summaryrefslogtreecommitdiffstats
path: root/fs/ocfs2/stack_user.c
Commit message (Collapse)AuthorAgeFilesLines
* include cleanup: Update gfp.h and slab.h includes to prepare for breaking ↵Tejun Heo2010-03-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
* ocfs2: Remove the ast pointers from ocfs2_stack_pluginsJoel Becker2010-02-261-3/+3
| | | | | | | | | | | | With the full ocfs2_locking_protocol hanging off of the ocfs2_cluster_connection, ast wrappers can get the ast/bast pointers there. They don't need to get them from their plugin structure. The user plugin still needs the maximum locking protocol version, though. This changes the plugin structure so that it only holds the max version, not the entire ocfs2_locking_protocol pointer. Signed-off-by: Joel Becker <joel.becker@oracle.com>
* ocfs2: Hang the locking proto on the cluster conn and use it in asts.Joel Becker2010-02-261-7/+3
| | | | | | | | | | | | | With the ocfs2_cluster_connection hanging off of the ocfs2_dlm_lksb, we have access to it in the ast and bast wrapper functions. Attach the ocfs2_locking_protocol to the conn. Now, instead of refering to a static variable for ast/bast pointers, the wrappers can look at the connection. This means different connections can have different ast/bast pointers, and it reduces the need for the static pointer. Signed-off-by: Joel Becker <joel.becker@oracle.com>
* ocfs2: Attach the connection to the lksbJoel Becker2010-02-261-8/+8
| | | | | | | We're going to want it in the ast functions, so we convert union ocfs2_dlm_lksb to struct ocfs2_dlm_lksb and let it carry the connection. Signed-off-by: Joel Becker <joel.becker@oracle.com>
* ocfs2: Pass lksbs back from stackglue ast/bast functions.Joel Becker2010-02-261-18/+11
| | | | | | | | | | | | | | | The stackglue ast and bast functions tried to maintain the fiction that their arguments were void pointers. In reality, stack_user.c had to know that the argument was an ocfs2_lock_res in order to get the status off of the lksb. That's ugly. This changes stackglue to always pass the lksb as the argument to ast and bast functions. The caller can always use container_of() to get the ocfs2_lock_res or user_dlm_lock_res. The net effect to the caller is zero. They still get back the lockres in their ast. stackglue gets cleaner, and now can use the lksb itself. Signed-off-by: Joel Becker <joel.becker@oracle.com>
* ocfs2: explicit declare uninitialized var in user_cluster_connect()Coly Li2009-12-171-1/+1
| | | | | | | This patch explicitly declares an uninitialized local variable in user_cluster_connect(), to remove a compiling warning. Signed-off-by: Coly Li <coly.li@suse.de> Signed-off-by: Joel Becker <joel.becker@oracle.com>
* ocfs2: Provide the ocfs2_dlm_lvb_valid() stack API.Joel Becker2009-06-221-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | The Lock Value Block (LVB) of a DLM lock can be lost when nodes die and the DLM cannot reconstruct its state. Clients of the DLM need to know this. ocfs2's internal DLM, o2dlm, explicitly zeroes out the LVB when it loses track of the state. This is not a standard behavior, but ocfs2 has always relied on it. Thus, an o2dlm LVB is always "valid". ocfs2 now supports both o2dlm and fs/dlm via the stack glue. When fs/dlm loses track of an LVBs state, it sets a flag (DLM_SBF_VALNOTVALID) on the Lock Status Block (LKSB). The contents of the LVB may be garbage or merely stale. ocfs2 doesn't want to try to guess at the validity of the stale LVB. Instead, it should be checking the VALNOTVALID flag. As this is the 'standard' way of treating LVBs, we will promote this behavior. We add a stack glue API ocfs2_dlm_lvb_valid(). It returns non-zero when the LVB is valid. o2dlm will always return valid, while fs/dlm will check VALNOTVALID. Signed-off-by: Joel Becker <joel.becker@oracle.com> Acked-by: Mark Fasheh <mfasheh@suse.com>
* ocfs2: initialize stack_user lvbptrDavid Teigland2008-12-011-0/+3
| | | | | | | | | The locking_state dump, ocfs2_dlm_seq_show, reads the lvb on locks where it has not yet been initialized by a lock call. Signed-off-by: David Teigland <teigland@redhat.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
* ocfs2: POSIX file locks supportMark Fasheh2008-10-131-0/+33
| | | | | | | | | | | | | | This is actually pretty easy since fs/dlm already handles the bulk of the work. The Ocfs2 userspace cluster stack module already uses fs/dlm as the underlying lock manager, so I only had to add the right calls. Cluster-aware POSIX locks ("plocks") can be turned off by the same means at UNIX locks - mount with 'noflocks', or create a local-only Ocfs2 volume. Internally, the file system uses two sets of file_operations, depending on whether cluster aware plocks is required. This turns out to be easier than implementing local-only versions of ->lock. Signed-off-by: Mark Fasheh <mfasheh@suse.com>
