summaryrefslogtreecommitdiffstats
path: root/include/asm-i386
Commit message (Collapse)AuthorAgeFilesLines
* [PATCH] arch/i386/kernel/microcode.c: remove the obsolete microcode_ioctlAdrian Bunk2006-03-281-2/+0
| | | | | | | | | | Nowadays, even Debian stable ships a microcode_ctl utility recent enough to no longer use this ioctl. Signed-off-by: Adrian Bunk <bunk@stusta.de> Acked-by: Tigran Aivazian <tigran_aivazian@symantec.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] RTC: Fix up some RTC whitespace and styleMatt Mackall2006-03-281-10/+11
| | | | | | | | | Fix up some RTC whitespace and style Signed-off-by: Matt Mackall <mpm@selenic.com> Cc: Alessandro Zummo <a.zummo@towertech.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] RTC: Remove RTC UIP synchronization on x86Matt Mackall2006-03-281-14/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Reading the CMOS clock on x86 and some other arches currently takes up to one second because it synchronizes with the CMOS second tick-over. This delay shows up at boot time as well a resume time. This is the currently the most substantial boot time delay for machines that are working towards instant-on capability. Also, a quick back of the envelope calculation (.5sec * 2M users * 1 boot a day * 10 years) suggests it has cost Linux users in the neighborhood of a million man-hours. An earlier thread on this topic is here: http://groups.google.com/group/linux.kernel/browse_frm/thread/8a24255215ff6151/2aa97e66a977653d?hl=en&lr=&ie=UTF-8&rnum=1&prev=/groups%3Fhl%3Den%26lr%3D%26ie%3DUTF-8%26selm%3D1To2R-2S7-11%40gated-at.bofh.it#2aa97e66a977653d ..from which the consensus seems to be that it's no longer desirable. In my view, there are basically four cases to consider: 1) networked, need precise walltime: use NTP 2) networked, don't need precise walltime: use NTP anyway 3) not networked, don't need sub-second precision walltime: don't care 4) not networked, need sub-second precision walltime: get a network or a radio time source because RTC isn't good enough anyway So this patch series simply removes the synchronization in favor of a simple seqlock-like approach using the seconds value. Note that for purposes of timer accuracy on wakeup, this patch will cause us to fire timers up to one second late. But as the current timer resume code will already sync once (or more!), it's no worse for short timers. Signed-off-by: Matt Mackall <mpm@selenic.com> Cc: Andi Kleen <ak@muc.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Alessandro Zummo <a.zummo@towertech.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Notifier chain update: API changesAlan Stern2006-03-271-6/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] lightweight robust futexes updatesIngo Molnar2006-03-271-1/+1
| | | | | | | | | | | | | | | | | | - fix: initialize the robust list(s) to NULL in copy_process. - doc update - cleanup: rename _inuser to _inatomic - __user cleanups and other small cleanups Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Ulrich Drepper <drepper@redhat.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] lightweight robust futexes: i386Ingo Molnar2006-03-272-2/+25
| | | | | | | | | | | | i386: add the futex_atomic_cmpxchg_inuser() assembly implementation, and wire up the new syscalls. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Arjan van de Ven <arjan@infradead.org> Acked-by: Ulrich Drepper <drepper@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] lightweight robust futexes: arch defaultsIngo Molnar2006-03-271-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patchset provides a new (written from scratch) implementation of robust futexes, called "lightweight robust futexes". We believe this new implementation is faster and simpler than the vma-based robust futex solutions presented before, and we'd like this patchset to be adopted in the upstream kernel. This is version 1 of the patchset. Background ---------- What are robust futexes? To answer that, we first need to understand what futexes are: normal futexes are special types of locks that in the noncontended case can be acquired/released from userspace without having to enter the kernel. A futex is in essence a user-space address, e.g. a 32-bit lock variable field. If userspace notices contention (the lock is already owned and someone else wants to grab it too) then the lock is marked with a value that says "there's a waiter pending", and the sys_futex(FUTEX_WAIT) syscall is used to wait for the other guy to release it. The kernel creates a 'futex queue' internally, so that it can later on match up the waiter with the waker - without them having to know about each other. When the owner thread releases the futex, it notices (via the variable value) that there were waiter(s) pending, and does the sys_futex(FUTEX_WAKE) syscall to wake them up. Once all waiters have taken and released the lock, the futex is again back to 'uncontended' state, and there's no in-kernel state associated with it. The kernel completely forgets that there ever was a futex at that address. This method makes futexes very lightweight and scalable. "Robustness" is about dealing with crashes while holding a lock: if a process exits prematurely while holding a pthread_mutex_t lock that is also shared with some other process (e.g. yum segfaults while holding a pthread_mutex_t, or yum is kill -9-ed), then waiters for that lock need to be notified that the last owner of the lock exited in some irregular way. To solve such types of problems, "robust mutex" userspace APIs were created: pthread_mutex_lock() returns an error value if the owner exits prematurely - and the new owner can decide whether the data protected by the lock can be recovered safely. There is a big conceptual problem with futex based mutexes though: it is the kernel that destroys the owner task (e.g. due to a SEGFAULT), but the kernel cannot help with the cleanup: if there is no 'futex queue' (and in most cases there is none, futexes being fast lightweight locks) then the kernel has no information to clean up after the held lock! Userspace has no chance to clean up after the lock either - userspace is the one that crashes, so it has no opportunity to clean up. Catch-22. In practice, when e.g. yum is kill -9-ed (or segfaults), a system reboot is needed to release that futex based lock. This is one of the leading bugreports against yum. To solve this problem, 'Robust Futex' patches were created and presented on lkml: the one written by Todd Kneisel and David Singleton is the most advanced at the moment. These patches all tried to