with 2 nice==0 and 2 nice=19 on each CPU with loads of 2.1 for each CPU. One of the advantages of this mechanism is that on a system where all tasks have nice==0 the load balancing calculations would be mathematically identical to the current load balancing code. Notes: struct task_struct: has a new field load_weight which (in a trade off of space for speed) stores the contribution that this task makes to a CPU's weighted load when it is runnable. struct runqueue: has a new field raw_weighted_load which is the sum of the load_weight values for the currently runnable tasks on this run queue. This field always needs to be updated when nr_running is updated so two new inline functions inc_nr_running() and dec_nr_running() have been created to make sure that this happens. This also offers a convenient way to optimize away this part of the smpnice mechanism when CONFIG_SMP is not defined. int try_to_wake_up(): in this function the value SCHED_LOAD_BALANCE is used to represent the load contribution of a single task in various calculations in the code that decides which CPU to put the waking task on. While this would be a valid on a system where the nice values for the runnable tasks were distributed evenly around zero it will lead to anomalous load balancing if the distribution is skewed in either direction. To overcome this problem SCHED_LOAD_SCALE has been replaced by the load_weight for the relevant task or by the average load_weight per task for the queue in question (as appropriate). int move_tasks(): The modifications to this function were complicated by the fact that active_load_balance() uses it to move exactly one task without checking whether an imbalance actually exists. This precluded the simple overloading of max_nr_move with max_load_move and necessitated the addition of the latter as an extra argument to the function. The internal implementation is then modified to move up to max_nr_move tasks and max_load_move of weighted load. This slightly complicates the code where move_tasks() is called and if ever active_load_balance() is changed to not use move_tasks() the implementation of move_tasks() should be simplified accordingly. struct sched_group *find_busiest_group(): Similar to try_to_wake_up(), there are places in this function where SCHED_LOAD_SCALE is used to represent the load contribution of a single task and the same issues are created. A similar solution is adopted except that it is now the average per task contribution to a group's load (as opposed to a run queue) that is required. As this value is not directly available from the group it is calculated on the fly as the queues in the groups are visited when determining the busiest group. A key change to this function is that it is no longer to scale down *imbalance on exit as move_tasks() uses the load in its scaled form. void set_user_nice(): has been modified to update the task's load_weight field when it's nice value and also to ensure that its run queue's raw_weighted_load field is updated if it was runnable. From: "Siddha, Suresh B" <suresh.b.siddha@intel.com> With smpnice, sched groups with highest priority tasks can mask the imbalance between the other sched groups with in the same domain. This patch fixes some of the listed down scenarios by not considering the sched groups which are lightly loaded. a) on a simple 4-way MP system, if we have one high priority and 4 normal priority tasks, with smpnice we would like to see the high priority task scheduled on one cpu, two other cpus getting one normal task each and the fourth cpu getting the remaining two normal tasks. but with current smpnice extra normal priority task keeps jumping from one cpu to another cpu having the normal priority task. This is because of the busiest_has_loaded_cpus, nr_loaded_cpus logic.. We are not including the cpu with high priority task in max_load calculations but including that in total and avg_load calcuations.. leading to max_load < avg_load and load balance between cpus running normal priority tasks(2 Vs 1) will always show imbalanace as one normal priority and the extra normal priority task will keep moving from one cpu to another cpu having normal priority task.. b) 4-way system with HT (8 logical processors). Package-P0 T0 has a highest priority task, T1 is idle. Package-P1 Both T0 and T1 have 1 normal priority task each.. P2 and P3 are idle. With this patch, one of the normal priority tasks on P1 will be moved to P2 or P3.. c) With the current weighted smp nice calculations, it doesn't always make sense to look at the highest weighted runqueue in the busy group.. Consider a load balance scenario on a DP with HT system, with