| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The drivers/video directory is a mess. It contains generic video related
files, directories for backlight, console, linux logo, lots of fbdev
device drivers, fbdev framework files.
Make some order into the chaos by creating drivers/video/fbdev
directory, and move all fbdev related files there.
No functionality is changed, although I guess it is possible that some
subtle Makefile build order related issue could be created by this
patch.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Rob Clark <robdclark@gmail.com>
Acked-by: Jingoo Han <jg1.han@samsung.com>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
|
|\
| |
| |
| | |
Merge OMAP DSS DT support
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Add DT support for DSS. Contrary to the non-DT version, the DSS in DT
mode contains DPI and SDI outputs, which better reflects the hardware.
The non-DT code will be removed after all boards have been converted to
DT, so there's no need to change the non-DT code to act the same way.
The code for DPI and SDI needs to be refined later to make it possible
to add multiple DPI ports. For now, handling just a single DPI port is
enough for all the boards.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
'fck' field in dpi and sdi clock calculation struct is 'unsigned long
long', even though it should be 'unsigned long'. This hasn't caused any
issues so far.
Fix the field's type.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
| |
omapdss has its own video-timings struct, but we want to move the common
videomode.
The first step is to change the omapdss's pixelclock unit from kHz to
Hz. Also, omapdss uses "pixel_clock" field name, whereas the common
videomode uses "pixelclock" field name. This patch changes the field
name also, as that makes it easy to spot any non-converted pixel_clock
uses.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|\ \
| | |
| | |
| | | |
Merge fbdev topic branches
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We need the required pixel clock rate when calculating the dss fclk on
SoCs that have a dedicated DSS PLL.
This patch changes the code to pass the pck to the calc functions. The
pck rate is taken into use in the next patch.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
| |/
|/|
| |
| |
| |
| |
| |
| | |
Remove struct dss_clock_info, as it is not usable in a case where DSS
fclk comes from a dedicated PLL. Instead, just use the fclk rate in
place of dss_clock_info, as that is all that's needed.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|/
|
|
|
|
|
|
|
|
|
| |
Nowadays it's normal to get -EPROBE_DEFER from, e.g., regulator_get. As
-EPROBE_DEFER is not really an error, and the driver will be probed fine
a bit later, printing an error message will just confuse the user.
This patch changes omapdss to print an error for regulator_gets only if
the error code is something else than -EPROBE_DEFER.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the old panel device model we had omap_dss_output entities,
representing the encoders in the DSS block. This entity had "device"
field, which pointed to the panel that was using the omap_dss_output.
With the new panel device model, the omap_dss_output is integrated into
omap_dss_device, which now represents a "display entity". Thus the "device"
field, now in omap_dss_device, points to the next entity in the display
entity-chain.
This patch renames the "device" field to "dst", which much better tells
what the field points to.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
|
|
|
| |
Now that the old panel drivers have been removed, we can remove the
old-model API and related code from the DSS encoder drivers.
This patch removes the code from the SDI driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Regulator handling for DPI and SDI is currently handled in the core.c,
using the 'virtual' omapdss platform device. Nowadays we have proper
devices for both DPI and SDI, and so we can handle the regulators inside
the respective drivers.
This patch moves the regulator handling for SDI into sdi.c.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
|
|
|
| |
Add "ops" style method for using SDI functionality.
Ops style calls will allow us to have arbitrarily long display
pipelines, where each entity can call ops in the previous display
entity.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order to allow multiple display block in a video pipeline, we need to
give the drivers way to register themselves. For now we have
the omapdss_register_display() which is used to register panels, and
dss_register_output() which is used to register DSS encoders.
This patch makes dss_register_output() public (with the name of
omapdss_register_output), which can be used to register also external
encoders. The distinction between register_output and register_display
is that a "display" is an entity at the end of the videopipeline, and
"output" is something inside the pipeline.
The registration and naming will be made saner in the future, but the
current names and functions are kept to minimize changes during the dss
device model transition.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
| |
Setup the owner field for DSS output's omap_dss_device so that module
refcounting works.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We currently have omap_dss_device, which represents an external display
device, sometimes an external encoder, sometimes a panel. Then we have
omap_dss_output, which represents DSS's output encoder.
In the future with new display device model, we construct a video
pipeline from the display blocks. To accomplish this, all the blocks
need to be presented by the same entity.