extend the futex abstraction by registering futex-based locks in the kernel - and thus give the kernel a chance to clean up. E.g. in David Singleton's robust-futex-6.patch, there are 3 new syscall variants to sys_futex(): FUTEX_REGISTER, FUTEX_DEREGISTER and FUTEX_RECOVER. The kernel attaches such robust futexes to vmas (via vma->vm_file->f_mapping->robust_head), and at do_exit() time, all vmas are searched to see whether they have a robust_head set. Lots of work went into the vma-based robust-futex patch, and recently it has improved significantly, but unfortunately it still has two fundamental problems left: - they have quite complex locking and race scenarios. The vma-based patches had been pending for years, but they are still not completely reliable. - they have to scan _every_ vma at sys_exit() time, per thread! The second disadvantage is a real killer: pthread_exit() takes around 1 microsecond on Linux, but with thousands (or tens of thousands) of vmas every pthread_exit() takes a millisecond or more, also totally destroying the CPU's L1 and L2 caches! This is very much noticeable even for normal process sys_exit_group() calls: the kernel has to do the vma scanning unconditionally! (this is because the kernel has no knowledge about how many robust futexes there are to be cleaned up, because a robust futex might have been registered in another task, and the futex variable might have been simply mmap()-ed into this process's address space). This huge overhead forced the creation of CONFIG_FUTEX_ROBUST, but worse than that: the overhead makes robust futexes impractical for any type of generic Linux distribution. So it became clear to us, something had to be done. Last week, when Thomas Gleixner tried to fix up the vma-based robust futex patch in the -rt tree, he found a handful of new races and we were talking about it and were analyzing the situation. At that point a fundamentally different solution occured to me. This patchset (written in the past couple of days) implements that new solution. Be warned though - the patchset does things we normally dont do in Linux, so some might find the approach disturbing. Parental advice recommended ;-) New approach to robust futexes ------------------------------ At the heart of this new approach there is a per-thread private list of robust locks that userspace is holding (maintained by glibc) - which userspace list is registered with the kernel via a new syscall [this registration happens at most once per thread lifetime]. At do_exit() time, the kernel checks this user-space list: are there any robust futex locks to be cleaned up? In the common case, at do_exit() time, there is no list registered, so the cost of robust futexes is just a simple current->robust_list != NULL comparison. If the thread has registered a list, then normally the list is empty. If the thread/process crashed or terminated in some incorrect way then the list might be non-empty: in this case the kernel carefully walks the list [not trusting it], and marks all locks that are owned by this thread with the FUTEX_OWNER_DEAD bit, and wakes up one waiter (if any). The list is guaranteed to be private and per-thread, so it's lockless. There is one race possible though: since adding to and removing from the list is done after the futex is acquired by glibc, there is a few instructions window for the thread (or process) to die there, leaving the futex hung. To protect against this possibility, userspace (glibc) also maintains a simple per-thread 'list_op_pending' field, to allow the kernel to clean up if the thread dies after acquiring the lock, but just before it could have added itself to the list. Glibc sets this list_op_pending field before it tries to acquire the futex, and clears it after the list-add (or list-remove) has finished. That's all that is needed - all the rest of robust-futex cleanup is done in userspace [just like with the previous patches]. Ulrich Drepper has implemented the necessary glibc support for this new mechanism, which fully enables robust mutexes. (Ulrich plans to commit these changes to glibc-HEAD later today.) Key differences of this userspace-list based approach, compared to the vma based method: - it's much, much faster: at thread exit time, there's no need to loop over every vma (!), which the VM-based method has to do. Only a very simple 'is the list empty' op is done. - no VM changes are needed - 'struct address_space' is left alone. - no registration of individual locks is needed: robust mutexes dont need any extra per-lock syscalls. Robust mutexes thus become a very lightweight primitive - so they dont force the application designer to do a hard choice between performance and robustness - robust mutexes are just as fast. - no per-lock kernel allocation happens. - no resource limits are needed. - no kernel-space recovery call (FUTEX_RECOVER) is needed. - the implementation and the locking is "obvious", and there are no interactions with the VM. Performance ----------- I have benchmarked the time needed for the kernel to process a list of 1 million (!) held locks, using the new method [on a 2GHz CPU]: - with FUTEX_WAIT set [contended mutex]: 130 msecs - without FUTEX_WAIT set [uncontended mutex]: 30 msecs I have also measured an approach where glibc does the lock notification [which it currently does for !pshared robust mutexes], and that took 256 msecs - clearly slower, due to the 1 million FUTEX_WAKE syscalls userspace had to do. (1 million held locks are unheard of - we expect at most a handful of locks to be held at a time. Nevertheless it's nice to know that this approach scales nicely.) Implementation details ---------------------- The patch adds two new syscalls: one to register the userspace list, and one to query the registered list pointer: asmlinkage long sys_set_robust_list(struct robust_list_head __user *head, size_t len); asmlinkage long sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr, size_t __user *len_ptr); List registration is very fast: the pointer is simply stored in current->robust_list. [Note that in the future, if robust futexes become widespread, we could extend sys_clone() to register a robust-list head for new threads, without the need of another syscall.] So there is virtually zero overhead for tasks not using robust futexes, and even for robust futex users, there is only one extra syscall per thread lifetime, and the cleanup operation, if it happens, is fast and straightforward. The kernel doesnt have any internal distinction between robust and normal futexes. If a futex is found to be held at exit time, the