Package-0 containing one high priority and one low priority, Package-1 containing one low priority(with other thread being idle).. Package-1 thinks that it need to take the low priority thread from Package-0. And find_busiest_queue() returns the cpu thread with highest priority task.. And ultimately(with help of active load balance) we move high priority task to Package-1. And same continues with Package-0 now, moving high priority task from package-1 to package-0.. Even without the presence of active load balance, load balance will fail to balance the above scenario.. Fix find_busiest_queue to use "imbalance" when it is lightly loaded. [kernel@kolivas.org: sched: store weighted load on up] [kernel@kolivas.org: sched: add discrete weighted cpu load function] [suresh.b.siddha@intel.com: sched: remove dead code] Signed-off-by: Peter Williams <pwil3058@bigpond.com.au> Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com> Cc: "Chen, Kenneth W" <kenneth.w.chen@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Con Kolivas <kernel@kolivas.org> Cc: John Hawkes <hawkes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] chardev: GPIO for SCx200 & PC-8736x: use dev_dbg in common moduleJim Cromie2006-06-271-1/+5
| | | | | | | | | | | | | | | Use of dev_dbg() and friends is considered good practice. dev_dbg() needs a struct device *devp, but nsc_gpio is only a helper module, so it doesnt have/need its own. To provide devp to the user-modules (scx200 & pc8736x _gpio), we add it to the vtable, and set it during init. Also squeeze nsc_gpio_dump()'s format a little. [ 199.259879] pc8736x_gpio.0: io09: 0x0044 TS OD PUE EDGE LO DEBOUNCE Signed-off-by: Jim Cromie <jim.cromie@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] chardev: GPIO for SCx200 & PC-8736x: migrate file-ops to common moduleJim Cromie2006-06-271-0/+5
| | | | | | | | | | | Now that the read(), write() file-ops are dispatching gpio-ops via the vtable, they are generic, and can be moved 'verbatim' to the nsc_gpio common-support module. After the move, various symbols are renamed to update 'scx200_' to 'nsc_', and headers are adjusted accordingly. Signed-off-by: Jim Cromie <jim.cromie@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] chardev: GPIO for SCx200 & PC-8736x: add gpio-ops vtableJim Cromie2006-06-271-0/+33
| | | | | | | | Abstract the gpio operations into a new nsc_gpio_ops vtable. Signed-off-by: Jim Cromie <jim.cromie@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] chardev: GPIO for SCx200 & PC-8736x: device minor numbers are ↵Jim Cromie2006-06-271-7/+7
| | | | | | | | | | | unsigned ints Per kernel headers, device minor numbers are unsigned ints. Do the same in this driver. Signed-off-by: Jim Cromie <jim.cromie@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] chardev: GPIO for SCx200 & PC-8736x: whitespace pre-cleanJim Cromie2006-06-272-14/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | GPIO SUPPORT FOR SCx200 & PC8736x The patch-set reworks the 2.4 vintage scx200_gpio driver for modern 2.6, and refactors GPIO support to reuse it in a new driver for the GPIO on PC-8736x chips. Its handy for the Soekris.com net-4801, which has both chips. These patches have been seen recently on Kernel-Mentors, and then Kernel-Newbies ML, where Jesper Juhl kindly reviewed it. His feedback has been incorporated. Thanks Jesper ! Its also gone to soekris-tech@soekris.com for possible testing by linux folks, I've gotten 1 promise so far. Theyre mostly BSD folk over there, but we'll see.. Device-file & Sysfs The driver preserves the existing device-file interface, including the write/cmd set, but adds v to 'view' the pin-settings & configs by inducing, via gpio_dump(), a dev_info() call. Its a fairly crappy way to get status, but it sticks to the syslog approach, conservatively. Allowing users to voluntarily trigger logging is good, it gives them a familiar way to confirm their app's control & use of the pins, and I've thus reduced the pin-mode-updates from dev_info to dev_dbg. I've recently bolted on a proto sysfs interface for both new drivers. Im not including those patches here; they (the patch + doc-pre-patch) are still quite raw (and unreviewed on KNML), and since they 'invent' a convention for GPIO, a proper vetting is needed. Since this patchset is much bigger than my previous ones, Id like to keep things simpler, and address it 1st, before bolting on more stuff. The driver-split The Geode CPU and the PC-87366 Super-IO chip have GPIO units which share a common pin-architecture (same pin features, with same bits controlling), but with different addressing mechanics and port organizations. The