| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a superblock verify callback function and pass it into the
buffer read functions. Remove the now redundant verification code
that is currently in use.
Adding verification shows that secondary superblocks never have
their "sb_inprogress" flag cleared by mkfs.xfs, so when validating
the secondary superblocks during a grow operation we have to avoid
checking this field. Even if we fix mkfs, we will still have to
ignore this field for verification purposes unless a version of mkfs
that does not have this bug was used.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Create a new mount workqueue and delayed_work to enable background
scanning and freeing of eofblocks inodes. The scanner kicks in once
speculative preallocation occurs and stops requeueing itself when
no eofblocks inodes exist.
The scan interval is based on the new
'speculative_prealloc_lifetime' tunable (default to 5m). The
background scanner performs unfiltered, best effort scans (which
skips inodes under lock contention or with a dirty cache mapping).
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
xfs_sync.c now only contains inode reclaim functions and inode cache
iteration functions. It is not related to sync operations anymore.
Rename to xfs_icache.c to reflect it's contents and prepare for
consolidation with the other inode cache file that exists
(xfs_iget.c).
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With the syncd functions moved to the log and/or removed, the syncd
workqueue is the only remaining bit left. It is used by the log
covering/ail pushing work, as well as by the inode reclaim work.
Given how cheap workqueues are these days, give the log and inode
reclaim work their own work queues and kill the syncd work queue.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We don't do any data writeback from XFS any more - the VFS is
completely responsible for that, including for freeze. We can
replace the remaining caller with a VFS level function that
achieves the same thing, but without conflicting with current
writeback work.
This means we can remove the flush_work and xfs_flush_inodes() - the
VFS functionality completely replaces the internal flush queue for
doing this writeback work in a separate context to avoid stack
overruns.
This does have one complication - it cannot be called with page
locks held. Hence move the flushing of delalloc space when ENOSPC
occurs back up into xfs_file_aio_buffered_write when we don't hold
any locks that will stall writeback.
Unfortunately, writeback_inodes_sb_if_idle() is not sufficient to
trigger delalloc conversion fast enough to prevent spurious ENOSPC
whent here are hundreds of writers, thousands of small files and GBs
of free RAM. Hence we need to use sync_sb_inodes() to block callers
while we wait for writeback like the previous xfs_flush_inodes
implementation did.
That means we have to hold the s_umount lock here, but because this
call can nest inside i_mutex (the parent directory in the create
case, held by the VFS), we have to use down_read_trylock() to avoid
potential deadlocks. In practice, this trylock will succeed on
almost every attempt as unmount/remount type operations are
exceedingly rare.
Note: we always need to pass a count of zero to
generic_file_buffered_write() as the previously written byte count.
We only do this by accident before this patch by the virtue of ret
always being zero when there are no errors. Make this explicit
rather than needing to specifically zero ret in the ENOSPC retry
case.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The only thing the periodic sync work does now is flush the AIL and
idle the log. These are really functions of the log code, so move
the work to xfs_log.c and rename it appropriately.
The only wart that this leaves behind is the xfssyncd_centisecs
sysctl, otherwise the xfssyncd is dead. Clean up any comments that
related to xfssyncd to reflect it's passing.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I noticed that "struct xfs_mount_args" was still declared in
"fs/xfs/xfs_mount.h". That struct doesn't even exist any more (and
is obviously not referenced elsewhere in that header file). While
in there, delete four other unneeded struct declarations in that
file.
Doing so highlights that "fs/xfs/xfs_trace.h" was relying indirectly
on "xfs_mount.h" to be #included in order to declare "struct
xfs_bmbt_irec", so add that declaration to resolve that issue.
Signed-off-by: Alex Elder <elder@inktank.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull second vfs pile from Al Viro:
"The stuff in there: fsfreeze deadlock fixes by Jan (essentially, the
deadlock reproduced by xfstests 068), symlink and hardlink restriction
patches, plus assorted cleanups and fixes.
Note that another fsfreeze deadlock (emergency thaw one) is *not*
dealt with - the series by Fernando conflicts a lot with Jan's, breaks
userland ABI (FIFREEZE semantics gets changed) and trades the deadlock
for massive vfsmount leak; this is going to be handled next cycle.
There probably will be another pull request, but that stuff won't be
in it."