kernel sets the highest bit of the futex word: #define FUTEX_OWNER_DIED 0x40000000 and wakes up the next futex waiter (if any). User-space does the rest of the cleanup. Otherwise, robust futexes are acquired by glibc by putting the TID into the futex field atomically. Waiters set the FUTEX_WAITERS bit: #define FUTEX_WAITERS 0x80000000 and the remaining bits are for the TID. Testing, architecture support ----------------------------- I've tested the new syscalls on x86 and x86_64, and have made sure the parsing of the userspace list is robust [ ;-) ] even if the list is deliberately corrupted. i386 and x86_64 syscalls are wired up at the moment, and Ulrich has tested the new glibc code (on x86_64 and i386), and it works for his robust-mutex testcases. All other architectures should build just fine too - but they wont have the new syscalls yet. Architectures need to implement the new futex_atomic_cmpxchg_inuser() inline function before writing up the syscalls (that function returns -ENOSYS right now). This patch: Add placeholder futex_atomic_cmpxchg_inuser() implementations to every architecture that supports futexes. It returns -ENOSYS. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Arjan van de Ven <arjan@infradead.org> Acked-by: Ulrich Drepper <drepper@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] unify PFN_* macrosDave Hansen2006-03-271-3/+1
| | | | | | | | | | | | | | | | | | | | Just about every architecture defines some macros to do operations on pfns. They're all virtually identical. This patch consolidates all of them. One minor glitch is that at least i386 uses them in a very skeletal header file. To keep away from #include dependency hell, I stuck the new definitions in a new, isolated header. Of all of the implementations, sh64 is the only one that varied by a bit. It used some masks to ensure that any sign-extension got ripped away before the arithmetic is done. This has been posted to that sh64 maintainers and the development list. Compiles on x86, x86_64, ia64 and ppc64. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] unify pfn_to_page: i386 pfn_to_pageKAMEZAWA Hiroyuki2006-03-272-19/+1
| | | | | | | | i386 can use generic funcs. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] sched: new sched domain for representing multi-coreSiddha, Suresh B2006-03-272-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | Add a new sched domain for representing multi-core with shared caches between cores. Consider a dual package system, each package containing two cores and with last level cache shared between cores with in a package. If there are two runnable processes, with this appended patch those two processes will be scheduled on different packages. On such systems, with this patch we have observed 8% perf improvement with specJBB(2 warehouse) benchmark and 35% improvement with CFP2000 rate(with 2 users). This new domain will come into play only on multi-core systems with shared caches. On other systems, this sched domain will be removed by domain degeneration code. This new domain can be also used for implementing power savings policy (see OLS 2005 CMP kernel scheduler paper for more details.. I will post another patch for power savings policy soon) Most of the arch/* file changes are for cpu_coregroup_map() implementation. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] bitops: i386: use generic bitopsAkinobu Mita2006-03-261-47/+8
| | | | | | | | | | | | - remove generic_fls64() - remove sched_find_first_bit() - remove generic_hweight{32,16,8}() - remove ext2_{set,clear,test,find_first_zero,find_next_zero}_bit() - remove minix_{test,set,test_and_clear,test,find_first_zero}_bit() Signed-off-by: Akinobu Mita <mita@miraclelinux.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] x86: kprobes-boosterMasami Hiramatsu2006-03-261-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Current kprobe copies the original instruction at the probe point and replaces it with a breakpoint instruction (int3). When the kernel hits the probe point, kprobe handler is invoked. And the copied instruction is single-step executed on the copied buffer (not on the original address) by kprobe. After that, the kprobe checks registers and modify it (if need) as if the instructions was executed on the original address. My proposal is based on the fact there are many instructions which do NOT require the register modification after the single-step execution. When the copied instruction is a kind of them, kprobe just jumps back to the next instruction after single-step execution. If so, why don't we execute those instructions directly? With kprobe-booster patch, kprobes will execute a copied instruction directly and (if need) jump back to original code. This direct execution is executed when the kprobe don't have both post_handler and break_handler, and the copied instruction can be executed directly. I sorted instructions which can be executed directly or not; - Call instructions are NG(can not be executed directly). We should correct the return address pushed into top of stack. - Indirect instructions except for absolute indirect-jumps are NG. Those instructions changes EIP randomly. We should check EIP and correct it. - Instructions that change EIP beyond the range of the instruction buffer are NG. - Instructions that change EIP to tail 5 bytes of the instruction buffer (it is the size of a jump instruction). We must write a jump instruction which backs to original kernel code in the instruction buffer. - Break point instruction is NG. We should not touch EIP and pass to other handlers. - Absolute direct/indirect jumps are OK.