Thus, this patch combines omap_dss_output into omap_dss_device. Some of
the fields in omap_dss_output are already found in omap_dss_device, but
some are not. This means we'll have DSS output specific fields in
omap_dss_device, which is not very nice. However, it is easier to just
keep those output specific fields there for now, and after transition to
new display device model is made, they can be cleaned up easier than
could be done now.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The omap_dss_start_device() and omap_dss_stop_device(), called by the
DSS output drivers, are old relics. They originally did something
totally else, but nowadays they increase the module ref count for panels
that are enabled.
This model is quite broken: the panel modules may be used even before
they are enabled. For example, configuring the panel requires calls to
functions located in the panel modules.
In the following patches we try to improve the ref count management for
the modules and display devices. The first step, however, is to remove
the omap_dss_start/stop_device() totally.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
|
|
|
|
| |
In the future the "dssdev" parameter passed to output drivers will
change its meaning. Instead of being a pointer to the panel device, it's
a pointer to the output instance.
To make the transition easier, some of the uses for this dssdev
parameter can be easily removed.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SDI requires a regulator to operate. This regulator is, for some reason,
currently attached to the virtual omapdss device, instead of the SDI
device. This does not work for DT, as the regulator mappings need to be
described in the DT data, and the virtual omapdss device is not present
there.
Fix the issue by acquiring the regulator in the SDI device. To retain
compatibility with the current board files, the old method of getting
the regulator is kept. The old method can be removed when the board
files have been changed to pass the regulator to SDI.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
|
| |
Clean up the SDI driver's regulator init to remove the (unused)
omap_dss_device parameter, renaming the function to a more sensible
name, and making the code slightly clearer.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
|
|
| |
omapdss output drivers always read the platform data. This crashes when
there's no platform data when using DT.
Add a check to read the platform data only if it exists.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
|
| |
Add proper error handling for sdi_probe_pdata(). This will cause
EPROBE_DEFER to be properly passed upwards, causing the SDI driver to be
probed again later if a resource was missing.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
| |
Use platform_driver_register() instead of platform_driver_probe() so
that we can support EPROBE_DEFER.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
| |
Use the new clock calculation code in the SDI driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The DISPC channel used for each output is currently passed in panel
platform data from the board files.
To simplify this, and to make the panel drivers less dependent on OMAP,
this patch changes omapdss to resolve the channel independently. The
channel is resolved based on the OMAP version and, in case of DSI, the
DSI module id. This resolved channel is stored into a new field in
output, dispc_channel.
The few places where dssdev->channel was used are changed to use
output->recommended_channel. After this patch, dssdev->channel is
obsolete.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
|
| |
Add name field to omapdss's outputs so that in the following patches
panels refer to the output by their name. The name also helps debugging.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We currently attach an output to a dssdev in the initialization code for
dssdevices in display.c. This works, but doesn't quite make sense: an
output entity represents (surprisingly) an output of DSS, which is
managed by an output driver. The output driver also handles adding new
dssdev's for that particular output.
It makes more sense to make the output-dssdev connection in the output
driver. This is also in line with common display framework.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
|
| |
Export dss_get_def_display_name() with the name of
omapdss_get_def_display_name() so that omapfb can use it after the next
patch which moves default display handling to omapfb.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Both dpi.c and sdi.c use strcmp(), but do not include string.h. With
some Kconfig options string.h is included implicitly, but with some
other the compilation fails:
drivers/video/omap2/dss/dpi.c:407:5: error: implicit declaration of
function 'strcmp'
Include string.h in both dpi.c and sdi.c
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
|
|
|
|
| |
With addition of output entities, a device connects to an output, and an output
connects to overlay manager. Replace the dssdev->manager references with
dssdev->output->manager to access the manager correctly.
When enabling the SDI output, check whether the output entity connected to
display is not NULL.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add output structs to output driver's private data. Register output instances by
having an init function in the probes of the platform device drivers for
different outputs. The *_init_output for each output registers the output and
fill up the output's plaform device, type and id fields. The *_uninit_output
functions unregister the output.
In the probe of each interface driver, the output entities are initialized
before the *_probe_pdata() functions intentionally. This is done to ensure that
the output entity is prepared before the panels connected to the output are
registered. We need the output entities to be ready because OMAPDSS will try
to make connections between overlays, managers, outputs and devices during the
panel's probe.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We currently create omap_dss_devices statically in board files, and use
those devices directly in the omapdss driver. This model prevents us
from having the platform data (which the dssdevs in board files
practically are) as read-only, and it's also different than what we will
use with device tree.
This patch changes the model to be in line with DT model: we allocate
the dssdevs dynamically, and initialize them according to the data in
the board file's dssdev (basically we memcopy the dssdev fields).