Fix up trivial conflicts due to unrelated changes next to each other in
drivers/{staging/gdm72xx/usb_boot.c, usb/gadget/storage_common.c}
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (54 commits)
delousing target_core_file a bit
Documentation: Correct s_umount state for freeze_fs/unfreeze_fs
fs: Remove old freezing mechanism
ext2: Implement freezing
btrfs: Convert to new freezing mechanism
nilfs2: Convert to new freezing mechanism
ntfs: Convert to new freezing mechanism
fuse: Convert to new freezing mechanism
gfs2: Convert to new freezing mechanism
ocfs2: Convert to new freezing mechanism
xfs: Convert to new freezing code
ext4: Convert to new freezing mechanism
fs: Protect write paths by sb_start_write - sb_end_write
fs: Skip atime update on frozen filesystem
fs: Add freezing handling to mnt_want_write() / mnt_drop_write()
fs: Improve filesystem freezing handling
switch the protection of percpu_counter list to spinlock
nfsd: Push mnt_want_write() outside of i_mutex
btrfs: Push mnt_want_write() outside of i_mutex
fat: Push mnt_want_write() outside of i_mutex
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Generic code now blocks all writers from standard write paths. So we add
blocking of all writers coming from ioctl (we get a protection of ioctl against
racing remount read-only as a bonus) and convert xfs_file_aio_write() to a
non-racy freeze protection. We also keep freeze protection on transaction
start to block internal filesystem writes such as removal of preallocated
blocks.
CC: Ben Myers <bpm@sgi.com>
CC: Alex Elder <elder@kernel.org>
CC: xfs@oss.sgi.com
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Rename the XFS log structure to xlog to help crash distinquish it from the
other logs in Linux.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Rename the XFS log structure to xlog to help crash distinquish it from the
other logs in Linux.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
XFS_MAXIOFFSET() is just a simple macro that resolves to
mp->m_maxioffset. It doesn't need to exist, and it just makes the
code unnecessarily loud and shouty.
Make it quiet and easy to read.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|/
|
|
|
|
|
|
|
|
| |
The m_maxioffset field in the struct xfs_mount contains the same
value as the superblock s_maxbytes field. There is no need to carry
two copies of this limit around, so use the VFS superblock version.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Doing background CIL flushes adds significant latency to whatever
async transaction that triggers it. To avoid blocking async
transactions on things like waiting for log buffer IO to complete,
move the CIL push off into a workqueue. By moving the push work
into a workqueue, we remove all the latency that the commit adds
from the foreground transaction commit path. This also means that
single threaded workloads won't do the CIL push procssing, leaving
them more CPU to do more async transactions.
To do this, we need to keep track of the sequence number we have
pushed work for. This avoids having many transaction commits
attempting to schedule work for the same sequence, and ensures that
we only ever have one push (background or forced) in progress at a
time. It also means that we don't need to take the CIL lock in write
mode to check for potential background push races, which reduces
lock contention.
To avoid potential issues with "smart" IO schedulers, don't use the
workqueue for log force triggered flushes. Instead, do them directly
so that the log IO is done directly by the process issuing the log
force and so doesn't get stuck on IO elevator queue idling
incorrectly delaying the log IO from the workqueue.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that we write back all metadata either synchronously or through
the AIL we can simply implement metadata freezing in terms of
emptying the AIL.
The implementation for this is fairly simply and straight-forward:
A new routine is added that asks the xfsaild to push the AIL to the
end and waits for it to complete and send a wakeup. The routine will
then loop if the AIL is not actually empty, and continue to do so
until the AIL is compeltely empty.
We keep an inode reclaim pass in the freeze process to avoid having
memory pressure have to reclaim inodes that require dirtying the
filesystem to be reclaimed after the freeze has completed. This
means we can also treat unmount in the exact same way as freeze.
As an upside we can now remove the radix tree based inode writeback
and xfs_unmountfs_writesb.
[ Dave Chinner:
- Cleaned up commit message.
- Added inode reclaim passes back into freeze.
- Cleaned up wakeup mechanism to avoid the use of a new
sleep counter variable. ]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The new concurrency managed workqueues are cheap enough that we can create
per-filesystem instead of global workqueues. This allows us to remove the
trylock or defer scheme on the ilock, which is not helpful once we have
outstanding log reservations until finishing a size update.
Also allow the default concurrency on this workqueues so that I/O completions
blocking on the ilock for one inode do not block process for another inode.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Change xfs_sb_from_disk() interface to take a mount pointer
instead of a superblock pointer.