- Conditional Jumps are NG. - Halt and software-interruptions are NG. Because it will stay on the instruction buffer of kprobes. - Prefixes are NG. - Unknown/reserved opcode is NG. - Other 1 byte instructions are OK. But those instructions need a jump back code. - 2 bytes instructions are mapped sparsely. So, in this release, this patch don't boost those instructions. >From Intel's IA-32 opcode map described in IA-32 Intel Architecture Software Developer's Manual Vol.2 B, I determined that following opcodes are not boostable. - 0FH (2byte escape) - 70H - 7FH (Jump on condition) - 9AH (Call) and 9CH (Pushf) - C0H-C1H (Grp 2: includes reserved opcode) - C6H-C7H (Grp11: includes reserved opcode) - CCH-CEH (Software-interrupt) - D0H-D3H (Grp2: includes reserved opcode) - D6H (Reserved) - D8H-DFH (Coprocessor) - E0H-E3H (loop/conditional jump) - E8H (Call) - F0H-F3H (Prefixes and reserved) - F4H (Halt) - F6H-F7H (Grp3: includes reserved opcode) - FEH-FFH(Grp4,5: includes reserved opcode) Kprobe-booster checks whether target instruction can be boosted (can be executed directly) at arch_copy_kprobe() function. If the target instruction can be boosted, it clears "boostable" flag. If not, it sets "boostable" flag -1. This is disabled status. In resume_execution() function, If "boostable" flag is cleared, kprobe-booster measures the size of the target instruction and sets "boostable" flag 1. In kprobe_handler(), kprobe checks the "boostable" flag. If the flag is 1, it resets current kprobe and executes instruction buffer directly instead of single stepping. When unregistering a boosted kprobe, it calls synchronize_sched() after "int3" is removed. So we can ensure followings after the synchronize_sched() called. - interrupt handlers are finished on all CPUs. - instruction buffer is not executed on all CPUs. And we can release the boosted kprobe safely. And also, on preemptible kernel, the booster is not enabled where the kernel preemption is enabled. So, there are no preempted threads on the instruction buffer. The description of kretprobe-booster: ==================================== In the normal operation, kretprobe make a target function return to trampoline code. And a kprobe (called trampoline_probe) have been inserted at the trampoline code. When the kernel hits this kprobe, it calls kretprobe's handler and it returns to original return address. Kretprobe-booster patch removes the trampoline_probe. It allows the trampoline code to call kretprobe's handler directly instead of invoking kprobe. And tranpoline code returns to original return address. This new trampoline code stores and restores registers, so the kretprobe handler is still able to access those registers. Current kprobe has about 1.3 usec/probe(*) overhead, and kprobe-booster patch reduces it to 0.6 usec/probe(*). Also current kretprobe has about 2.0 usec/probe(*) overhead. Kprobe-booster patch reduces it to 1.3 usec/probe(*), and the combination of both kprobe-booster patch and kretprobe-booster patch reduces it to 0.9 usec/probe(*). I expect the combination of both patches can reduce half of a probing overhead. Performance numbers strongly depend on the processor model. Andrew Morton wrote: > These preempt tricks look rather nasty. Can you please describe what the > problem is, precisely? And how this code avoids it? Perhaps we can find > something cleaner. The problem is how to remove the copied instructions of the kprobe *safely* on the preemptable kernel (CONFIG_PREEMPT=y). Kprobes basically executes the following actions; (1)int3 (2)preempt_disable() (3)kprobe_prehandler() (4)copied instructioin(single step) (5)kprobe_posthandler() (6)preempt_enable() (7)return to the original code During the execution of copied instruction, preemption is disabled (from step (2) to (6)). When unregistering the probes, Kprobe waits for RCU quiescent state by using synchronize_sched() after removing int3 instruction. Thus we can ensure the copied instruction is not executed. On the other hand, kprobe-booster executes the following actions; (1)int3 (2)preempt_disable() (3)kprobe_prehandler() (4)preempt_enable() <-- this one is added by my patch (5)copied instruction(direct execution) (6)jmp back to the original code The problem is that we have no way to prevent preemption on step (5) or (6). We cannot call preempt_disable() after step (6), because there are no rooms to do that. Thus, some other processes may be preempted at step(5) or (6) on preemptable kernel. And I couldn't find the easy way to ensure that other processes' stack do *not* have the address of them. (I thought some way to do that, but those are very costly.) So currently, I simply boost the kprobe only when the probe point is already preemption disabled. > Also, the patch adds a preempt_enable() but I don't see a corresponding > preempt_disable(). Am I missing something? It is corresponding to the preempt_disable() in the top of kprobe_handler(). I copied the code of kprobe_handler() here: static int __kprobes kprobe_handler(struct pt_regs *regs) { struct kprobe *p; int ret = 0; kprobe_opcode_t *addr = NULL; unsigned long *lp; struct kprobe_ctlblk *kcb; /* * We don't want to be preempted for the entire * duration of kprobe processing */ preempt_disable(); <-- HERE kcb = get_kprobe_ctlblk(); Signed-off-by: Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> Cc: Prasanna S Panchamukhi <prasanna@in.ibm.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: David S. Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] 2TB files: add blkcnt_tTakashi Sato2006-03-261-0/+5
| | | | | | | | | | | | | | | | | | | Add blkcnt_t as the type of inode.i_blocks. This enables you to make the size of blkcnt_t either 4 bytes or 8 bytes on 32 bits architecture with CONFIG_LSF. - CONFIG_LSF Add new configuration parameter. - blkcnt_t On h8300, i386, mips, powerpc, s390 and sh that define sector_t, blkcnt_t is defined as u64 if CONFIG_LSF is enabled; otherwise it is defined as unsigned long. On other architectures, it is defined as unsigned long. - inode.i_blocks Change the type from sector_t to blkcnt_t. Signed-off-by: Takashi Sato <sho@tnes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] 2TB files: st_blocks is invalid when calling stat64Takashi Sato2006-03-261-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch series fixes the following problems on 32 bits architecture. o stat64 returns the lower 32 bits of blocks, although userland st_blocks has 64 bits, because i_blocks has only 32 bits. The ioctl with FIOQSIZE has the same problem. o As Dave Kleikamp said, making >2TB file on JFS results in writing an invalid block number to disk inode. The cause is the same as above too. o In generic quota code dquot_transfer(), the file usage is calculated from i_blocks via inode_get_bytes(). If the file is over 2TB, the change of usage is less than expected. The cause is the same as above too. o As Trond Myklebust said, statfs64's entries related to blocks are invalid on statfs64 for a network filesystem which has more than 2^32-1 blocks with CONFIG_LBD disabled. [PATCH 3/3] We made patches to fix problems that occur when handling a large filesystem and a large file. It was discussed on the mails titled "stat64 for over 2TB file returned invalid st_blocks". Signed-off-by: Takashi Sato <sho@tnes.nec.co.jp> Cc: Dave Kleikamp <shaggy@austin.ibm.com> Cc: Jan Kara <jack@ucw.cz> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] x86_64: Implement early DMI scanningAndi Kleen2006-03-251-0/+11