* Merge branch 'upstream-linus' of ↵Linus Torvalds2008-07-171-14/+5
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/mfasheh/ocfs2 * 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mfasheh/ocfs2: [PATCH] ocfs2: fix oops in mmap_truncate testing configfs: call drop_link() to cleanup after create_link() failure configfs: Allow ->make_item() and ->make_group() to return detailed errors. configfs: Fix failing mkdir() making racing rmdir() fail configfs: Fix deadlock with racing rmdir() and rename() configfs: Make configfs_new_dirent() return error code instead of NULL configfs: Protect configfs_dirent s_links list mutations configfs: Introduce configfs_dirent_lock ocfs2: Don't snprintf() without a format. ocfs2: Fix CONFIG_OCFS2_DEBUG_FS #ifdefs ocfs2/net: Silence build warnings on sparc64 ocfs2: Handle error during journal load ocfs2: Silence an error message in ocfs2_file_aio_read() ocfs2: use simple_read_from_buffer() ocfs2: fix printk format warnings with OCFS2_FS_STATS=n [PATCH 2/2] ocfs2: Instrument fs cluster locks [PATCH 1/2] ocfs2: Add CONFIG_OCFS2_FS_STATS config option
| * ocfs2: use simple_read_from_buffer()Akinobu Mita2008-07-141-14/+5
| | | | | | | | | | | | | | Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
* | Merge commit 'v2.6.26' into bkl-removalJonathan Corbet2008-07-141-19/+18
|\ \ | |/
| * ocfs2: Remove ->hangup() from stack glue operations.Joel Becker2008-06-161-2/+1
| | | | | | | | | | | | | | | | | | The ->hangup() call was only used to execute ocfs2_hb_ctl. Now that the generic stack glue code handles this, the underlying stack drivers don't need to know about it. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
| * ocfs2: Rename 'user_stack' plugin structure to 'ocfs2_user_plugin'Joel Becker2008-05-301-17/+17
| | | | | | | | | | | | | | | | | | | | The static structure describing the userspace cluster plugin for ocfs2 was named 'user_stack', which is a real pain when people are grep(1)ing the tree for the program stack object 'user_stack'. Change the name to something distinct and namespaced. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
* | ocfs2-stack_user: BKL pushdownArnd Bergmann2008-07-021-0/+3
|/ | | | Signed-off-by: Arnd Bergmann <arnd@arndb.de>
* ocfs2: make struct ocfs2_control_device staticAdrian Bunk2008-04-301-1/+1
| | | | | | | | | This patch makes the needlessly global struct ocfs2_control_device static. Signed-off-by: Adrian Bunk <bunk@kernel.org> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
* ocfs2: add fsdlm to stackglueDavid Teigland2008-04-181-1/+215
| | | | | | | | | | Add code to use fs/dlm. [ Modified to be part of the stack_user module -- Joel ] Signed-off-by: David Teigland <teigland@redhat.com> Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
* ocfs2: Add the 'set version' message to the ocfs2_control device.Joel Becker2008-04-181-12/+119
| | | | | | | | | The "SETV" message sets the filesystem locking protocol version as negotiated by the client. The client negotiates based on the maximum version advertised in /sys/fs/ocfs2/max_locking_protocol. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
* ocfs2: Add the local node id to the handshake.Joel Becker2008-04-181-49/+173
| | | | | | | | | This is the second part of the ocfs2_control handshake. After negotiating the ocfs2_control protocol, the daemon tells the filesystem what the local node id is via the SETN message. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
* ocfs2: Introduce the DOWN message to ocfs2_controlJoel Becker2008-04-181-5/+89
| | | | | | | | When the control daemon sees a node go down, it sends a DOWN message through the ocfs2_control device. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
* ocfs2: Start the ocfs2_control handshake.Joel Becker2008-04-181-5/+139
| | | | | | | | | | | | | When a control daemon opens the ocfs2_control device, it must perform a handshake to tell the filesystem it is something capable of monitoring cluster status. Only after the handshake is complete will the filesystem allow mounts. This is the first part of the handshake. The daemon reads all supported ocfs2_control protocols, then writes in the protocol it will use. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
* ocfs2: Add the ocfs2_control misc device.Joel Becker2008-04-181-1/+183
| | | | | | | | The ocfs2_control misc device is how a userspace control daemon (controld) talks to the filesystem. Introduce the bare-bones filesystem ops. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
* ocfs2: Add the user stack module.Joel Becker2008-04-181-0/+38
Add a skeleton for the stack_user module. It's just the barebones module code. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
OpenPOWER on IntegriCloud