This is to print mount point specific error messages in future
fixes.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
| |
The delaylog mode has been the default for a long time, and the nodelaylog
option has been scheduled for removal in Linux 3.3. Remove it and code
only used by it now that we have opened the 3.3 window.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
|
|
|
|
|
|
|
|
| |
Remove the second parameter to xfs_sb_count() since all callers of
the function set them.
Also, fix the header comment regarding it being called periodically.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that we have reliably tracking of deleted extents in a
transaction we can easily implement "online" discard support
which calls blkdev_issue_discard once a transaction commits.
The actual discard is a two stage operation as we first have
to mark the busy extent as not available for reuse before we
can start the actual discard. Note that we don't bother
supporting discard for the non-delaylog mode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Background inode reclaim needs to run more frequently that the XFS
syncd work is run as 30s is too long between optimal reclaim runs.
Add a new periodic work item to the xfs syncd workqueue to run a
fast, non-blocking inode reclaim scan.
Background inode reclaim is kicked by the act of marking inodes for
reclaim. When an AG is first marked as having reclaimable inodes,
the background reclaim work is kicked. It will continue to run
periodically untill it detects that there are no more reclaimable
inodes. It will be kicked again when the first inode is queued for
reclaim.
To ensure shrinker based inode reclaim throttles to the inode
cleaning and reclaim rate but still reclaim inodes efficiently, make it kick the
background inode reclaim so that when we are low on memory we are
trying to reclaim inodes as efficiently as possible. This kick shoul
d not be necessary, but it will protect against failures to kick the
background reclaim when inodes are first dirtied.
To provide the rate throttling, make the shrinker pass do
synchronous inode reclaim so that it blocks on inodes under IO. This
means that the shrinker will reclaim inodes rather than just
skipping over them, but it does not adversely affect the rate of
reclaim because most dirty inodes are already under IO due to the
background reclaim work the shrinker kicked.
These two modifications solve one of the two OOM killer invocations
Chris Mason reported recently when running a stress testing script.
The particular workload trigger for the OOM killer invocation is
where there are more threads than CPUs all unlinking files in an
extremely memory constrained environment. Unlike other solutions,
this one does not have a performance impact on performance when
memory is not constrained or the number of concurrent threads
operating is <= to the number of CPUs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On of the problems with the current inode flush at ENOSPC is that we
queue a flush per ENOSPC event, regardless of how many are already
queued. Thi can result in hundreds of queued flushes, most of
which simply burn CPU scanned and do no real work. This simply slows
down allocation at ENOSPC.
We really only need one active flush at a time, and we can easily
implement that via the new xfs_syncd_wq. All we need to do is queue
a flush if one is not already active, then block waiting for the
currently active flush to complete. The result is that we only ever
have a single ENOSPC inode flush active at a time and this greatly
reduces the overhead of ENOSPC processing.
On my 2p test machine, this results in tests exercising ENOSPC
conditions running significantly faster - 042 halves execution time,
083 drops from 60s to 5s, etc - while not introducing test
regressions.
This allows us to remove the old xfssyncd threads and infrastructure
as they are no longer used.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
All of the work xfssyncd does is background functionality. There is
no need for a thread per filesystem to do this work - it can al be
managed by a global workqueue now they manage concurrency
effectively.
Introduce a new gglobal xfssyncd workqueue, and convert the periodic
work to use this new functionality. To do this, use a delayed work
construct to schedule the next running of the periodic sync work
for the filesystem. When the sync work is complete, queue a new
delayed work for the next running of the sync work.
For laptop mode, we wait on completion for the sync works, so ensure
that the sync work queuing interface can flush and wait for work to
complete to enable the work queue infrastructure to replace the
current sequence number and wakeup that is used.
Because the sync work does non-trivial amounts of work, mark the
new work queue as CPU intensive.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently the size of the speculative preallocation during delayed
allocation is fixed by either the allocsize mount option of a
default size. We are seeing a lot of cases where we need to
recommend using the allocsize mount option to prevent fragmentation
when buffered writes land in the same AG.
Rather than using a fixed preallocation size by default (up to 64k),
make it dynamic by basing it on the current inode size. That way the
EOF preallocation will increase as the file size increases. Hence
for streaming writes we are much more likely to get large
preallocations exactly when we need it to reduce fragementation.