| | | | | | | | | | | There are more and more cases where we need to know DMI information early to work around bugs. i386 already had early DMI scanning, but x86-64 didn't. Implement this now. This required some cleanup in the i386 code. Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] POLLRDHUP/EPOLLRDHUP handling for half-closed devices notificationsDavide Libenzi2006-03-251-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Implement the half-closed devices notifiation, by adding a new POLLRDHUP (and its alias EPOLLRDHUP) bit to the existing poll/select sets. Since the existing POLLHUP handling, that does not report correctly half-closed devices, was feared to be changed, this implementation leaves the current POLLHUP reporting unchanged and simply add a new bit that is set in the few places where it makes sense. The same thing was discussed and conceptually agreed quite some time ago: http://lkml.org/lkml/2003/7/12/116 Since this new event bit is added to the existing Linux poll infrastruture, even the existing poll/select system calls will be able to use it. As far as the existing POLLHUP handling, the patch leaves it as is. The pollrdhup-2.6.16.rc5-0.10.diff defines the POLLRDHUP for all the existing archs and sets the bit in the six relevant files. The other attached diff is the simple change required to sys/epoll.h to add the EPOLLRDHUP definition. There is "a stupid program" to test POLLRDHUP delivery here: http://www.xmailserver.org/pollrdhup-test.c It tests poll(2), but since the delivery is same epoll(2) will work equally. Signed-off-by: Davide Libenzi <davidel@xmailserver.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] kill include/linux/platform.h, default_idle() cleanupAdrian Bunk2006-03-241-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | include/linux/platform.h contained nothing that was actually used except the default_idle() prototype, and is therefore removed by this patch. This patch does the following with the platform specific default_idle() functions on different architectures: - remove the unused function: - parisc - sparc64 - make the needlessly global function static: - arm - h8300 - m68k - m68knommu - s390 - v850 - x86_64 - add a prototype in asm/system.h: - cris - i386 - ia64 Signed-off-by: Adrian Bunk <bunk@stusta.de> Acked-by: Patrick Mochel <mochel@digitalimplant.org> Acked-by: Kyle McMartin <kyle@parisc-linux.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] remove ISA legacy functions: remove the helpersAl Viro2006-03-241-12/+0
| | | | | | | | | | | | unused isa_...() helpers removed. Adrian Bunk: The asm-sh part was rediffed due to unrelated changes. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] atomic: add_unless cmpxchg optimiseNick Piggin2006-03-231-1/+7
| | | | | | | | | | | | | | | | | Without branch hints, the very unlikely chance of the loop repeating due to cmpxchg failure is unrolled with gcc-4 that I have tested. Improve this for architectures with a native cas/cmpxchg. llsc archs should try to implement this natively. Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Andi Kleen <ak@muc.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Move read_mostly definition to asm/cache.hKyle McMartin2006-03-231-0/+2
| | | | | | | | | | | | | | Seems like needless clutter having a bunch of #if defined(CONFIG_$ARCH) in include/linux/cache.h. Move the per architecture section definition to asm/cache.h, and keep the if-not-defined dummy case in linux/cache.h to catch architectures which don't implement the section. Verified that symbols still go in .data.read_mostly on parisc, and the compile doesn't break. Signed-off-by: Kyle McMartin <kyle@parisc-linux.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] x86: Make _syscallX() macros compile in PIC modeMarkus Gutschke2006-03-231-15/+21
| | | | | | | | | | | | | Gcc reserves %ebx when compiling position-independent-code on i386. This means, the _syscallX() macros in include/asm-i386/unistd.h will not compile. This patch is changes the existing macros to take special care to preserve %ebx. The bug can be tracked at http://bugzilla.kernel.org/show_bug.cgi?id=6204 Signed-off-by: Markus Gutschke <markus@google.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] i386 spinlocks: disable interrupts only if we enabled themChuck Ebbert2006-03-231-4/+9
| | | | | | | | | | | | | | | | | | | | | | | _raw_spin_lock_flags() is entered with interrupts disabled. If it cannot obtain a spinlock, it checks the flags that were passed and re-enables interrupts before spinning if that's how the flags are set. When the spinlock might be available, it disables interrupts (even if they are already disabled) before trying to get the lock. Change that so interrupts are only disabled if they have been enabled. This costs nine bytes of duplicated spinloop code. Fastpath before patch: jle <keep looping> not-taken conditional jump cli disable interrupts jmp <try for lock> unconditional jump Fastpath after patch, if interrupts were not enabled: jg <try for lock> taken conditional branch Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Fix the imlicit declaration of mtrr_centaur_report_mcr in ↵Jesper Juhl2006-03-231-0/+1
| | | | | | | | | | | arch/i386/kernel/cpu/centaur.c arch/i386/kernel/cpu/centaur.c: In function `centaur_mcr_insert': arch/i386/kernel/cpu/centaur.c:33: warning: implicit declaration of function `mtrr_centaur_report_mcr' Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] i386: fix uses of user_mode() vs. user_mode_vm()Jan Beulich2006-03-233-3/+3
| | | | | | | | | | | | | | | | | | | | | | | >commit 76381fee7e8feb4c22be636aa5d4765dbe4fbf9e >Author: Vincent Hanquez <vincent.hanquez@cl.cam.ac.uk> >Date: Thu Jun 23 00:08:46 2005 -0700 > > [PATCH] xen: x86_64: use more usermode macro > > Make use of the user_mode macro where it's possible. This is useful for Xen > because it will need only to redefine only the macro to a hypervisor call. I am of the opinion that the above changeset is incomplete, i.e. it missed converting some previous uses of user_mode to user_mode_vm. While most of them could be considered just cosmetical, at least the one in die_nmi doesn't appear to be. Signed-off-by: Jan Beulich <jbeulich@novell.com> Cc: Vincent Hanquez <vincent.hanquez@cl.cam.ac.uk> Cc: Zachary Amsden <zach@vmware.com> Cc: James Bottomley <James.Bottomley@steeleye.