vintage driver expresses the pin capabilities with pin-mode commands [OoPpTt],etc that change the pin configurations, and since the 2 chips share pin-arch, we can reuse the read(), write() commands, once the implementation is suitably adjusted. The patchset adds a vtable: struct nsc_gpio_ops, to abstract the existing gpio operations, then adjusts fileops.write() code to invoke operations via that vtable. Driver specific open()s set private_data to the vtable so its available for use by write(). The vtable gets the gpio_dump() too, since its user-friendly, and (could be construed as) part of the current device-file interface. To support use of dev_dbg() in write() & _dump(), the vtable gets a dev ptr too, set by both scx200 & pc8736x _gpio drivers. heres how the pins are presented in syslog: [ 1890.176223] scx200_gpio.0: io00: 0x0044 TS OD PUE EDGE LO DEBOUNCE [ 1890.287223] scx200_gpio.0: io01: 0x0003 OE PP PUD EDGE LO nsc_gpio.c: new file is new home of several file-ops methods, which are modified to get their vtable from filp->private_data, and use it where needed. scx200_gpio.c: keeps some of its existing gpio routines, but now wires them up via the vtable (they're invoked by nsc_gpio.c:nsc_gpio_write() thru this vtable). A driver-spcific open() initializes filp->private_data with the vtable. Once the split is clean, and the scx200_gpio driver is working, we copy and modify the function and variable names, and rework the access-method bodies for the different addressing scheme. Heres a working overview of the patchset: # series file for GPIO # Spring Cleaning gpio-scx/patch.preclean # scripts/Lindent fixes, editor-ctrl comments # API Modernization gpio-scx/patch.api26 # what I learned from LDD3 gpio-scx/patch.platform-dev-2 # get pdev, support for dev_dbg() gpio-scx/patch.unsigned-minor # fix to match std practice # Debuggability gpio-scx/patch.dump-diet # shrink gpio_dump() gpio-scx/patch.viewpins # add new 'command' to call dump() gpio-scx/patch.init-refactor # pull shadow-register init to sub # Access-Abstraction (add vtable) gpio-scx/patch.access-vtable # introduce nsg_gpio_ops vtable, w dump gpio-scx/patch.vtable-calls # add & use the vtable in scx200_gpio gpio-scx/patch.nscgpio-shell # add empty driver for common-fops # move code under abstraction gpio-scx/patch.migrate-fops # move file-ops methods from scx200_gpio gpio-scx/patch.common-dump # mv scx200.c:scx200_gpio_dump() to nsc_gpio.c gpio-scx/patch.add-pc8736x-gpio # add new driver, like old, w chip adapt # gpio-scx/patch.add-DEBUG # enable all dev_dbg()s # Cleanups # finish printk -> dev_dbg() etc gpio-scx/patch.pdev-pc8736x # new drvr needs pdev too, gpio-scx/patch.devdbg-nscgpio # add device to 'vtable', use in dev_dbg() # gpio-scx/patch.pin-config-view # another 'c' 'command' # gpio-scx/quiet-getset # take out excess dbg stuff (pretty quiet now) gpio-scx/patch.shadow-current # imitate scx200_gpio's shadow regs in pc87* # post KMentors-post patches .. gpio-scx/patch.mutexes # use mutexes for config-locks gpio-scx/patch.viewpins-values # extend dump to obsolete separate 'c' cmd gpio-scx/patch.kconfig # add stuff for kbuild # TBC # combine api26 with pdev, which is just one step. # merge c&v commands to single do-all-fn # delay viewpins, dump-diet should also un-ifdef it too. diff.sys-gpio-rollup-1 This patch: Removed editor format-control comments, and used scripts/Lindent to clean up whitespace, then deleted the bogus chunks :-( Signed-off-by: Jim Cromie <jim.cromie@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpu hotplug: add hotplug versions of cpu_notifierChandra Seetharaman2006-06-271-0/+4
| | | | | | | | | | | Define new macros register_hotcpu_notifier() and unregister_hotcpu_notifier() that redefines register_cpu_notifier() and unregister_cpu_notifier() for use only when HOTPLUG_CPU is defined. Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Cc: Ashok Raj <ashok.raj@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpu hotplug: make [un]register_cpu_notifier init time onlyChandra Seetharaman2006-06-271-0/+6
| | | | | | | | | | | | | | | | CPUs come online only at init time (unless CONFIG_HOTPLUG_CPU is defined). So, cpu_notifier functionality need to be available only at init time. This patch makes register_cpu_notifier() available only at init time, unless CONFIG_HOTPLUG_CPU is defined. This patch exports register_cpu_notifier() and unregister_cpu_notifier() only if CONFIG_HOTPLUG_CPU is defined. Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Cc: Ashok Raj <ashok.raj@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] rcutorture: add call_rcu_bh() operationsPaul E. McKenney2006-06-271-0/+1