For default settings, the size of the initial extents is determined
by the number of parallel writers and the amount of memory in the
machine. For 4GB RAM and 4 concurrent 32GB file writes:
EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL
0: [0..1048575]: 1048672..2097247 0 (1048672..2097247) 1048576
1: [1048576..2097151]: 5242976..6291551 0 (5242976..6291551) 1048576
2: [2097152..4194303]: 12583008..14680159 0 (12583008..14680159) 2097152
3: [4194304..8388607]: 25165920..29360223 0 (25165920..29360223) 4194304
4: [8388608..16777215]: 58720352..67108959 0 (58720352..67108959) 8388608
5: [16777216..33554423]: 117440584..134217791 0 (117440584..134217791) 16777208
6: [33554424..50331511]: 184549056..201326143 0 (184549056..201326143) 16777088
7: [50331512..67108599]: 251657408..268434495 0 (251657408..268434495) 16777088
and for 16 concurrent 16GB file writes:
EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL
0: [0..262143]: 2490472..2752615 0 (2490472..2752615) 262144
1: [262144..524287]: 6291560..6553703 0 (6291560..6553703) 262144
2: [524288..1048575]: 13631592..14155879 0 (13631592..14155879) 524288
3: [1048576..2097151]: 30408808..31457383 0 (30408808..31457383) 1048576
4: [2097152..4194303]: 52428904..54526055 0 (52428904..54526055) 2097152
5: [4194304..8388607]: 104857704..109052007 0 (104857704..109052007) 4194304
6: [8388608..16777215]: 209715304..218103911 0 (209715304..218103911) 8388608
7: [16777216..33554423]: 452984848..469762055 0 (452984848..469762055) 16777208
Because it is hard to take back specualtive preallocation, cases
where there are large slow growing log files on a nearly full
filesystem may cause premature ENOSPC. Hence as the filesystem nears
full, the maximum dynamic prealloc size іs reduced according to this
table (based on 4k block size):
freespace max prealloc size
>5% full extent (8GB)
4-5% 2GB (8GB >> 2)
3-4% 1GB (8GB >> 3)
2-3% 512MB (8GB >> 4)
1-2% 256MB (8GB >> 5)
<1% 128MB (8GB >> 6)
This should reduce the amount of space held in speculative
preallocation for such cases.
The allocsize mount option turns off the dynamic behaviour and fixes
the prealloc size to whatever the mount option specifies. i.e. the
behaviour is unchanged.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
|
|
|
|
|
|
|
|
|
| |
We're not actually passing around credentials inside XFS for a while
now, so remove all xfs_cred.h with it's cred_t typedef and all
instances of it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
| |
Export xfs_icsb_modify_counters and always use it for modifying
the per-cpu counters. Remove support for per-cpu counters from
xfs_mod_incore_sb to simplify it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
| |
Fail the mount if we can't allocate memory for the per-CPU counters.
This is consistent with how we handle everything else in the mount
path and makes the superblock counter modification a lot simpler.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
| |
The reclaim walk requires different locking and has a slightly
different walk algorithm, so separate it out so that it can be
optimised separately.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Since Linux 2.6.33 the kernel has support for real O_SYNC, which made
the osyncisosync option a no-op. Warn the users about this and remove
the mount flag for it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Dmapi support was never merged upstream, but we still have a lot of hooks
bloating XFS for it, all over the fast pathes of the filesystem.
This patch drops over 700 lines of dmapi overhead. If we'll ever get HSM
support in mainline at least the namespace events can be done much saner
in the VFS instead of the individual filesystem, so it's not like this
is much help for future work.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now the shrinker passes us a context, wire up a shrinker context per
filesystem. This allows us to remove the global mount list and the
locking problems that introduced. It also means that a shrinker call
does not need to traverse clean filesystems before finding a
filesystem with reclaimable inodes. This significantly reduces
scanning overhead when lots of filesystems are present.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The delayed logging code only changes in-memory structures and as
such can be enabled and disabled with a mount option. Add the mount
option and emit a warning that this is an experimental feature that
should not be used in production yet.
We also need infrastructure to track committed items that have not
yet been written to the log. This is what the Committed Item List
(CIL) is for.
The log item also needs to be extended to track the current log
vector, the associated memory buffer and it's location in the Commit
Item List. Extend the log item and log vector structures to enable
this tracking.
To maintain the current log format for transactions with delayed
logging, we need to introduce a checkpoint transaction and a context
for tracking each checkpoint from initiation to transaction
completion. This includes adding a log ticket for tracking space
log required/used by the context checkpoint.
