| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
* http://sucs.org/~rohan/git/gfs2-3.0-nmw: (24 commits)
GFS2: Move readahead of metadata during deallocation into its own function
GFS2: Remove two unused variables
GFS2: Misc fixes
GFS2: rewrite fallocate code to write blocks directly
GFS2: speed up delete/unlink performance for large files
GFS2: Fix off-by-one in gfs2_blk2rgrpd
GFS2: Clean up ->page_mkwrite
GFS2: Correctly set goal block after allocation
GFS2: Fix AIL flush issue during fsync
GFS2: Use cached rgrp in gfs2_rlist_add()
GFS2: Call do_strip() directly from recursive_scan()
GFS2: Remove obsolete assert
GFS2: Cache the most recently used resource group in the inode
GFS2: Make resource groups "append only" during life of fs
GFS2: Use rbtree for resource groups and clean up bitmap buffer ref count scheme
GFS2: Fix lseek after SEEK_DATA, SEEK_HOLE have been added
GFS2: Clean up gfs2_create
GFS2: Use ->dirty_inode()
GFS2: Fix bug trap and journaled data fsync
GFS2: Fix inode allocation error path
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Move the recently added readahead of the indirect pointer
tree during deallocation into its own function in order
that we can use it elsewhere in the future. Also this
fixes the resetting of the "first" variable in the
original patch.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The two variables being initialised in gfs2_inplace_reserve
to track the file & line number of the caller are never
used, so we might as well remove them.
If something does go wrong, then a stack trace is probably
more useful anyway.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| | |
Some items picked up through automated code analysis. A few bits
of unreachable code and two unchecked return values.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
GFS2's fallocate code currently goes through the page cache. Since it's only
writing to the end of the file or to holes in it, it doesn't need to, and it
was causing issues on low memory environments. This patch pulls in some of
Steve's block allocation work, and uses it to simply allocate the blocks for
the file, and zero them out at allocation time. It provides a slight
performance increase, and it dramatically simplifies the code.
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch improves the performance of delete/unlink
operations in a GFS2 file system where the files are large
by adding a layer of metadata read-ahead for indirect blocks.
Mileage will vary, but on my system, deleting an 8.6G file
dropped from 22 seconds to about 4.5 seconds.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Bob reported:
I found an off-by-one problem with how I coded this section:
It should be:
+ else if (blk >= cur->rd_data0 + cur->rd_data)
In fact, cur->rd_data0 + cur->rd_data is the start of the next
rgrp (the next ri_addr), so without the "=" check it can land on
the wrong rgrp.
In all normal cases, this won't be a problem: you're searching
for a block _within_ the rgrp, which will pass the test properly.
Where it gets into trouble is if you search the rgrps for the
block exactly equal to ri_addr. I don't think anything in the
kernel does this, but I found a place in gfs2-utils gfs2_edit
where it does. So I definitely need to fix it in libgfs2. I'd
like to suggest we fix it in the kernel as well for the sake of
keeping the functions similar.
So this patch fixes the above mentioned off by one error as well
as removing the unused parent pointer.
Reported-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch brings gfs2's ->page_mkwrite uptodate with respect to the
expectations set by the VM. Also added is a check to wait if the fs
is frozen, before we attempt to get a glock. This will only work on
the node which initiates the freeze, but thats ok since the transaction
lock will still provide the expected barrier on other nodes.
The major change here is that we return a locked page now, except when
we don't return a page at all (error cases). This removes the race
which required rechecking the page after it was returned.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Nick Piggin <npiggin@kernel.dk>
|
| |
| |
| |
| |
| |
| |
| | |
The new goal block should be set to the end of the newly
allocated extent, not the start of it.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Unfortunately, it is not enough to just ignore locked buffers during
the AIL flush from fsync. We need to be able to ignore all buffers
which are locked, dirty or pinned at this stage as they might have
been added subsequent to the log flush earlier in the fsync function.
In addition, this means that we no longer need to rely on i_mutex to
keep out writes during fsync, so we can, as a side-effect, remove
that protection too.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Tested-By: Abhijith Das <adas@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Each block which is deallocated, requires a call to gfs2_rlist_add()
and each of those calls was calling gfs2_blk2rgrpd() in order to
figure out which rgrp the block belonged in. This can be speeded up
by making use of the rgrp cached in the inode. We also reset this
cached rgrp in case the block has changed rgrp. This should provide
a big reduction in gfs2_blk2rgrpd() calls during deallocation.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The recursive_scan() function only ever takes a single "bc"
argument, so we might as well just call do_strip() directly
from resource_scan() rather than pass it in as an argument.
Also the "data" argument is always a struct strip_mine, so
we can pass that in, rather than using a void pointer.