The allocation and registration is done in the following steps in the
output drivers:
- Use dss_alloc_and_init_device to allocate and initialize the device.
The function uses kalloc and device_initialize to accomplish this.
- Call dss_copy_device_pdata to copy the data from the board file's
dssdev
- Use dss_add_device to register the device.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We have boards with multiple panel devices connected to the same
physical output, of which only one panel can be enabled at one time.
Examples of these are Overo, where you can use different daughter boards
that have different LCDs, and 3430SDP which has an LCD and a DVI output
and a physical switch to select the active display.
These are supported by omapdss so that we add all the possible display
devices at probe, but the displays are inactive until somebody enables
one. At this point the panel driver starts using the DSS, thus reserving
the physcal resource and excluding the other panels.
This is problematic:
- Panel drivers can't allocate their resources properly at probe(),
because the resources can be shared with other panels. Thus they can
be only reserved at enable time.
- Managing this in omapdss is confusing. It's not natural to have
child devices, which may not even exist (for example, a daughterboard
that is not connected).
Only some boards have multiple displays per output, and of those, only
very few have possibility of switching the display during runtime.
Because of the above points:
- We don't want to make omapdss and all the panel drivers more complex
just because some boards have complex setups.
- Only few boards support runtime switching, and afaik even then it's
not required. So we don't need to support runtime switching.
Thus we'll change to a model where we will have only one display device
per output and this cannot be (currently) changed at runtime. We'll
still have the possibility to select the display from multiple options
during boot with the default display option.
This patch accomplishes the above by changing how the output drivers
register the display device. Instead of registering all the devices
given from the board file, we'll only register one. If the default
display option is set, the output driver selects that display from its
displays. If the default display is not set, or the default display is
not one of the output's displays, the output driver selects the first
display.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We used to have all the displays of the board in one list, and we made a
"displayX" directory in the sysfs, where X was the index of the display
in the list.
This doesn't work anymore with device tree, as there's no single list to
get the number from, and it doesn't work very well even with non-DT as
we need to do some tricks to get the index nowadays.
This patch changes omap_dss_register_device() so that it doesn't take
disp_num as a parameter anymore, but uses a private increasing counter
for the display number.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Merge omapfb and OMAP SDI fixes:
* OMAPFB: fix framebuffer console colors
* OMAPDSS: Fix SDI PLL locking
Conflicts:
drivers/video/omap2/dss/sdi.c
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Commit f476ae9dab3234532d41d36beb4ba7be838fa786 (OMAPDSS: APPLY: Remove
DISPC writes to manager's lcd parameters in interface) broke the SDI
output, as it causes the SDI PLL locking to fail.
LCLK and PCLK divisors are located in shadow registers, and we normally
write them to DISPC registers when enabling the output. However, SDI
uses pck-free as source clock for its PLL, and pck-free is affected by
the divisors. And as we need the PLL before enabling the output, we need
to write the divisors early.
It seems just writing to the DISPC register is enough, and we don't need
to care about the shadow register mechanism for pck-free. The exact
reason for this is unknown.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reported-by: Aaro Koskinen <aaro.koskinen@iki.fi>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
set_timings function of DSS's output drivers are not consistent. Some of
them disable the output, set the timings, and re-enable the output. Some
set the timings on the fly, while the output is enabled. And some just
store the given timings, so that they will be taken into use next time
the output is enabled.
We require the DISPC output to be disabled when changing the timings,
and so we can change all the output drivers' set_timings to just store
the given timings.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The SDI driver currently relies on the omap_dss_device struct to configure the
number of data pairs as specified by the panel. This makes the SDI interface
driver dependent on the omap_dss_device struct.
Make the SDI driver data maintain it's own data lines field. A panel driver
is expected to call omapdss_sdi_set_datapairs() before enabling the interface.
Even though we configure the number of data pairs here, this function would be
finally mapped to a generic interface op called set_data_lines. The datapairs
argument type has been changed from u8 to int at some places to be in sync with
the 'set_data_lines' ops of other interfaces.
Signed-off-by: Archit Taneja <archit@ti.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The SDI driver currently relies on the timings in omap_dss_device struct to
configure the DISPC accordingly. This makes the SDI interface driver dependent
on the omap_dss_device struct.
Make the SDI driver data maintain it's own timings field. The panel driver is
expected to call omapdss_sdi_set_timings() to set these timings before the panel
is enabled.