| | | | | | | | | Add operations for the call_rcu_bh() variant of RCU. Also add an rcu_batches_completed_bh() function, which is needed by rcutorture. Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Remove gratuitous inclusion of <linux/config.h> from <linux/dmaengine.h>David Woodhouse2006-06-271-1/+1
| | | | | | | | | We include config.h on the compiler command line. There's no need for it to be included again. Signed-off-by: David Woodhouse <dwmw2@infradead.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] fs/buffer.c: cleanupsAdrian Bunk2006-06-271-1/+1
| | | | | | | | | | | | - add a proper prototype for the following global function: - buffer_init() - make the following needlessly global function static: - end_buffer_async_write() Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] poison: add & use more constantsRandy Dunlap2006-06-271-0/+7
| | | | | | | | | | | | | | | | Add more poison values to include/linux/poison.h. It's not clear to me whether some others should be added or not, so I haven't added any of these: ./include/linux/libata.h:#define ATA_TAG_POISON 0xfafbfcfdU ./arch/ppc/8260_io/fcc_enet.c:1918: memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32); ./drivers/usb/mon/mon_text.c:429: memset(mem, 0xe5, sizeof(struct mon_event_text)); ./drivers/char/ftape/lowlevel/ftape-ctl.c:738: memset(ft_buffer[i]->address, 0xAA, FT_BUFF_SIZE); ./drivers/block/sx8.c:/* 0xf is just arbitrary, non-zero noise; this is sorta like poisoning */ Signed-off-by: Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] update two drivers for poison.hRandy Dunlap2006-06-271-0/+6
| | | | | | | | Update two drivers to use poison.h. Signed-off-by: Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] add poison.h and patch primary usersRandy Dunlap2006-06-272-8/+46
| | | | | | | | | | | | | | | | | Localize poison values into one header file for better documentation and easier/quicker debugging and so that the same values won't be used for multiple purposes. Use these constants in core arch., mm, driver, and fs code. Signed-off-by: Randy Dunlap <rdunlap@xenotime.net> Acked-by: Matt Mackall <mpm@selenic.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] vdso: randomize the i386 vDSO by moving it into a vmaIngo Molnar2006-06-272-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Move the i386 VDSO down into a vma and thus randomize it. Besides the security implications, this feature also helps debuggers, which can COW a vma-backed VDSO just like a normal DSO and can thus do single-stepping and other debugging features. It's good for hypervisors (Xen, VMWare) too, which typically live in the same high-mapped address space as the VDSO, hence whenever the VDSO is used, they get lots of guest pagefaults and have to fix such guest accesses up - which slows things down instead of speeding things up (the primary purpose of the VDSO). There's a new CONFIG_COMPAT_VDSO (default=y) option, which provides support for older glibcs that still rely on a prelinked high-mapped VDSO. Newer distributions (using glibc 2.3.3 or later) can turn this option off. Turning it off is also recommended for security reasons: attackers cannot use the predictable high-mapped VDSO page as syscall trampoline anymore. There is a new vdso=[0|1] boot option as well, and a runtime /proc/sys/vm/vdso_enabled sysctl switch, that allows the VDSO to be turned on/off. (This version of the VDSO-randomization patch also has working ELF coredumping, the previous patch crashed in the coredumping code.) This code is a combined work of the exec-shield VDSO randomization code and Gerd Hoffmann's hypervisor-centric VDSO patch. Rusty Russell started this patch and i completed it. [akpm@osdl.org: cleanups] [akpm@osdl.org: compile fix] [akpm@osdl.org: compile fix 2] [akpm@osdl.org: compile fix 3] [akpm@osdl.org: revernt MAXMEM change] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@infradead.org> Cc: Gerd Hoffmann <kraxel@suse.de> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Zachary Amsden <zach@vmware.com> Cc: Andi Kleen <ak@muc.de> Cc: Jan Beulich <jbeulich@novell.