This also moves do_strip() ahead of recursive_scan() so that
we don't need to add a prototype.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Given that a resource group has been locked, there is no reason why
we should not be able to allocate as many blocks as are free. The
al_requested parameter should really be considered as a minimum
number of blocks to be available. Should this limit be overshot,
there are other mechanisms which will prevent over allocation.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This means that after the initial allocation for any inode, the
last used resource group is cached in the inode for future use.
This drastically reduces the number of lookups of resource
groups in the common case, and this the contention on that
data structure.
The allocation algorithm is the same as previously, except that we
always check to see if the goal block is within the cached rgrp
first before going to the rbtree to look one up.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Since we have ruled out supporting online filesystem shrink,
it is possible to make the resource group list append only
during the life of a super block. This gives several benefits:
Firstly, we only need to read new rindex elements as they are added
rather than needing to reread the whole rindex file each time one
element is added.
Secondly, the rindex glock can be held for much shorter periods of
time, and is completely removed from the fast path for allocations.
The lock is taken in shared mode only when updating the resource
groups when the first allocation occurs, and after a grow has
taken place.
Thirdly, this results in a reduction in code size, and everything
gets a lot simpler to understand in this area.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Here is an update of Bob's original rbtree patch which, in addition, also
resolves the rather strange ref counting that was being done relating to
the bitmap blocks.
Originally we had a dual system for journaling resource groups. The metadata
blocks were journaled and also the rgrp itself was added to a list. The reason
for adding the rgrp to the list in the journal was so that the "repolish
clones" code could be run to update the free space, and potentially send any
discard requests when the log was flushed. This was done by comparing the
"cloned" bitmap with what had been written back on disk during the transaction
commit.
Due to this, there was a requirement to hang on to the rgrps' bitmap buffers
until the journal had been flushed. For that reason, there was a rather
complicated set up in the ->go_lock ->go_unlock functions for rgrps involving
both a mutex and a spinlock (the ->sd_rindex_spin) to maintain a reference
count on the buffers.
However, the journal maintains a reference count on the buffers anyway, since
they are being journaled as metadata buffers. So by moving the code which deals
with the post-journal accounting for bitmap blocks to the metadata journaling
code, we can entirely dispense with the rather strange buffer ref counting
scheme and also the requirement to journal the rgrps.
The net result of all this is that the ->sd_rindex_spin is left to do exactly
one job, and that is to look after the rbtree or rgrps.
This patch is designed to be a stepping stone towards using RCU for the rbtree
of resource groups, however the reduction in the number of uses of the
->sd_rindex_spin is likely to have benefits for multi-threaded workloads,
anyway.
The patch retains ->go_lock and ->go_unlock for rgrps, however these maybe also
be removed in future in favour of calling the functions directly where required
in the code. That will allow locking of resource groups without needing to
actually read them in - something that could be useful in speeding up statfs.
In the mean time though it is valid to dereference ->bi_bh only when the rgrp
is locked. This is basically the same rule as before, modulo the references not
being valid until the following journal flush.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Cc: Benjamin Marzinski <bmarzins@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We need to take the inode's glock whenever the inode's size
is referenced, otherwise it might not be uptodate. Even
though generic_file_llseek_unlocked() doesn't implement
SEEK_DATA, SEEK_HOLE directly, it does reference the inode's
size in those cases, so we need to add them to the list
of origins which need the glock.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If we pass through knowledge of whether the creation is intended to be
exclusive or not, then we can deal with that in gfs2_create_inode
and remove one set of locking. Also this removes the loop in
gfs2_create and simplifies the code a bit.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The aim of this patch is to use the newly enhanced ->dirty_inode()
super block operation to deal with atime updates, rather than
piggy backing that code into ->write_inode() as is currently
done.
The net result is a simplification of the code in various places
and a reduction of the number of gfs2_dinode_out() calls since
this is now implied by ->dirty_inode().
Some of the mark_inode_dirty() calls have been moved under glocks
in order to take advantage of then being able to avoid locking in
->dirty_inode() when we already have suitable locks.
One consequence is that generic_write_end() now correctly deals
with file size updates, so that we do not need a separate check
for that afterwards. This also, indirectly, means that fdatasync
should work correctly on GFS2 - the current code always syncs the
metadata whether it needs to or not.
Has survived testing with postmark (with and without atime) and
also fsx.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Journaled data requires that a complete flush of all dirty data for
the file is done, in order that the ail flush which comes after
will succeed.
Also the recently enhanced bug trap can trigger falsely in case
an ail flush from fsync races with a page read. This updates the
bug trap such that it will ignore buffers which are locked and
only trigger on dirty and/or pinned buffers when the ail flush
is run from fsync. The original bug trap is retained when ail
flush is run from ->go_sync()
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If we have got far enough through the inode allocation code
path that an inode has already been allocated, then we must
call iput to dispose of it, if an error occurs during a
later part of the process. This will always be the final iput
since there will be no other references to the inode.