Make the SDI panel driver configure the new timings is the omap_dss_device
struct(dssdev->panel.timings). The SDI driver is responsible for maintaining
only it's own copy of timings.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|/
|
|
|
|
|
|
|
|
|
| |
Create function omapdss_sdi_set_timings(). Configuring new timings is done the
same way as before, SDI is disabled, and re-enabled with the new timings in
dssdev. This just moves the code from the panel drivers to the SDI driver.
The panel drivers shouldn't be aware of how SDI manages to configure a new set
of timings. This should be taken care of by the SDI driver itself.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
drivers
Replace the DISPC fuctions used to configure LCD channel related manager
parameters with dss_mgr_set_lcd_config() in APPLY. This function ensures that
the DISPC registers are written at the right time by using the shadow register
programming model.
The LCD manager configurations is stored as a private data of manager in APPLY.
It is treated as an extra info as it's the panel drivers which trigger this
apply via interface drivers, and not a DSS2 user like omapfb or omapdrm.
Storing LCD manager related properties in APPLY also prevents the need to refer
to the panel connected to the manager for information. This helps in making the
DSS driver less dependent on panel.
A helper function is added to check whether the manager is LCD or TV. The direct
DISPC register writes are removed from the interface drivers.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Create a dss_lcd_mgr_config struct instance in SDI. Fill up all the parameters
of the struct with configurations held by the panel, and the configurations
required by SDI.
Use these to write to the DISPC registers. These direct register writes would be
later replaced by a function which applies the configuration using the shadow
register programming model.
Create function sdi_config_lcd_manager() which fills the mgr_config parameters
and writes to the DISPC registers.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
|
|
|
|
| |
dipsc_mgr_set_clock div has an int return type to report errors or success.
The function doesn't really check for errors and always returns 0. Change
the return type to void.
Checking for the correct DISPC clock divider ranges will be done when a DSS2
user does a manager apply. This support will be added later.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
|
|
|
|
| |
omap_panel_config contains fields which are finally written to DISPC_POL_FREQo
registers. These are now held by omap_video_timings and are set when the manager
timings are applied.
Remove the omap_panel_config enum, and remove all it's references from panel or
interface drivers.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
|
|
|
|
| |
dispc_mgr_set_pol_freq() configures the fields in the register DISPC_POL_FREQo.
All these fields have been moved to omap_video_timings struct, and are now
programmed in dispc_mgr_set_lcd_timings(). These will be configured when timings
are applied via dss_mgr_set_timings().
Remove dispc_mgr_set_pol_freq() and it's calls from the interface drivers.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some panel timing related fields are contained in omap_panel_config in the form
of flags. The fields are:
- Hsync logic level
- Vsync logic level
- Data driven on rising/falling edge of pixel clock
- Output enable/Data enable logic level
- HSYNC/VSYNC driven on rising/falling edge of pixel clock
Out of these parameters, Hsync and Vsync logic levels are a part of the timings
in the Xorg modeline configuration. So it makes sense to move the to
omap_video_timings. The rest aren't a part of modeline, but it still makes
sense to move these since they are related to panel timings.
These fields stored in omap_panel_config in dssdev are configured for LCD
panels, and the corresponding LCD managers in the DISPC_POL_FREQo registers.
Add the above fields in omap_video_timings. Represent their state via new enums.
Add these parameters to the omap_video_timings instances in the panel drivers.
Keep the corresponding IVS, IHS, IPC, IEO, RF and ONOFF flags in
omap_panel_config for now. The struct will be removed later.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove configuration of Ac-bias pins
Ac-bias pins need to be configured only for passive matrix displays. Remove
acbi and acb fields in omap_dss_device and their configuration in panel
drivers. Don't program these fields in DISP_POL_FREQo register any more.
The panel driver for sharp-ls037v7dw01, and the panel config for
Innolux AT070TN8 in generic dpi panel driver set acb to a non zero value. This
is most likely carried over from the old omapfb driver which supported passive
matrix displays.
Cc: Thomas Weber <weber@corscience.de>
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
|
|
|
| |
Remove omap_lcd_display_type enum
The enum omap_lcd_display_type is used to configure the lcd display type in
DISPC. Remove this enum and always set display type to TFT by creating function
dss_mgr_set_lcd_type_tft().
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove clock constraints related to passive matrix displays.
There is a constraint (pcd_min should be 3) for passive matrix displays. Remove
this constraint in clock divider calculations as we won't support passive
matrix displays any more.
This cleans up the functions which calculate the clock dividers with DSI's PLL
or DSS_FCLK as the clock source.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
|
|
|
|
|
| |
Move the platform-data based display device initialization into a
separate function, so that we may later add of-based initialization.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|