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] node hotplug: register cpu: remove node structKAMEZAWA Hiroyuki2006-06-272-2/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With Goto-san's patch, we can add new pgdat/node at runtime. I'm now considering node-hot-add with cpu + memory on ACPI. I found acpi container, which describes node, could evaluate cpu before memory. This means cpu-hot-add occurs before memory hot add. In most part, cpu-hot-add doesn't depend on node hot add. But register_cpu(), which creates symbolic link from node to cpu, requires that node should be onlined before register_cpu(). When a node is onlined, its pgdat should be there. This patch-set holds off creating symbolic link from node to cpu until node is onlined. This removes node arguments from register_cpu(). Now, register_cpu() requires 'struct node' as its argument. But the array of struct node is now unified in driver/base/node.c now (By Goto's node hotplug patch). We can get struct node in generic way. So, this argument is not necessary now. This patch also guarantees add cpu under node only when node is onlined. It is necessary for node-hot-add vs. cpu-hot-add patch following this. Moreover, register_cpu calculates cpu->node_id by cpu_to_node() without regard to its 'struct node *root' argument. This patch removes it. Also modify callers of register_cpu()/unregister_cpu, whose args are changed by register-cpu-remove-node-struct patch. [Brice.Goglin@ens-lyon.org: fix it] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Brice Goglin <Brice.Goglin@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pgdat allocation and update for ia64 of memory hotplug: allocate ↵Yasunori Goto2006-06-271-7/+2
| | | | | | | | | | | | pgdat and per node data This is a patch to allocate pgdat and per node data area for ia64. The size for them can be calculated by compute_pernodesize(). Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pgdat allocation and update for ia64 of memory hotplug: update pgdat ↵Yasunori Goto2006-06-271-3/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | address array This is to refresh node_data[] array for ia64. As I mentioned previous patches, ia64 has copies of information of pgdat address array on each node as per node data. At v2 of node_add, this function used stop_machine_run() to update them. (I wished that they were copied safety as much as possible.) But, in this patch, this arrays are just copied simply, and set node_online_map bit after completion of pgdat initialization. So, kernel must touch NODE_DATA() macro after checking node_online_map(). (Current code has already done it.) This is more simple way for just hot-add..... Note : It will be problem when hot-remove will occur, because, even if online_map bit is set, kernel may touch NODE_DATA() due to race condition. :-( Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Register sysfs file for hotplugged new nodeYasunori Goto2006-06-271-0/+4
| | | | | | | | | | | | | | | When new node becomes enable by hot-add, new sysfs file must be created for new node. So, if new node is enabled by add_memory(), register_one_node() is called to create it. In addition, I386's arch_register_node() and a part of register_nodes() of powerpc are consolidated to register_one_node() as a generic_code(). This is tested by Tiger4(IPF) with node hot-plug emulation. Signed-off-by: Keiichiro Tokunaga <tokuanga.keiich@jp.fujitsu.com> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] catch valid mem range at onlining memoryKAMEZAWA Hiroyuki2006-06-271-0/+3
| | | | | | | | | | | | | | | | | | This patch allows hot-add memory which is not aligned to section. Now, hot-added memory has to be aligned to section size. Considering big section sized archs, this is not useful. When hot-added memory is registerd as iomem resoruce by iomem resource patch, we can make use of that information to detect valid memory range. Note: With this, not-aligned memory can be registerd. To allow hot-add memory with holes, we have to do more work around add_memory(). (It doesn't allows add memory to already existing mem section.) Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pgdat allocation for new node add (export kswapd start func)Yasunori Goto2006-06-271-0/+2
| | | | | | | | | | | | | When node is hot-added, kswapd for the node should start. This export kswapd start function as kswapd_run() to use at add_memory(). [akpm@osdl.org: daemonize() isn't needed when using the kthread API] Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pgdat allocation for new node add (refresh node_data[])Yasunori Goto2006-06-271-0/+12
| | | | | | | | | | | | | Refresh NODE_DATA() for generic archs. In this case, NODE_DATA(nid) == node_data[nid]. node_data[] is array of address of pgdat. So, refresh is quite simple. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pgdat allocation for new node add (generic alloc node_data)Yasunori Goto2006-06-271-0/+55