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] i386: actively synchronize vmalloc area when registering certain ↵Jan Beulich2006-03-232-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | callbacks Registering a callback handler through register_die_notifier() is obviously primarily intended for use by modules. However, the way these currently get called it is basically impossible for them to actually be used by modules, as there is, on non-PAE configurationes, a good chance (the larger the module, the better) for the system to crash as a result. This is because the callback gets invoked (a) in the page fault path before the top level page table propagation gets carried out (hence a fault to propagate the top level page table entry/entries mapping to module's code/data would nest infinitly) and (b) in the NMI path, where nested faults must absolutely not happen, since otherwise the IRET from the nested fault re-enables NMIs, potentially resulting in nested NMI occurences. Besides the modular aspect, similar problems would even arise for in- kernel consumers of the API if they touched ioremap()ed or vmalloc()ed memory inside their handlers. Signed-off-by: Jan Beulich <jbeulich@novell.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] x86: early printk handling fixesStas Sergeev2006-03-231-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The history is that -mm kernels do not work for me for a few months already. The things started from crashing somewhere after starting init, and for the last month - no boot at all, just "Uncompressing... OK, booting kernel", and silence. Early console didn't work too. With the latest releases this degraded into an infinite stream of the "Unknown interrupt or fault" messages. So today my patience ran out and I started to think how can I collect at least some info for the bug-report. Attached is the patch that allows to gather some valueable debug info on the problem by making an early console more useable. I can't properly test the patch, as the kernel still doesn't boot, so I'll explain it in details in a hope someone else can justify the intrusive changes. arch_hooks.h: added prototypes for setup_early_printk() and early_printk(). setup.c: killed wrong setup_early_printk() prototype. Moved setup_early_printk() a bit earlier, as it was not "early enough" to cover the bug I was fighting with. early_printk.c: made it to start printing from the bottom of the screen, otherwise the messages interfere with the ones of the boot-loader, so you can't read them. Signed-off-by: Stas Sergeev <stsp@aknet.ru> Cc: Andi Kleen <ak@muc.de> Cc: Zwane Mwaikambo <zwane@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] i386: remove duplicate declaration of mp_bus_id_to_pci_busChris Wright2006-03-231-1/+0
| | | | | | | | mp_bus_id_to_pci_bus is declared identically twice. Signed-off-by: Chris Wright <chrisw@sous-sol.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Compilation fix for ES7000 when no ACPI is specified in config (i386)Natalie.Protasevich@unisys.com2006-03-231-2/+8
| | | | | | | | | | | | ES7000 platform code clean up for compilation errors and a warning. Ifdef'd the ACPI related parts in the ES7000 platform code. They were causing compile errors in certain configuration (without ACPI defined). I think this approach would be best (as opposed to Kconfig changes) since it only touches the subarch... Signed-off-by: <Natalie.Protasevich@unisys.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] i386: Add a temporary to make put_user more type safeEric W. Biederman2006-03-231-5/+7
| | | | | | | | | | | | | | | | | In some code I am developing I had occasion to change the type of a variable. This made the value put_user was putting to user space wrong. But the code continued to build cleanly without errors. Introducing a temporary fixes this problem and at least with gcc-3.3.5 does not cause gcc any problems with optimizing out the temporary. gcc-4.x using SSA internally ought to be even better at optimizing out temporaries, so I don't expect a temporary to become a problem. Especially because in all correct cases the types on both sides of the assignment to the temporary are the same. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] x86: SMP alternativesGerd Hoffmann2006-03-239-124/+194
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Implement SMP alternatives, i.e. switching at runtime between different code versions for UP and SMP. The code can patch both SMP->UP and UP->SMP. The UP->SMP case is useful for CPU hotplug. With CONFIG_CPU_HOTPLUG enabled the code switches to UP at boot time and when the number of CPUs goes down to 1, and switches to SMP when the number of CPUs goes up to 2. Without CONFIG_CPU_HOTPLUG or on non-SMP-capable systems the code is patched once at boot time (if needed) and the tables are released afterwards. The changes in detail: * The current alternatives bits are moved to a separate file, the SMP alternatives code is added there. * The patch adds some new elf sections to the kernel: .smp_altinstructions like .altinstructions, also contains a list of alt_instr structs. .smp_altinstr_replacement like .altinstr_replacement, but also has some space to save original instruction before replaving it. .smp_locks list of pointers to lock prefixes which can be nop'ed out on UP. The first two are used to replace more complex instruction sequences such as spinlocks and semaphores. It would be possible to deal with the lock prefixes with that as well, but by handling them as special case the table sizes become much smaller. * The sections are page-aligned and padded up to page size, so they can be free if they are not needed. * Splitted the code to release init pages to a separate function and use it to release the elf sections if they are unused. Signed-off-by: Gerd Hoffmann <kraxel@suse.de> Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Enable mprotect on huge pagesZhang, Yanmin2006-03-221-3/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2.6.16-rc3 uses hugetlb on-demand paging, but it doesn_t support hugetlb mprotect. From: David Gibson <david@gibson.dropbear.id.au> Remove a test from the mprotect() path which checks that the mprotect()ed range on a hugepage VMA is hugepage aligned (yes, really, the sense of is_aligned_hugepage_range() is the opposite of what you'd guess :-/). In fact, we don't need this test. If the given addresses match the beginning/end of a hugepage VMA they must already be suitably aligned. If they don't, then mprotect_fixup() will attempt to split the VMA. The very first test in split_vma() will check for a badly aligned address on a hugepage VMA and return -EINVAL if necessary. From: "Chen, Kenneth W" <kenneth.w.chen@intel.com> On i386 and x86-64, pte flag _PAGE_PSE collides with _PAGE_PROTNONE. The identify of hugetlb pte is lost when changing page protection via mprotect. A page fault occurs later will trigger a bug check in huge_pte_alloc(). The fix is to always make new pte a hugetlb pte and also to clean up legacy code where _PAGE_PRESENT is forced on in the pre-faulting day. Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] don't call check_acpi_pci() on x86 with ACPI disabledHerbert Poetzl2006-03-221-4/+6