To track all the changes we need an io vector array per log item,
rather than a single array for the entire transaction. Using the new
log vector structure for this requires two passes - the first to
allocate the log vector structures and chain them together, and the
second to fill them out. This log vector chain can then be passed
to the CIL for formatting, pinning and insertion into the CIL.
Formatting of the log vector chain is relatively simple - it's just
a loop over the iovecs on each log vector, but it is made slightly
more complex because we re-write the iovec after the copy to point
back at the memory buffer we just copied into.
This code also needs to pin log items. If the log item is not
already tracked in this checkpoint context, then it needs to be
pinned. Otherwise it is already pinned and we don't need to pin it
again.
The only other complexity is calculating the amount of new log space
the formatting has consumed. This needs to be accounted to the
transaction in progress, and the accounting is made more complex
becase we need also to steal space from it for log metadata in the
checkpoint transaction. Calculate all this at insert time and update
all the tickets, counters, etc correctly.
Once we've formatted all the log items in the transaction, attach
the busy extents to the checkpoint context so the busy extents live
until checkpoint completion and can be processed at that point in
time. Transactions can then be freed at this point in time.
Now we need to issue checkpoints - we are tracking the amount of log space
used by the items in the CIL, so we can trigger background checkpoints when the
space usage gets to a certain threshold. Otherwise, checkpoints need ot be
triggered when a log synchronisation point is reached - a log force event.
Because the log write code already handles chained log vectors, writing the
transaction is trivial, too. Construct a transaction header, add it
to the head of the chain and write it into the log, then issue a
commit record write. Then we can release the checkpoint log ticket
and attach the context to the log buffer so it can be called during
Io completion to complete the checkpoint.
We also need to allow for synchronising multiple in-flight
checkpoints. This is needed for two things - the first is to ensure
that checkpoint commit records appear in the log in the correct
sequence order (so they are replayed in the correct order). The
second is so that xfs_log_force_lsn() operates correctly and only
flushes and/or waits for the specific sequence it was provided with.
To do this we need a wait variable and a list tracking the
checkpoint commits in progress. We can walk this list and wait for
the checkpoints to change state or complete easily, an this provides
the necessary synchronisation for correct operation in both cases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On low memory boxes or those with highmem, kernel can OOM before the
background reclaims inodes via xfssyncd. Add a shrinker to run inode
reclaim so that it inode reclaim is expedited when memory is low.
This is more complex than it needs to be because the VM folk don't
want a context added to the shrinker infrastructure. Hence we need
to add a global list of XFS mount structures so the shrinker can
traverse them.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Move the two declarations to better fitting headers now that
xfs_lrw.c is gone.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|\ \
| |/
|/|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: add __percpu sparse annotations to what's left
percpu: add __percpu sparse annotations to fs
percpu: add __percpu sparse annotations to core kernel subsystems
local_t: Remove leftover local.h
this_cpu: Remove pageset_notifier
this_cpu: Page allocator conversion
percpu, x86: Generic inc / dec percpu instructions
local_t: Move local.h include to ringbuffer.c and ring_buffer_benchmark.c
module: Use this_cpu_xx to dynamically allocate counters
local_t: Remove cpu_local_xx macros
percpu: refactor the code in pcpu_[de]populate_chunk()
percpu: remove compile warnings caused by __verify_pcpu_ptr()
percpu: make accessors check for percpu pointer in sparse
percpu: add __percpu for sparse.
percpu: make access macros universal
percpu: remove per_cpu__ prefix.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Add __percpu sparse annotations to fs.
These annotations are to make sparse consider percpu variables to be
in a different address space and warn if accessed without going
through percpu accessors. This patch doesn't affect normal builds.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Alex Elder <aelder@sgi.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This mangles the reserved blocks counts a little more.
1) add a helper function for the default reserved count
2) add helper functions to save/restore counts on ro/rw
3) save/restore reserved blocks on freeze/thaw
4) disallow changing reserved count while readonly
V2: changed field name to match Dave's changes
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If we hold onto reserved blocks when doing a remount,ro we end
up writing the blocks used count to disk that includes the reserved
blocks. Reserved blocks are not actually used, so this results in
the values in the superblock being incorrect.
Hence if we run xfs_check or xfs_repair -n while the filesystem is
mounted remount,ro we end up with an inconsistent filesystem being
reported. Also, running xfs_copy on the remount,ro filesystem will
result in an inconsistent image being generated.