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For node hotplug, basically we have to allocate new pgdat. But, there are several types of implementations of pgdat. 1. Allocate only pgdat. This style allocate only pgdat area. And its address is recorded in node_data[]. It is most popular style. 2. Static array of pgdat In this case, all of pgdats are static array. Some archs use this style. 3. Allocate not only pgdat, but also per node data. To increase performance, each node has copy of some data as a per node data. So, this area must be allocated too. Ia64 is this style. Ia64 has the copies of node_data[] array on each per node data to increase performance. In this series of patches, treat (1) as generic arch. generic archs can use generic function. (2) and (3) should have its own if necessary. This patch defines pgdat allocator. Updating NODE_DATA() macro function is in other patch. Signed-off-by: Yasonori Goto <y-goto@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pgdat allocation for new node add (get node id by acpi)Yasunori Goto2006-06-271-0/+6
| | | | | | | | | | | | | | | | | This is to find node id from acpi's handle of memory_device in DSDT. _PXM for the new node can be found by acpi_get_pxm() by using new memory's handle. So, node id can be found by pxm_to_nid_map[]. This patch becomes simpler than v2 of node hot-add patch. Because old add_memory() function doesn't have node id parameter. So, kernel must find its handle by physical address via DSDT again. But, v3 just give node id to add_memory() now. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pgdat allocation for new node add (specify node id)Yasunori Goto2006-06-271-1/+12
| | | | | | | | | | | | | | | | Change the name of old add_memory() to arch_add_memory. And use node id to get pgdat for the node at NODE_DATA(). Note: Powerpc's old add_memory() is defined as __devinit. However, add_memory() is usually called only after bootup. I suppose it may be redundant. But, I'm not well known about powerpc. So, I keep it. (But, __meminit is better at least.) Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* Merge git://git.kernel.org/pub/scm/linux/kernel/git/bunk/trivialLinus Torvalds2006-06-261-1/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | * git://git.kernel.org/pub/scm/linux/kernel/git/bunk/trivial: typo fixes Clean up 'inline is not at beginning' warnings for usb storage Storage class should be first i386: Trivial typo fixes ixj: make ixj_set_tone_off() static spelling fixes fix paniced->panicked typos Spelling fixes for Documentation/atomic_ops.txt move acknowledgment for Mark Adler to CREDITS remove the bouncing email address of David Campbell
| * spelling fixesAndreas Mohr2006-06-261-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | acquired (aquired) contiguous (contigious) successful (succesful, succesfull) surprise (suprise) whether (weather) some other misspellings Signed-off-by: Andreas Mohr <andi@lisas.de> Signed-off-by: Adrian Bunk <bunk@stusta.de>
* | Revert "[PATCH] kthread: update loop.c to use kthread"Linus Torvalds2006-06-261-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This reverts commit c7b2eff059fcc2d1b7085ee3d84b79fd657a537b. Hugh Dickins explains: "It seems too little tested: "losetup -d /dev/loop0" fails with EINVAL because nothing sets lo_thread; but even when you patch loop_thread() to set lo->lo_thread = current, it can't survive more than a few dozen iterations of the loop below (with a tmpfs mounted on /tst): j=0 cp /dev/zero /tst while : do let j=j+1 echo "Doing pass $j" losetup /dev/loop0 /tst/zero mkfs -t ext2 -b 1024 /dev/loop0 >/dev/null 2>&1 mount -t ext2 /dev/loop0 /mnt umount /mnt losetup -d /dev/loop0 done it collapses with failed ioctl then BUG_ON(!bio). I think the original lo_done completion was more subtle and safe than the kthread conversion has allowed for." Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuildLinus Torvalds2006-06-261-0/+14
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild: (40 commits) kbuild: trivial fixes in Makefile kbuild: adding symbols in Kconfig and defconfig to TAGS kbuild: replace abort() with exit(1) kbuild: support for %.symtypes files kbuild: fix silentoldconfig recursion kbuild: add option for stripping modules while installing them kbuild: kill some false positives from modpost kbuild: export-symbol usage report generator kbuild: fix make -rR breakage kbuild: append -dirty for updated but uncommited changes kbuild: append git revision for all untagged commits kbuild: fix module.symvers parsing in modpost kbuild: ignore make's built-in rules & variables kbuild: bugfix with initramfs kbuild: modpost build fix kbuild: check license compatibility when building modules kbuild: export-type enhancement to modpost.c kbuild: add dependency on kernel.release to the package targets kbuild: `make kernelrelease' speedup kconfig: KCONFIG_OVERWRITECONFIG ...