| | | | | | | | | | | check_acpi_pci() is called from arch/i386/kernel/setup.c even if CONFIG_ACPI is not defined, but the code in include/asm/acpi.h doesn't provide it in this case. Signed-off-by: Herbert Pötzl <herbert@13thfloor.at> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] i386: port ATI timer fix from x86_64 to i386 IIAndi Kleen2006-03-081-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | ATI chipsets tend to generate double timer interrupts for the local APIC timer when both the 8254 and the IO-APIC timer pins are enabled. This is because they route it to both and the result is anded together and the CPU ends up processing it twice. This patch changes check_timer to disable the 8254 routing for interrupt 0. I think it would be safe on all chipsets actually (i tested it on a couple and it worked everywhere) and Windows seems to do it in a similar way, but to be conservative this patch only enables this mode on ATI (and adds options to enable/disable too) Ported over from a similar x86-64 change. I reused the ACPI earlyquirk infrastructure for the ATI bridge check, but tweaked it a bit to work even without ACPI. Inspired by a patch from Chuck Ebbert, but redone. Cc: Chuck Ebbert <76306.1226@compuserve.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] x86: fix broken SMP boot sequenceJames Bottomley2006-02-241-2/+4
| | | | | | | | | | | | | | | | Recent GDT changes broke the SMP boot sequence if the booting CPU is numbered anything other than zero. There's also a subtle source of error in that the boot time CPU now uses cpu_gdt_table (which is actually the GDT for booting CPUs in head.S). This patch fixes both problems by making GDT descriptors themselves allocated from a per_cpu area and switching to them in cpu_init(), which now means that cpu_gdt_table is exclusively used for booting CPUs again. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com> Cc: Zachary Amsden <zach@vmware.com> Cc: Matt Tolentino <metolent@snoqualmie.dp.intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Kprobes causes NX protection fault on i686 SMPPrasanna S Panchamukhi2006-02-241-2/+5
| | | | | | | | | | | | | Fix a problem seen on i686 machine with NX support where the instruction could not be single stepped because of NX bit set on the memory pages allocated by kprobes module. This patch provides allocation of instruction solt so that the processor can execute the instruction from that location similar to x86_64 architecture. Thanks to Bibo and Masami for testing this patch. Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] i386: fix singlestepping though a syscallChuck Ebbert2006-02-171-2/+2
| | | | | | | | Do not mask TIF_SINGLESTEP bit in _TIF_WORK_MASK. Masking this stopped do_notify_resume() from being called when it should have been. Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] add asm-generic/mman.hMichael S. Tsirkin2006-02-151-30/+1
| | | | | | | | | | | | | | Make new MADV_REMOVE, MADV_DONTFORK, MADV_DOFORK consistent across all arches. The idea is to make it possible to use them portably even before distros include them in libc headers. Move common flags to asm-generic/mman.h Signed-off-by: Michael S. Tsirkin <mst@mellanox.co.il> Cc: Roland Dreier <rolandd@cisco.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] madvise MADV_DONTFORK/MADV_DOFORKMichael S. Tsirkin2006-02-141-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | Currently, copy-on-write may change the physical address of a page even if the user requested that the page is pinned in memory (either by mlock or by get_user_pages). This happens if the process forks meanwhile, and the parent writes to that page. As a result, the page is orphaned: in case of get_user_pages, the application will never see any data hardware DMA's into this page after the COW. In case of mlock'd memory, the parent is not getting the realtime/security benefits of mlock. In particular, this affects the Infiniband modules which do DMA from and into user pages all the time. This patch adds madvise options to control whether memory range is inherited across fork. Useful e.g. for when hardware is doing DMA from/into these pages. Could also be useful to an application wanting to speed up its forks by cutting large areas out of consideration. Signed-off-by: Michael S. Tsirkin <mst@mellanox.co.il> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] fix x86 topology export in sysfs for subarchitecturesJames Bottomley2006-02-141-1/+1
| | | | | | | | | | The correct way to export hyperthreading based functions is to predicate them on CONFIG_X86_HT. Without this, the topology exporting patch breaks the build on all non-PC x86 subarchitectures. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] fstatat64 supportUlrich Drepper2006-02-111-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | The *at patches introduced fstatat and, due to inusfficient research, I used the newfstat functions generally as the guideline. The result is that on 32-bit platforms we don't have all the information needed to implement fstatat64. This patch modifies the code to pass up 64-bit information if __ARCH_WANT_STAT64 is defined. I renamed the syscall entry point to make this clear. Other archs will continue to use the existing code. On x86-64 the compat code is implemented using a new sys32_ function. this is what is done for the other stat syscalls as well. This patch might break some other archs (those which define __ARCH_WANT_STAT64 and which already wired up the syscall). Yet others might need changes to accomodate the compatibility mode. I really don't want to do that work because all this stat handling is a mess (more so in glibc, but the kernel is also affected). It should be done by the arch maintainers. I'll provide some stand-alone test shortly. Those who are eager could compile glibc and run 'make check' (no installation needed). The patch below has been tested on x86 and x86-64. Signed-off-by: Ulrich Drepper <drepper@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] unshare system call -v5: system call registration for i386JANAK DESAI2006-02-071-1/+2