To fix this, unreserve the blocks when doing the remount,ro, and
reserved them again on remount,rw. This way a remount,ro filesystem
will appear consistent on disk to all utilities.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
dmops uses a signed char for it's namespace event. To be consistent
with the rest of the code, convert them to unsigned char for the
namespace string.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Uninline xfs_perag_{get,put} so that tracepoints can be inserted
into them to speed debugging of reference count problems.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Reference count the per-ag structures to ensure that we keep get/put
pairs balanced. Assert that the reference counts are zero at unmount
time to catch leaks. In future, reference counts will enable us to
safely remove perag structures by allowing us to detect when they
are no longer in use.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The use of an array for the per-ag structures requires reallocation
of the array when growing the filesystem. This requires locking
access to the array to avoid use after free situations, and the
locking is difficult to get right. To avoid needing to reallocate an
array, change the per-ag structures to an allocated object per ag
and index them using a tree structure.
The AGs are always densely indexed (hence the use of an array), but
the number supported is 2^32 and lookups tend to be random and hence
indexing needs to scale. A simple choice is a radix tree - it works
well with this sort of index. This change also removes another
large contiguous allocation from the mount/growfs path in XFS.
The growing process now needs to change to only initialise the new
AGs required for the extra space, and as such only needs to
exclusively lock the tree for inserts. The rest of the code only
needs to lock the tree while doing lookups, and hence this will
remove all the deadlocks that currently occur on the m_perag_lock as
it is now an innermost lock. The lock is also changed to a spinlock
from a read/write lock as the hold time is now extremely short.
To complete the picture, the per-ag structures will need to be
reference counted to ensure that we don't free/modify them while
they are still in use. This will be done in subsequent patch.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|/
|
|
|
|
|
|
|
|
|
|
| |
xfs_get_perag is really getting the perag that an inode belongs to
based on it's inode number. Convert the use of this function to just
get the perag from a provided ag number. Use this new function to
obtain the per-ag structure when traversing the per AG inode trees
for sync and reclaim.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
| |
Stop the flag saving as we never mangle those in the unmount path, and
hide all the weird arguents to the dmapi code inside the
XFS_SEND_PREUNMOUNT / XFS_SEND_UNMOUNT macros.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Remove our own STATIC_INLINE macro. For small function inside
implementation files just use STATIC and let gcc inline it, and for
those in headers do the normal static inline - they are all small
enough to be inlined for debug builds, too.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
| |
A lot more functions could be made static, but they need
forward declarations; this does some easy ones, and also
found a few unused functions in the process.
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Felix Blyakher <felixb@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Kill the quota ops function vector and replace it with direct calls or
stubs in the CONFIG_XFS_QUOTA=n case.
Make sure we check XFS_IS_QUOTA_RUNNING in the right spots. We can remove
the number of those checks because the XFS_TRANS_DQ_DIRTY flag can't be set
otherwise.
This brings us back closer to the way this code worked in IRIX and earlier
Linux versions, but we keep a lot of the more useful factoring of common
code.
Eventually we should also kill xfs_qm_bhv.c, but that's left for a later
patch.
Reduces the size of the source code by about 250 lines and the size of
XFS module by about 1.5 kilobytes with quotas enabled:
text data bss dec hex filename
615957 2960 3848 622765 980ad fs/xfs/xfs.o
617231 3152 3848 624231 98667 fs/xfs/xfs.o.old
Fallout:
- xfs_qm_dqattach is split into xfs_qm_dqattach_locked which expects
the inode locked and xfs_qm_dqattach which does the locking around it,
thus removing XFS_QMOPT_ILOCKED.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@sandeen.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently xfs_device_flush calls sync_blockdev() which is
a no-op for XFS as all it's metadata is held in a different
address to the one sync_blockdev() works on.
Call xfs_sync_inodes() instead to flush all the delayed
allocation blocks out. To do this as efficiently as possible,
do it via two passes - one to do an async flush of all the
dirty blocks and a second to wait for all the IO to complete.
This requires some modification to the xfs-sync_inodes_ag()
flush code to do efficiently.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With the upcoming v3 inodes the default attroffset needs to be calculated
for each specific inode, so we can't cache it in the superblock anymore.
Also replace the assert for wrong inode sizes with a proper error check
also included in non-debug builds. Note that the ENOSYS return for
that might seem odd, but that error is returned by xfs_mount_validate_sb
for all theoretically valid but not supported filesystem geometries.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
|