Unlike when the inode has been unlinked, its block state will
be GFS2_BLKST_INODE rather than GFS2_BLKST_UNLINKED so we need
to skip the test in ->evict_inode() for this one case in order
to ensure that it will be deallocated correctly. This patch adds
a new flag in order to ensure that this will happen correctly.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We do not need to start a transaction unless the atime
check has proved positive. Also if we are going to flush
the complete ail list anyway, we might as well skip the
writeback for this specific inode's metadata, since that
will be done as part of the ail writeback process in an
order offering potentially more efficient I/O.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The assert was being tested under the wrong lock, a
legacy of the original code. Also, if it does trigger,
the resulting information was not always a lot of help.
This moves the patch under the correct lock and also
prints out more useful information in tacking down the
source of the problem.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Now that the data writing is part of fsync proper, we can split
the waiting part out and do it later on. This reduces the
number of waits that we do during fsync on average.
There is also no need to take the i_mutex unless we are flushing
metadata to disk, so we can move that to within the metadata
flushing code.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Since there is now only a single caller to gfs2_dir_read_data()
and it has a number of constant arguments, we can factor
those out. Also some tests relating to the inode size were
being done twice.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
* '3.2-without-smb2' of git://git.samba.org/sfrench/cifs-2.6: (52 commits)
Fix build break when freezer not configured
Add definition for share encryption
CIFS: Make cifs_push_locks send as many locks at once as possible
CIFS: Send as many mandatory unlock ranges at once as possible
CIFS: Implement caching mechanism for posix brlocks
CIFS: Implement caching mechanism for mandatory brlocks
CIFS: Fix DFS handling in cifs_get_file_info
CIFS: Fix error handling in cifs_readv_complete
[CIFS] Fixup trivial checkpatch warning
[CIFS] Show nostrictsync and noperm mount options in /proc/mounts
cifs, freezer: add wait_event_freezekillable and have cifs use it
cifs: allow cifs_max_pending to be readable under /sys/module/cifs/parameters
cifs: tune bdi.ra_pages in accordance with the rsize
cifs: allow for larger rsize= options and change defaults
cifs: convert cifs_readpages to use async reads
cifs: add cifs_async_readv
cifs: fix protocol definition for READ_RSP
cifs: add a callback function to receive the rest of the frame
cifs: break out 3rd receive phase into separate function
cifs: find mid earlier in receive codepath
...
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Samba supports a setfs info level to negotiate encrypted
shares. This patch adds the defines so we recognize
this info level. Later patches will add the enablement
for it.
Acked-by: Jeremy Allison <jra@samba.org>
Signed-off-by: Steve French <smfrench@gmail.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
that reduces a traffic and increases a performance.
Signed-off-by: Pavel Shilovsky <piastry@etersoft.ru>
Acked-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
that reduces a traffic and increases a performance.
Signed-off-by: Pavel Shilovsky <piastry@etersoft.ru>
Acked-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
to handle all lock requests on the client in an exclusive oplock case.
Signed-off-by: Pavel Shilovsky <piastry@etersoft.ru>
Acked-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
If we have an oplock and negotiate mandatory locking style we handle
all brlock requests on the client.
Signed-off-by: Pavel Shilovsky <piastry@etersoft.ru>
Acked-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We should call cifs_all_info_to_fattr in rc == 0 case only.
Cc: <stable@kernel.org>
Signed-off-by: Pavel Shilovsky <piastry@etersoft.ru>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
In cifs_readv_receive we don't update rdata->result to error value
after kmap'ing a page. We should kunmap the page in the no error
case only.
Signed-off-by: Pavel Shilovsky <piastry@etersoft.ru>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
|
| |\ \ |
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
CIFS currently uses wait_event_killable to put tasks to sleep while
they await replies from the server. That function though does not
allow the freezer to run. In many cases, the network interface may
be going down anyway, in which case the reply will never come. The
client then ends up blocking the computer from suspending.
Fix this by adding a new wait_event_freezable variant --
wait_event_freezekillable. The idea is to combine the behavior of
wait_event_killable and wait_event_freezable -- put the task to
sleep and only allow it to be awoken by fatal signals, but also
allow the freezer to do its job.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
|
| | | |
| | | |
| | | |
| | | | |
Signed-off-by: Jeff Layton <jlayton@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Tune bdi.ra_pages to be a multiple of the rsize. This prevents the VFS
from asking for pages that require small reads to satisfy.
Reviewed-and-Tested-by: Pavel Shilovsky <piastry@etersoft.ru>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Currently we cap the rsize at a value that fits in CIFSMaxBufSize. That's
not needed any longer for readpages. Allow the use of larger values for
readpages. cifs_iovec_read and cifs_read however are still limited to the
CIFSMaxBufSize. Make sure they don't exceed that.