| * | kbuild: check license compatibility when building modulesSam Ravnborg2006-06-091-0/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Modules that uses GPL symbols can no longer be build with kbuild, the build will fail during the modpost step. When a GPL-incompatible module uses a EXPORT_SYMBOL_GPL_FUTURE symbol then warn during modpost so author are actually notified. The actual license compatibility check is shared with the kernel to make sure it is in sync. Patch originally from: Andreas Gruenbacher <agruen@suse.de> and Ram Pai <linuxram@us.ibm.com> Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
* | | Merge master.kernel.org:/pub/scm/linux/kernel/git/herbert/crypto-2.6Linus Torvalds2006-06-261-16/+18
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * master.kernel.org:/pub/scm/linux/kernel/git/herbert/crypto-2.6: [CRYPTO] tcrypt: Forbid tcrypt from being built-in [CRYPTO] aes: Add wrappers for assembly routines [CRYPTO] tcrypt: Speed benchmark support for digest algorithms [CRYPTO] tcrypt: Return -EAGAIN from module_init() [CRYPTO] api: Allow replacement when registering new algorithms [CRYPTO] api: Removed const from cra_name/cra_driver_name [CRYPTO] api: Added cra_init/cra_exit [CRYPTO] api: Fixed incorrect passing of context instead of tfm [CRYPTO] padlock: Rearrange context structure to reduce code size [CRYPTO] all: Pass tfm instead of ctx to algorithms [CRYPTO] digest: Remove unnecessary zeroing during init [CRYPTO] aes-i586: Get rid of useless function wrappers [CRYPTO] digest: Add alignment handling [CRYPTO] khazad: Use 32-bit reads on key
| * | | [CRYPTO] api: Removed const from cra_name/cra_driver_nameHerbert Xu2006-06-261-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We do need to change these names now and even more so in future with instantiated algorithms. So let's stop lying to the compiler and get rid of the const modifiers. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
| * | | [CRYPTO] api: Added cra_init/cra_exitHerbert Xu2006-06-261-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds the hooks cra_init/cra_exit which are called during a tfm's construction and destruction respectively. This will be used by the instances to allocate child tfm's. For now this lets us get rid of the coa_init/coa_exit functions which are used for exactly that purpose (unlike the dia_init function which is called for each transaction). In fact the coa_exit path is currently buggy as it may get called twice when an error is encountered during initialisation. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
| * | | [CRYPTO] all: Pass tfm instead of ctx to algorithmsHerbert Xu2006-06-261-14/+15
| | |/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Up until now algorithms have been happy to get a context pointer since they know everything that's in the tfm already (e.g., alignment, block size). However, once we have parameterised algorithms, such information will be specific to each tfm. So the algorithm API needs to be changed to pass the tfm structure instead of the context pointer. This patch is basically a text substitution. The only tricky bit is the assembly routines that need to get the context pointer offset through asm-offsets.h. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* | | Merge master.kernel.org:/pub/scm/linux/kernel/git/dtor/inputLinus Torvalds2006-06-261-7/+3
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * master.kernel.org:/pub/scm/linux/kernel/git/dtor/input: Input: iforce - remove some pointless casts Input: psmouse - add support for Intellimouse 4.0 Input: atkbd - fix HANGEUL/HANJA keys Input: fix misspelling of Hangeul key Input: via-pmu - add input device support Input: rearrange exports Input: fix formatting to better follow CodingStyle Input: reset name, phys and uniq when unregistering Input: return correct size when reading modalias attribute Input: change my e-mail address in MAINTAINERS file Input: fix potential overflows in driver/input/keyboard Input: fix potential overflows in driver/input/touchscreen Input: fix potential overflows in driver/input/joystick Input: fix potential overflows in driver/input/mouse Input: fix accuracy of fixp-arith.h Input: iforce - use ENOSPC instead of ENOMEM Input: constify drivers/char/keyboard.c
| * | | Input: fix misspelling of Hangeul keyJerome Pinot2006-06-261-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fix a mispelling of the korean alphabet name in the input subsystem. See http://en.wikipedia.org/wiki/Hangeul#Names for more details. KEY_HANGUEL left to not break people Signed-off-by: Jerome Pinot <ngc891@gmail.com> Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
| * | | Input: reset name, phys and uniq when unregisteringDmitry Torokhov2006-06-261-6/+1
| |/ / | | | | | | | | | | | | | | | | | | | | | | | | | | | Name, phys and uniq are quite often constant strings in moules implementing particular input device. If a module unregisters input device and then gets unloaded, the device could still be present in memory (pinned via sysfs), but aforementioned members would point to some random memory. Set them all to NULL when unregistering so sysfs handlers won't try dereferencing them. Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
