summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/zlib.c
Commit message (Collapse)AuthorAgeFilesLines
* btrfs: Extract duplicate decompress codeLi Zefan2010-12-221-99/+12
| | | | | | | Add a common function to copy decompressed data from working buffer to bio pages. Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
* btrfs: Allow to add new compression algorithmLi Zefan2010-12-221-203/+50
| | | | | | | | | | Make the code aware of compression type, instead of always assuming zlib compression. Also make the zlib workspace function as common code for all compression types. Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
* btrfs: Fix error handling in zlibLi Zefan2010-12-221-0/+8
| | | | | | | Return failure if alloc_page() fails to allocate memory, and the upper code will just give up compression. Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
* btrfs: Fix bugs in zlib workspaceLi Zefan2010-12-221-2/+5
| | | | | | | - Fix a race that can result in alloc_workspace > cpus. - Fix to check num_workspace after wakeup. Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
* Btrfs: cleanup warnings from gcc 4.6 (nonbugs)Andi Kleen2010-10-291-5/+0
| | | | | | | | | | | | | | These are all the cases where a variable is set, but not read which are not bugs as far as I can see, but simply leftovers. Still needs more review. Found by gcc 4.6's new warnings Signed-off-by: Andi Kleen <ak@linux.intel.com> Cc: Chris Mason <chris.mason@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Btrfs: correct error-handling zlib error handlingJulia Lawall2009-08-071-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | find_zlib_workspace returns an ERR_PTR value in an error case instead of NULL. A simplified version of the semantic match that finds this problem is as follows: (http://coccinelle.lip6.fr/) // <smpl> @match exists@ expression x, E; statement S1, S2; @@ x = find_zlib_workspace(...) ... when != x = E ( * if (x == NULL || ...) S1 else S2 | * if (x == NULL && ...) S1 else S2 ) // </smpl> Signed-off-by: Julia Lawall <julia@diku.dk> Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Btrfs: Fix checkpatch.pl warningsChris Mason2009-01-051-26/+19
| | | | | | | There were many, most are fixed now. struct-funcs.c generates some warnings but these are bogus. Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Btrfs: make things static and include the right headersChristoph Hellwig2008-12-021-0/+1
| | | | | | | | Shut up various sparse warnings about symbols that should be either static or have their declarations in scope. Signed-off-by: Christoph Hellwig <hch@lst.de>
* Btrfs: Fix compile warnings on 32 bit machinesChris Mason2008-11-111-1/+1
| | | | | | | Simple casting here and there to fix things up. Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Btrfs: Optimize compressed writeback and readsChris Mason2008-11-061-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When reading compressed extents, try to put pages into the page cache for any pages covered by the compressed extent that readpages didn't already preload. Add an async work queue to handle transformations at delayed allocation processing time. Right now this is just compression. The workflow is: 1) Find offsets in the file marked for delayed allocation 2) Lock the pages 3) Lock the state bits 4) Call the async delalloc code The async delalloc code clears the state lock bits and delalloc bits. It is important this happens before the range goes into the work queue because otherwise it might deadlock with other work queue items that try to lock those extent bits. The file pages are compressed, and if the compression doesn't work the pages are written back directly. An ordered work queue is used to make sure the inodes are written in the same order that pdflush or writepages sent them down. This changes extent_write_cache_pages to let the writepage function update the wbc nr_written count. Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Btrfs: Add zlib compression supportChris Mason2008-10-291-0/+637
This is a large change for adding compression on reading and writing, both for inline and regular extents. It does some fairly large surgery to the writeback paths. Compression is off by default and enabled by mount -o compress. Even when the -o compress mount option is not used, it is possible to read compressed extents off the disk. If compression for a given set of pages fails to make them smaller, the file is flagged to avoid future compression attempts later. * While finding delalloc extents, the pages are locked before being sent down to the delalloc handler. This allows the delalloc handler to do complex things such as cleaning the pages, marking them writeback and starting IO on their behalf. * Inline extents are inserted at delalloc time now. This allows us to compress the data before inserting the inline extent, and it allows us to insert an inline extent that spans multiple pages. * All of the in-memory extent representations (extent_map.c, ordered-data.c etc) are changed to record both an in-memory size and an on disk size, as well as a flag for compression. From a disk format point of view, the extent pointers in the file are changed to record the on disk size of a given extent and some encoding flags. Space in the disk format is allocated for compression encoding, as well as encryption and a generic 'other' field. Neither the encryption or the 'other' field are currently used. In order to limit the amount of data read for a single random read in the file, the size of a compressed extent is limited to 128k. This is a software only limit, the disk format supports u64 sized compressed extents. In order to limit the ram consumed while processing extents, the uncompressed size of a compressed extent is limited to 256k. This is a software only limit and will be subject to tuning later. Checksumming is still done on compressed extents, and it is done on the uncompressed version of the data. This way additional encodings can be layered on without having to figure out which encoding to checksum. Compression happens at delalloc time, which is basically singled threaded because it is usually done by a single pdflush thread. This makes it tricky to spread the compression load across all the cpus on the box. We'll have to look at parallel pdflush walks of dirty inodes at a later time. Decompression is hooked into readpages and it does spread across CPUs nicely. Signed-off-by: Chris Mason <chris.mason@oracle.com>
OpenPOWER on IntegriCloud