| | | | | | | | | | | | | Registers system call for the i386 architecture. Signed-off-by: Janak Desai <janak@us.ibm.com> Cc: Al Viro <viro@ftp.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Cc: Andi Kleen <ak@muc.de> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Fix "value computed is not used" compile warnings with gcc-4.1Takashi Iwai2006-02-051-1/+1
| | | | | | | | | | | Fix gcc4.1 compile warnings "value computed is not used" with set_current_state() and set_task_state() on i386/SMP and x86-64. Signed-off-by: Takashi Iwai <tiwai@suse.de> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Export cpu topology in sysfsZhang, Yanmin2006-02-031-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The patch implements cpu topology exportation by sysfs. Items (attributes) are similar to /proc/cpuinfo. 1) /sys/devices/system/cpu/cpuX/topology/physical_package_id: represent the physical package id of cpu X; 2) /sys/devices/system/cpu/cpuX/topology/core_id: represent the cpu core id to cpu X; 3) /sys/devices/system/cpu/cpuX/topology/thread_siblings: represent the thread siblings to cpu X in the same core; 4) /sys/devices/system/cpu/cpuX/topology/core_siblings: represent the thread siblings to cpu X in the same physical package; To implement it in an architecture-neutral way, a new source file, driver/base/topology.c, is to export the 5 attributes. If one architecture wants to support this feature, it just needs to implement 4 defines, typically in file include/asm-XXX/topology.h. The 4 defines are: #define topology_physical_package_id(cpu) #define topology_core_id(cpu) #define topology_thread_siblings(cpu) #define topology_core_siblings(cpu) The type of **_id is int. The type of siblings is cpumask_t. To be consistent on all architectures, the 4 attributes should have deafult values if their values are unavailable. Below is the rule. 1) physical_package_id: If cpu has no physical package id, -1 is the default value. 2) core_id: If cpu doesn't support multi-core, its core id is 0. 3) thread_siblings: Just include itself, if the cpu doesn't support HT/multi-thread. 4) core_siblings: Just include itself, if the cpu doesn't support multi-core and HT/Multi-thread. So be careful when declaring the 4 defines in include/asm-XXX/topology.h. If an attribute isn't defined on an architecture, it won't be exported. Thank Nathan, Greg, Andi, Paul and Venki. The patch provides defines for i386/x86_64/ia64. Signed-off-by: Zhang, Yanmin <yanmin.zhang@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* Merge branch 'release' of ↵Linus Torvalds2006-02-011-1/+1
|\ | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6
| *-----. [ACPI] merge 3549 4320 4485 4588 4980 5483 5651 acpica asus fops pnpacpi ↵Len Brown2006-01-241-1/+1
| |\ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | branches into release Signed-off-by: Len Brown <len.brown@intel.com>
| | | | | * [ACPI] Avoid BIOS inflicted crashes by evaluating _PDC only onceVenkatesh Pallipadi2005-12-011-1/+1
| | | | |/ | | | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Linux invokes the AML _PDC method (Processor Driver Capabilities) to tell the BIOS what features it can handle. While the ACPI spec says nothing about the OS invoking _PDC multiple times, doing so with changing bits seems to hopelessly confuse the BIOS on multiple platforms up to and including crashing the system. Factor out the _PDC invocation so Linux invokes it only once. http://bugzilla.kernel.org/show_bug.cgi?id=5483 Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
* | | | | [PATCH] VMSPLIT config optionsMark Lord2006-02-011-2/+2
|/ / / / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Enable selection of different user/kernel VM splits for i386, including an optimized mode for 1GB physical RAM, which gives the kernel a direct (non HIGHMEM) mapping to the entire 1GB rather than just the first 896MB. There is a similarly a similarly optimized mode for machines with exactly 2GB of physical RAM. This can speed up the kernel by avoiding having to create/destroy temporary HIGHMEM mappings, and by not having to include HIGHMEM support at all on such machines. The flip side is that there's less virtual addressing left for userspace in these alternatives, and some binary-only kernel modules may misbehave unless rebuilt with the same VMSPLIT option as the main kernel image. Original idea/patch from Jens Axboe, modified based on suggestions from Linus et al. Signed-off-by: Mark Lord <mlord@pobox.com> Signed-off-by: Jens Axboe <axboe@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | | | [PATCH] EDAC: core EDAC support codeAlan Cox2006-01-182-12/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is a subset of the bluesmoke project core code, stripped of the NMI work which isn't ready to merge and some of the "interesting" proc functionality that needs reworking or just has no place in kernel. It requires no core kernel changes except the added scrub functions already posted. The goal is to merge further functionality only after the core code is accepted and proven in the base kernel, and only at the point the upstream extras are really ready to merge. From: doug thompson <norsk5@xmission.com> This converts EDAC to sysfs and is the final chunk neccessary before EDAC has a stable user space API and can be considered for submission into the base kernel. Signed-off-by: Alan Cox <alan@redhat.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com> Signed-off-by: doug thompson <norsk5@xmission.com> Signed-off-by: Pavel Machek <pavel@suse.cz> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | | | [PATCH] EDAC: atomic scrub operationsAlan Cox2006-01-181-0/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | EDAC requires a way to scrub memory if an ECC error is found and the chipset does not do the work automatically. That means rewriting memory locations atomically with respect to all CPUs _and_ bus masters. That means we can't use atomic_add(foo, 0) as it gets optimised for non-SMP This adds a function to include/asm-foo/atomic.h for the platforms currently supported which implements a scrub of a mapped block. It also adjusts a few other files include order where atomic.h is included before types.h as this now causes an error as atomic_scrub uses u32. Signed-off-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | | | [PATCH] Add pselect/ppoll system calls on i386David Woodhouse2006-01-181-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add the sys_pselect6() and sys_poll() calls to the i386 syscall table. Signed-off-by: David Woodhouse <dwmw2@infradead.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
OpenPOWER on IntegriCloud