* | | Merge master.kernel.org:/pub/scm/linux/kernel/git/mchehab/v4l-dvbLinus Torvalds2006-06-261-0/+6
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * master.kernel.org:/pub/scm/linux/kernel/git/mchehab/v4l-dvb: V4L/DVB (4227): Update this driver for recent header file movement. V4L/DVB (4223): Add V4L2_CID_MPEG_STREAM_VBI_FMT control V4L/DVB (4222): Always switch tuner mode when calling VIDIOC_S_FREQUENCY. V4L/DVB (4221): Add HM12 YUV format define. V4L/DVB (4219): Av7110: analog sound output of DVB-C rev 2.3 V4L/DVB (4217): Fix a misplaced closing bracket/else, which caused swzigzag not to be called V4L/DVB (4215): Make VIDEO_CX88_BLACKBIRD a separate build option V4L/DVB (4214): Make VIDEO_CX2341X a selectable build option V4L/DVB (4213): Cx88: cleanups V4L/DVB (4211): Fix an Oops for all fe that have get_frontend_algo == NULL
| * | | V4L/DVB (4223): Add V4L2_CID_MPEG_STREAM_VBI_FMT controlHans Verkuil2006-06-261-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | V4L2_CID_MPEG_STREAM_VBI_FMT controls if and how VBI data is embedded in an MPEG stream. Currently only one format is supported: the format designed for the ivtv driver. This should be extended with new standard formats (such as defined for DVB) in the future. Signed-off-by: Hans Verkuil <hverkuil@xs4all.nl> Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
| * | | V4L/DVB (4221): Add HM12 YUV format define.Hans Verkuil2006-06-261-0/+1
| |/ / | | | | | | | | | | | | | | | | | | | | | | | | HM12 is a YUV 4:1:1 format used by the cx2341x MPEG encoder/decoder for the raw YUV input/output. The Y and UV planes are broken up in 16x16 macroblocks and each macroblock is transmitted in turn (row by row). Signed-off-by: Hans Verkuil <hverkuil@xs4all.nl> Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
* | | Merge branch 'x86-64'Linus Torvalds2006-06-267-4/+153
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * x86-64: (83 commits) [PATCH] x86_64: x86_64 stack usage debugging [PATCH] x86_64: (resend) x86_64 stack overflow debugging [PATCH] x86_64: msi_apic.c build fix [PATCH] x86_64: i386/x86-64 Add nmi watchdog support for new Intel CPUs [PATCH] x86_64: Avoid broadcasting NMI IPIs [PATCH] x86_64: fix apic error on bootup [PATCH] x86_64: enlarge window for stack growth [PATCH] x86_64: Minor string functions optimizations [PATCH] x86_64: Move export symbols to their C functions [PATCH] x86_64: Standardize i386/x86_64 handling of NMI_VECTOR [PATCH] x86_64: Fix modular pc speaker [PATCH] x86_64: remove sys32_ni_syscall() [PATCH] x86_64: Do not use -ffunction-sections for modules [PATCH] x86_64: Add cpu_relax to apic_wait_icr_idle [PATCH] x86_64: adjust kstack_depth_to_print default [PATCH] i386/x86-64: adjust /proc/interrupts column headings [PATCH] x86_64: Fix race in cpu_local_* on preemptible kernels [PATCH] x86_64: Fix fast check in safe_smp_processor_id [PATCH] x86_64: x86_64 setup.c - printing cmp related boottime information [PATCH] i386/x86-64/ia64: Move polling flag into thread_info_status ... Manual resolve of trivial conflict in arch/i386/kernel/Makefile
| * | | [PATCH] x86_64: Add useful constants to time.hVojtech Pavlik2006-06-261-4/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In timekeeping code, one often does need to use conversion constants. Naming these leads to code that's easier to understand, showing the reader between which units the conversion is made. Signed-off-by: Vojtech Pavlik <vojtech@suse.cz> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
| * | | [PATCH] x86_64: allow unwinder to build without module supportJan Beulich2006-06-261-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add proper conditionals to be able to build with CONFIG_MODULES=n. Signed-off-by: Jan Beulich <jbeulich@novell.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
| * | | [PATCH] i386/x86-64: fall back to old-style call trace if no unwindingJan Beulich2006-06-261-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If no unwinding is possible at all for a certain exception instance, fall back to the old style call trace instead of not showing any trace at all. Also, allow setting the stack trace mode at the command line. Signed-off-by: Jan Beulich <jbeulich@novell.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
| * | | [PATCH] x86_64: reliable stack trace supportJan Beulich2006-06-263-0/+129
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | These are the generic bits needed to enable reliable stack traces based on Dwarf2-like (.eh_frame) unwind information. Subsequent patches will enable x86-64 and i386 to make use of this. Thanks to Andi Kleen and Ingo Molnar, who pointed out several possibilities for improvement. Signed-off-by: Jan Beulich <jbeulich@novell.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
OpenPOWER on IntegriCloud