The patch also changes the rsize defaults. The default when unix
extensions are enabled is set to 1M for parity with the wsize, and there
is a hard cap of ~16M.
When unix extensions are not enabled, the default is set to 60k. According
to MS-CIFS, Windows servers can only send a max of 60k at a time, so
this is more efficient than requesting a larger size. If the user wishes
however, the max can be extended up to 128k - the length of the READ_RSP
header.
Really old servers however require a special hack to ensure that we don't
request too large a read.
Reviewed-and-Tested-by: Pavel Shilovsky <piastry@etersoft.ru>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Now that we have code in place to do asynchronous reads, convert
cifs_readpages to use it. The new cifs_readpages walks the page_list
that gets passed in, locks and adds the pages to the pagecache and
sets up cifs_readdata to handle the reads.
The rest is handled by the cifs_async_readv infrastructure.
Reviewed-and-Tested-by: Pavel Shilovsky <piastry@etersoft.ru>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
...which will allow cifs to do an asynchronous read call to the server.
The caller will allocate and set up cifs_readdata for each READ_AND_X
call that should be issued on the wire. The pages passed in are added
to the pagecache, but not placed on the LRU list yet (as we need the
page->lru to keep the pages on the list in the readdata).
When cifsd identifies the mid, it will see that there is a special
receive handler for the call, and use that to receive the rest of the
frame. cifs_readv_receive will then marshal up a kvec array with
kmapped pages from the pagecache, which eliminates one copy of the
data. Once the data is received, the pages are added to the LRU list,
set uptodate, and unlocked.
Reviewed-and-Tested-by: Pavel Shilovsky <piastry@etersoft.ru>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
There is no pad, and it simplifies the code to remove the "Data" field.
None of the existing code relies on these fields, or on the READ_RSP
being a particular length.
Reviewed-and-Tested-by: Pavel Shilovsky <piastry@etersoft.ru>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
In order to handle larger SMBs for readpages and other calls, we want
to be able to read into a preallocated set of buffers. Rather than
changing all of the existing code to preallocate buffers however, we
instead add a receive callback function to the MID.
cifsd will call this function once the mid_q_entry has been identified
in order to receive the rest of the SMB. If the mid can't be identified
or the receive pointer is unset, then the standard 3rd phase receive
function will be called.
Reviewed-and-Tested-by: Pavel Shilovsky <piastry@etersoft.ru>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Move the entire 3rd phase of the receive codepath into a separate
function in preparation for the addition of a pluggable receive
function.
Reviewed-and-Tested-by: Pavel Shilovsky <piastry@etersoft.ru>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
In order to receive directly into a preallocated buffer, we need to ID
the mid earlier, before the bulk of the response is read. Call the mid
finding routine as soon as we're able to read the mid.
Reviewed-and-Tested-by: Pavel Shilovsky <piastry@etersoft.ru>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
We have several functions that need to access these pointers. Currently
that's done with a lot of double pointer passing. Instead, move them
into the TCP_Server_Info and simplify the handling.
Reviewed-and-Tested-by: Pavel Shilovsky <piastry@etersoft.ru>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Change find_cifs_mid to only return NULL if a mid could not be found.
If we got part of a multi-part T2 response, then coalesce it and still
return the mid. The caller can determine the T2 receive status from
the flags in the mid.
With this change, there is no need to pass a pointer to "length" as
well so just pass by value. If a mid is found, then we can just mark
it as malformed. If one isn't found, then the value of "length" won't
change anyway.
Reviewed-and-Tested-by: Pavel Shilovsky <piastry@etersoft.ru>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Begin breaking up find_cifs_mid into smaller pieces. The parts that
coalesce T2 responses don't really need to be done under the
GlobalMid_lock anyway. Create a new function that just finds the
mid on the list, and then later takes it off the list if the entire
response has been received.
Reviewed-and-Tested-by: Pavel Shilovsky <piastry@etersoft.ru>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Have the demultiplex thread receive just enough to get to the MID, and
then find it before receiving the rest. Later, we'll use this to swap
in a preallocated receive buffer for some calls.
Reviewed-and-Tested-by: Pavel Shilovsky <piastry@etersoft.ru>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Having to continually allocate a new kvec array is expensive. Allocate
one that's big enough, and only reallocate it as needed.
Reviewed-and-Tested-by: Pavel Shilovsky <piastry@etersoft.ru>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Eventually we'll want to allow cifsd to read data directly into the
pagecache. In order to do that we'll need a routine that can take a
kvec array and pass that directly to kernel_recvmsg.
Unfortunately though, the kernel's recvmsg routines modify the kvec
array that gets passed in, so we need to use a copy of the kvec array
and refresh that copy on each pass through the loop.
Reviewed-and-Tested-by: Pavel Shilovsky <piastry@etersoft.ru>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
|